Racionálne korene kvadratickej rovnice. Kvadratické rovnice. Komplexný sprievodca (2019)


Pokračujeme v štúdiu témy „ riešenie rovníc" S lineárnymi rovnicami sme sa už zoznámili a pokračujeme v zoznamovaní kvadratické rovnice.

Najprv sa pozrieme na to, čo je to kvadratická rovnica a ako sa v nej píše všeobecný pohľad, a dáme súvisiace definície. Potom pomocou príkladov podrobne preskúmame, ako sa riešia neúplné kvadratické rovnice. Ďalej prejdeme k riešeniu úplných rovníc, získame koreňový vzorec, zoznámime sa s diskriminantom kvadratickej rovnice a zvážime riešenia typických príkladov. Nakoniec vystopujme súvislosti medzi koreňmi a koeficientmi.

Navigácia na stránke.

Čo je to kvadratická rovnica? Ich typy

Najprv musíte jasne pochopiť, čo je kvadratická rovnica. Preto je logické začať konverzáciu o kvadratických rovniciach definíciou kvadratickej rovnice, ako aj príbuzných definícií. Potom môžete zvážiť hlavné typy kvadratické rovnice: redukované a neredukované, ako aj úplné a neúplné rovnice.

Definícia a príklady kvadratických rovníc

Definícia.

Kvadratická rovnica je rovnica tvaru a x 2 + b x + c = 0, kde x je premenná, a, b a c sú nejaké čísla a a je nenulové.

Povedzme hneď, že kvadratické rovnice sa často nazývajú rovnice druhého stupňa. Je to spôsobené tým, že kvadratická rovnica je algebraická rovnica druhého stupňa.

Uvedená definícia nám umožňuje uviesť príklady kvadratických rovníc. Takže 2 x 2 + 6 x + 1 = 0, 0,2 x 2 + 2,5 x + 0,03 = 0 atď. Toto sú kvadratické rovnice.

Definícia.

čísla a, b a c sa nazývajú koeficienty kvadratickej rovnice a·x 2 +b·x+c=0 a koeficient a sa nazýva prvý alebo najvyšší alebo koeficient x 2, b je druhý koeficient alebo koeficient x a c je voľný člen .

Vezmime si napríklad kvadratickú rovnicu v tvare 5 x 2 −2 x −3=0, tu je vodiaci koeficient 5, druhý koeficient sa rovná −2 a voľný člen sa rovná −3. Všimnite si, že ak sú koeficienty b a/alebo c záporné, ako v práve uvedenom príklade, potom krátka forma napísanie kvadratickej rovnice v tvare 5 x 2 −2 x−3=0, a nie 5 x 2 +(−2) x+(−3)=0.

Stojí za zmienku, že keď sa koeficienty a a/alebo b rovnajú 1 alebo −1, zvyčajne nie sú explicitne prítomné v kvadratickej rovnici, čo je spôsobené zvláštnosťami písania takýchto . Napríklad v kvadratickej rovnici y 2 −y+3=0 je vedúci koeficient jedna a koeficient y sa rovná −1.

Redukované a neredukované kvadratické rovnice

V závislosti od hodnoty vedúceho koeficientu sa rozlišujú redukované a neredukované kvadratické rovnice. Uveďme zodpovedajúce definície.

Definícia.

Nazýva sa kvadratická rovnica, v ktorej je vedúci koeficient 1 daná kvadratická rovnica. Inak platí kvadratická rovnica nedotknuté.

Podľa túto definíciu, kvadratické rovnice x 2 −3·x+1=0, x 2 −x−2/3=0 atď. – daný, v každom z nich je prvý koeficient rovný jednej. A 5 x 2 −x−1=0 atď. - neredukované kvadratické rovnice, ich vodiace koeficienty sú odlišné od 1.

Z akejkoľvek neredukovanej kvadratickej rovnice vydelením oboch strán vodiacim koeficientom môžete prejsť k redukovanej. Táto akcia je ekvivalentnou transformáciou, to znamená, že takto získaná redukovaná kvadratická rovnica má rovnaké korene ako pôvodná neredukovaná kvadratická rovnica, alebo podobne ako ona nemá žiadne korene.

Pozrime sa na príklad, ako sa vykonáva prechod z neredukovanej kvadratickej rovnice na redukovanú.

Príklad.

Z rovnice 3 x 2 +12 x−7=0 prejdite na zodpovedajúcu redukovanú kvadratickú rovnicu.

Riešenie.

Potrebujeme len vydeliť obe strany pôvodnej rovnice vodiacim koeficientom 3, je nenulový, aby sme mohli vykonať túto akciu. Máme (3 x 2 +12 x−7):3=0:3, čo je rovnaké, (3x2):3+(12 x):3−7:3=0 a potom (3: 3) x 2 +(12:3) x−7:3=0, odkiaľ . Takto sme získali redukovanú kvadratickú rovnicu, ktorá je ekvivalentná pôvodnej.

odpoveď:

Úplné a neúplné kvadratické rovnice

Definícia kvadratickej rovnice obsahuje podmienku a≠0. Táto podmienka je potrebná, aby rovnica a x 2 + b x + c = 0 bola kvadratická, pretože keď a = 0, stáva sa vlastne lineárnou rovnicou v tvare b x + c = 0.

Pokiaľ ide o koeficienty b a c, môžu sa rovnať nule, jednotlivo aj spolu. V týchto prípadoch sa kvadratická rovnica nazýva neúplná.

Definícia.

Kvadratická rovnica a x 2 +b x+c=0 sa nazýva neúplné, ak sa aspoň jeden z koeficientov b, c rovná nule.

Vo svojom poradí

Definícia.

Kompletná kvadratická rovnica je rovnica, v ktorej sú všetky koeficienty odlišné od nuly.

Takéto mená neboli dané náhodou. To bude zrejmé z nasledujúcich diskusií.

Ak je koeficient b nula, potom má kvadratická rovnica tvar a·x 2 +0·x+c=0 a je ekvivalentná rovnici a·x 2 +c=0. Ak c=0, to znamená, že kvadratická rovnica má tvar a·x 2 +b·x+0=0, potom ju možno prepísať ako a·x 2 +b·x=0. A s b=0 ac=0 dostaneme kvadratickú rovnicu a·x 2 =0. Výsledné rovnice sa líšia od úplnej kvadratickej rovnice tým, že ich ľavé strany neobsahujú ani člen s premennou x, ani voľný člen, ani oboje. Odtiaľ pochádza ich názov – neúplné kvadratické rovnice.

Takže rovnice x 2 +x+1=0 a −2 x 2 −5 x+0,2=0 sú príklady úplných kvadratických rovníc a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 sú neúplné kvadratické rovnice.

Riešenie neúplných kvadratických rovníc

Z informácií v predchádzajúcom odseku vyplýva, že existuje tri typy neúplných kvadratických rovníc:

  • a·x 2 =0, tomu zodpovedajú koeficienty b=0 a c=0;
  • ax2+c=0, keď b=0;
  • a ax2+bx=0, keď c=0.

Pozrime sa v poradí, ako sa riešia neúplné kvadratické rovnice každého z týchto typov.

a x 2 = 0

Začnime riešením neúplných kvadratických rovníc, v ktorých sú koeficienty b a c rovné nule, teda rovnicami v tvare a x 2 =0. Rovnica a·x 2 =0 je ekvivalentná rovnici x 2 =0, ktorá sa získa z originálu delením oboch častí nenulovým číslom a. Je zrejmé, že koreň rovnice x 2 = 0 je nula, pretože 0 2 = 0. Táto rovnica nemá žiadne iné korene, čo sa vysvetľuje tým, že pre akékoľvek nenulové číslo p platí nerovnosť p 2 >0, čo znamená, že pre p≠0 sa nikdy nedosiahne rovnosť p 2 =0.

Neúplná kvadratická rovnica a·x 2 =0 má teda jeden koreň x=0.

Ako príklad uvedieme riešenie neúplnej kvadratickej rovnice −4 x 2 =0. Je ekvivalentná rovnici x 2 =0, jej jediným koreňom je x=0, preto má pôvodná rovnica jeden koreň nula.

Krátke riešenie v tomto prípade možno napísať takto:
−4 x 2 = 0 ,
x 2 = 0,
x=0.

a x 2 + c = 0

Teraz sa pozrime, ako sa riešia neúplné kvadratické rovnice, v ktorých je koeficient b nula a c≠0, teda rovnice tvaru a x 2 +c=0. Vieme, že presun člena z jednej strany rovnice na druhú s opačným znamienkom, ako aj delenie oboch strán rovnice nenulovým číslom, dáva ekvivalentnú rovnicu. Preto môžeme vykonať nasledujúce ekvivalentné transformácie neúplnej kvadratickej rovnice a x 2 +c=0:

  • presuňte c na pravú stranu, čím získate rovnicu a x 2 =−c,
  • a obe strany vydelíme a, dostaneme .

Výsledná rovnica nám umožňuje vyvodiť závery o jej koreňoch. V závislosti od hodnôt a a c môže byť hodnota výrazu záporná (napríklad ak a=1 a c=2, potom ) alebo kladná (napríklad ak a=−2 a c=6, potom ), nie je nula , keďže podľa podmienky c≠0. Pozrime sa na prípady samostatne.

Ak , potom rovnica nemá korene. Toto tvrdenie vyplýva zo skutočnosti, že druhá mocnina ľubovoľného čísla je nezáporné číslo. Z toho vyplýva, že keď , potom pre žiadne číslo p nemôže platiť rovnosť.

Ak , potom je situácia s koreňmi rovnice iná. V tomto prípade, ak si pamätáme asi , potom sa koreň rovnice okamžite stane zrejmým; je to číslo, pretože . Je ľahké uhádnuť, že číslo je tiež koreňom rovnice, skutočne, . Táto rovnica nemá žiadne iné korene, čo sa dá ukázať napríklad protirečením. Poďme na to.

Označme korene práve oznámenej rovnice ako x 1 a −x 1 . Predpokladajme, že rovnica má ešte jeden koreň x 2, odlišný od uvedených koreňov x 1 a −x 1. Je známe, že dosadením jej koreňov do rovnice namiesto x sa rovnica zmení na správnu číselnú rovnosť. Pre x 1 a −x 1 máme , a pre x 2 máme . Vlastnosti numerických rovníc nám umožňujú vykonávať odčítanie správnych numerických rovníc po členoch, takže odčítanie zodpovedajúcich častí rovnosti dáva x 1 2 −x 2 2 =0. Vlastnosti operácií s číslami nám umožňujú prepísať výslednú rovnosť ako (x 1 −x 2)·(x 1 +x 2)=0. Vieme, že súčin dvoch čísel sa rovná nule práve vtedy, ak sa aspoň jedno z nich rovná nule. Z výslednej rovnosti teda vyplýva, že x 1 −x 2 =0 a/alebo x 1 +x 2 =0, čo je rovnaké, x 2 =x 1 a/alebo x 2 =−x 1. Došli sme teda k rozporu, keďže na začiatku sme povedali, že koreň rovnice x 2 je odlišný od x 1 a −x 1. To dokazuje, že rovnica nemá iné korene ako a .

Zhrňme si informácie v tomto odseku. Neúplná kvadratická rovnica a x 2 +c=0 je ekvivalentná rovnici, ktorá

  • nemá korene, ak,
  • má dva korene a ak .

Uvažujme príklady riešenia neúplných kvadratických rovníc v tvare a·x 2 +c=0.

Začnime kvadratickou rovnicou 9 x 2 +7=0. Po presunutí voľného člena na pravú stranu rovnice bude mať tvar 9 x 2 =−7. Vydelením oboch strán výslednej rovnice číslom 9 sa dostaneme k . Keďže pravá strana má záporné číslo, táto rovnica nemá korene, preto pôvodná neúplná kvadratická rovnica 9 x 2 +7 = 0 nemá korene.

Vyriešme ďalšiu neúplnú kvadratickú rovnicu −x 2 +9=0. Presunieme deviatku na pravú stranu: −x 2 =−9. Teraz vydelíme obe strany −1, dostaneme x 2 =9. Na pravej strane je kladné číslo, z ktorého usudzujeme, že alebo . Potom zapíšeme konečnú odpoveď: neúplná kvadratická rovnica −x 2 +9=0 má dva korene x=3 alebo x=−3.

a x 2 + b x = 0

Zostáva sa zaoberať riešením posledného typu neúplných kvadratických rovníc pre c=0. Neúplné kvadratické rovnice tvaru a x 2 + b x = 0 umožňujú riešiť faktorizačná metóda. Je zrejmé, že môžeme, nachádzame sa na ľavej strane rovnice, pre ktorú stačí vyňať spoločný faktor x zo zátvoriek. To nám umožňuje prejsť od pôvodnej neúplnej kvadratickej rovnice k ekvivalentnej rovnici v tvare x·(a·x+b)=0. A táto rovnica je ekvivalentná množine dvoch rovníc x=0 a a·x+b=0, z ktorých druhá je lineárna a má koreň x=−b/a.

Neúplná kvadratická rovnica a·x 2 +b·x=0 má teda dva korene x=0 a x=−b/a.

Na konsolidáciu materiálu analyzujeme riešenie konkrétny príklad.

Príklad.

Vyriešte rovnicu.

Riešenie.

Vybratím x zo zátvoriek dostaneme rovnicu . Je ekvivalentom dvoch rovníc x=0 a . Vyriešime výslednú lineárnu rovnicu: a vydelíme zmiešané číslo o spoločný zlomok, nájdeme. Preto korene pôvodnej rovnice sú x=0 a .

Po získaní potrebnej praxe je možné riešenia takýchto rovníc stručne napísať:

odpoveď:

x=0,.

Diskriminant, vzorec pre korene kvadratickej rovnice

Na riešenie kvadratických rovníc existuje koreňový vzorec. Poďme si to zapísať vzorec pre korene kvadratickej rovnice: , Kde D=b2-4a c- tzv diskriminant kvadratickej rovnice. Zápis v podstate znamená, že .

Je užitočné vedieť, ako bol odvodený koreňový vzorec a ako sa používa pri hľadaní koreňov kvadratických rovníc. Poďme na to.

Odvodenie vzorca pre korene kvadratickej rovnice

Potrebujeme vyriešiť kvadratickú rovnicu a·x 2 +b·x+c=0. Urobme niekoľko ekvivalentných transformácií:

  • Obe strany tejto rovnice môžeme vydeliť nenulovým číslom a, výsledkom čoho je nasledujúca kvadratická rovnica.
  • Teraz zvýraznime dokonalý štvorec na jeho ľavej strane: . Potom bude mať rovnica tvar .
  • V tejto fáze je možné preniesť posledné dva pojmy na pravú stranu s opačným znamienkom, máme .
  • A tiež transformujme výraz na pravej strane: .

Výsledkom je, že dospejeme k rovnici, ktorá je ekvivalentná pôvodnej kvadratickej rovnici a·x 2 +b·x+c=0.

Rovnice podobného tvaru sme už riešili v predchádzajúcich odsekoch, keď sme skúmali. To nám umožňuje vyvodiť nasledujúce závery týkajúce sa koreňov rovnice:

  • ak , potom rovnica nemá žiadne reálne riešenia;
  • if , tak rovnica má tvar , teda , z ktorej je viditeľný jej jediný koreň;
  • if , then or , čo je rovnaké ako alebo , to znamená, že rovnica má dva korene.

Prítomnosť alebo neprítomnosť koreňov rovnice, a teda aj pôvodnej kvadratickej rovnice, závisí od znamienka výrazu na pravej strane. Znamienko tohto výrazu je zasa určené znamienkom čitateľa, keďže menovateľ 4·a 2 je vždy kladný, teda znamienkom výrazu b 2 −4·a·c. Tento výraz b 2 −4 a c bol nazvaný diskriminant kvadratickej rovnice a označený listom D. Odtiaľ je jasná podstata diskriminantu - na základe jeho hodnoty a znamienka usudzujú, či má kvadratická rovnica skutočné korene, a ak áno, aké je ich číslo - jeden alebo dva.

Vráťme sa k rovnici a prepíšme ju pomocou diskriminačného zápisu: . A vyvodíme závery:

  • ak D<0 , то это уравнение не имеет действительных корней;
  • ak D=0, potom táto rovnica má jeden koreň;
  • nakoniec, ak D>0, tak rovnica má dva korene alebo, ktoré môžeme prepísať do tvaru alebo a po rozšírení a privedení zlomkov na spoločného menovateľa dostaneme.

Odvodili sme teda vzorce pre korene kvadratickej rovnice, vyzerajú takto , kde diskriminant D vypočítame podľa vzorca D=b 2 −4·a·c.

S ich pomocou, s kladným diskriminantom, môžete vypočítať oba skutočné korene kvadratickej rovnice. Keď sa diskriminant rovná nule, oba vzorce dávajú rovnakú hodnotu koreňa, čo zodpovedá jedinečnému riešeniu kvadratickej rovnice. A so záporným diskriminantom, keď sa pokúšame použiť vzorec pre korene kvadratickej rovnice, čelíme extrakcii druhej odmocniny zo záporného čísla, čo nás posúva mimo rámec školských osnov. So záporným diskriminantom nemá kvadratická rovnica skutočné korene, ale má pár komplexný konjugát korene, ktoré možno nájsť pomocou rovnakých koreňových vzorcov, ktoré sme získali.

Algoritmus riešenia kvadratických rovníc pomocou koreňových vzorcov

V praxi pri riešení kvadratických rovníc môžete okamžite použiť koreňový vzorec na výpočet ich hodnôt. Ale to súvisí skôr s hľadaním zložitých koreňov.

V kurze školskej algebry však zvyčajne nehovoríme o komplexných, ale o skutočných koreňoch kvadratickej rovnice. V tomto prípade je vhodné pred použitím vzorcov pre korene kvadratickej rovnice najprv nájsť diskriminant, uistiť sa, že je nezáporný (v opačnom prípade môžeme konštatovať, že rovnica nemá skutočné korene), a až potom vypočítajte hodnoty koreňov.

Vyššie uvedená úvaha nám umožňuje písať Algoritmus na riešenie kvadratickej rovnice. Na vyriešenie kvadratickej rovnice a x 2 +b x+c=0 potrebujete:

  • pomocou diskriminačného vzorca D=b 2 −4·a·c vypočítajte jeho hodnotu;
  • dospieť k záveru, že kvadratická rovnica nemá skutočné korene, ak je diskriminant záporný;
  • vypočítajte jediný koreň rovnice pomocou vzorca, ak D=0;
  • nájdite dva skutočné korene kvadratickej rovnice pomocou koreňového vzorca, ak je diskriminant kladný.

Tu len poznamenávame, že ak je diskriminant rovný nule, môžete použiť aj vzorec; dá rovnakú hodnotu ako .

Môžete prejsť na príklady použitia algoritmu na riešenie kvadratických rovníc.

Príklady riešenia kvadratických rovníc

Uvažujme riešenia troch kvadratických rovníc s kladným, záporným a nulovým diskriminantom. Po ich riešení bude možné analogicky vyriešiť akúkoľvek inú kvadratickú rovnicu. Poďme začať.

Príklad.

Nájdite korene rovnice x 2 +2·x−6=0.

Riešenie.

V tomto prípade máme tieto koeficienty kvadratickej rovnice: a=1, b=2 a c=−6. Podľa algoritmu musíte najskôr vypočítať diskriminant, na to dosadíme označené a, b a c do diskriminačného vzorca, máme D=b2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Keďže 28>0, teda diskriminant je väčší ako nula, má kvadratická rovnica dva reálne korene. Poďme ich nájsť pomocou koreňového vzorca, dostaneme , tu môžete zjednodušiť výsledné výrazy tým, že urobíte posunutie násobiteľa za koreňový znak nasleduje redukcia frakcie:

odpoveď:

Prejdime k ďalšiemu typickému príkladu.

Príklad.

Vyriešte kvadratickú rovnicu −4 x 2 +28 x−49=0 .

Riešenie.

Začneme hľadaním diskriminačného prvku: D=28 2 −4·(−4)·(−49)=784−784=0. Preto má táto kvadratická rovnica jeden koreň, ktorý nájdeme ako , tj.

odpoveď:

x = 3,5.

Zostáva zvážiť riešenie kvadratických rovníc so záporným diskriminantom.

Príklad.

Riešte rovnicu 5·y 2 +6·y+2=0.

Riešenie.

Tu sú koeficienty kvadratickej rovnice: a=5, b=6 a c=2. Tieto hodnoty dosadíme do diskriminačného vzorca, máme D=b2 −4·a·c=6 2 −4·5·2=36−40=−4. Diskriminant je záporný, preto táto kvadratická rovnica nemá skutočné korene.

Ak potrebujete uviesť zložité korene, potom použijeme známy vzorec pre korene kvadratickej rovnice a vykonáme operácie s komplexnými číslami:

odpoveď:

neexistujú skutočné korene, zložité korene sú: .

Ešte raz si všimnime, že ak je diskriminant kvadratickej rovnice záporný, potom v škole zvyčajne okamžite zapíšu odpoveď, v ktorej naznačujú, že neexistujú žiadne skutočné korene a komplexné korene sa nenachádzajú.

Koreňový vzorec pre párne sekundové koeficienty

Vzorec pre korene kvadratickej rovnice, kde D=b 2 −4·a·c vám umožňuje získať vzorec kompaktnejšieho tvaru, ktorý vám umožňuje riešiť kvadratické rovnice s párnym koeficientom pre x (alebo jednoducho s a koeficient, ktorý má napríklad tvar 2·n alebo 14·ln5=2·7·ln5). Poďme ju dostať von.

Povedzme, že potrebujeme vyriešiť kvadratickú rovnicu v tvare a x 2 +2 n x+c=0. Poďme nájsť jeho korene pomocou vzorca, ktorý poznáme. Na tento účel vypočítame diskriminant D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c) a potom použijeme koreňový vzorec:

Označme výraz n 2 −a c ako D 1 (niekedy sa označuje aj D "). Potom vzorec pre korene uvažovanej kvadratickej rovnice s druhým koeficientom 2 n bude mať tvar , kde D 1 = n 2 −a·c.

Je ľahké vidieť, že D=4·D1 alebo D1=D/4. Inými slovami, D 1 je štvrtá časť rozlišovacieho znaku. Je jasné, že znamienko D 1 je rovnaké ako znamienko D . To znamená, že znamienko D 1 je tiež indikátorom prítomnosti alebo neprítomnosti koreňov kvadratickej rovnice.

Takže na vyriešenie kvadratickej rovnice s druhým koeficientom 2·n potrebujete

  • Vypočítajte D 1 =n 2 −a·c ;
  • Ak D 1<0 , то сделать вывод, что действительных корней нет;
  • Ak D 1 = 0, potom vypočítajte jediný koreň rovnice pomocou vzorca;
  • Ak D 1 >0, potom pomocou vzorca nájdite dva skutočné korene.

Uvažujme o riešení príkladu pomocou koreňového vzorca získaného v tomto odseku.

Príklad.

Vyriešte kvadratickú rovnicu 5 x 2 −6 x −32=0 .

Riešenie.

Druhý koeficient tejto rovnice môže byť reprezentovaný ako 2·(−3) . To znamená, že môžete prepísať pôvodnú kvadratickú rovnicu v tvare 5 x 2 +2 (−3) x−32=0, tu a=5, n=−3 a c=−32, a vypočítať štvrtú časť diskriminačný: D 1 = n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Keďže jej hodnota je kladná, rovnica má dva skutočné korene. Poďme ich nájsť pomocou príslušného koreňového vzorca:

Všimnite si, že bolo možné použiť obvyklý vzorec pre korene kvadratickej rovnice, ale v tomto prípade by bolo potrebné vykonať viac výpočtovej práce.

odpoveď:

Zjednodušenie tvaru kvadratických rovníc

Niekedy predtým, ako začnete počítať korene kvadratickej rovnice pomocou vzorcov, nezaškodí položiť si otázku: „Je možné zjednodušiť formu tejto rovnice? Súhlaste s tým, že z hľadiska výpočtov bude jednoduchšie vyriešiť kvadratickú rovnicu 11 x 2 −4 x−6=0 ako 1100 x 2 −400 x−600=0.

Typicky sa zjednodušenie tvaru kvadratickej rovnice dosiahne vynásobením alebo delením oboch strán určitým číslom. Napríklad v predchádzajúcom odseku bolo možné zjednodušiť rovnicu 1100 x 2 −400 x −600=0 vydelením oboch strán číslom 100.

Podobná transformácia sa vykonáva s kvadratickými rovnicami, ktorých koeficienty nie sú . V tomto prípade sú obe strany rovnice zvyčajne rozdelené absolútnymi hodnotami jej koeficientov. Vezmime si napríklad kvadratickú rovnicu 12 x 2 −42 x+48=0. absolútne hodnoty jeho koeficientov: GCD(12, 42, 48)= GCD(GCD(12, 42), 48)= GCD(6, 48)=6. Vydelením oboch strán pôvodnej kvadratickej rovnice číslom 6 dostaneme ekvivalentnú kvadratickú rovnicu 2 x 2 −7 x+8=0.

A násobenie oboch strán kvadratickej rovnice sa zvyčajne robí, aby sa zbavili zlomkových koeficientov. V tomto prípade sa násobenie vykonáva menovateľmi jeho koeficientov. Napríklad, ak sú obe strany kvadratickej rovnice vynásobené LCM(6, 3, 1)=6, potom bude mať jednoduchší tvar x 2 +4·x−18=0.

Na záver tohto bodu poznamenávame, že takmer vždy sa zbavia mínusu pri najvyššom koeficiente kvadratickej rovnice zmenou znamienka všetkých členov, čo zodpovedá vynásobeniu (alebo deleniu) oboch strán −1. Napríklad zvyčajne sa prejde od kvadratickej rovnice −2 x 2 −3 x+7=0 k riešeniu 2 x 2 +3 x−7=0 .

Vzťah medzi koreňmi a koeficientmi kvadratickej rovnice

Vzorec pre korene kvadratickej rovnice vyjadruje korene rovnice prostredníctvom jej koeficientov. Na základe koreňového vzorca môžete získať ďalšie vzťahy medzi koreňmi a koeficientmi.

Najznámejšie a použiteľné vzorce z Vietovej vety sú tvaru a . Konkrétne pre danú kvadratickú rovnicu sa súčet koreňov rovná druhému koeficientu s opačným znamienkom a súčin koreňov sa rovná voľnému členu. Napríklad, keď sa pozrieme na tvar kvadratickej rovnice 3 x 2 −7 x + 22 = 0, môžeme okamžite povedať, že súčet jej koreňov sa rovná 7/3 a súčin koreňov sa rovná 22. /3.

Pomocou už napísaných vzorcov môžete získať množstvo ďalších spojení medzi koreňmi a koeficientmi kvadratickej rovnice. Napríklad súčet druhých mocnín koreňov kvadratickej rovnice môžete vyjadriť prostredníctvom jej koeficientov: .

Bibliografia.

  • Algebra: učebnica pre 8. ročník. všeobecné vzdelanie inštitúcie / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; upravil S. A. Teljakovskij. - 16. vyd. - M.: Vzdelávanie, 2008. - 271 s. : chorý. - ISBN 978-5-09-019243-9.
  • Mordkovič A.G. Algebra. 8. trieda. O 14.00 h Časť 1. Učebnica pre žiakov vzdelávacie inštitúcie/ A. G. Mordkovich. - 11. vyd., vymazané. - M.: Mnemosyne, 2009. - 215 s.: chor. ISBN 978-5-346-01155-2.

Len. Podľa vzorcov a jasných, jednoduchých pravidiel. V prvej fáze

je potrebné uviesť danú rovnicu do štandardného tvaru, t.j. do formulára:

Ak je rovnica už uvedená v tejto forme, nemusíte robiť prvú fázu. Najdôležitejšie je urobiť to správne

určiť všetky koeficienty, A, b A c.

Vzorec na nájdenie koreňov kvadratickej rovnice.

Výraz pod koreňovým znakom sa nazýva diskriminačný . Ako vidíte, aby sme našli X, my

používame iba a, b a c. Tie. koeficienty od kvadratická rovnica. Len opatrne vložte

hodnoty a, b a c Počítame podľa tohto vzorca. Nahrádzame s ich znamenia!

Napríklad, v rovnici:

A =1; b = 3; c = -4.

Nahradíme hodnoty a napíšeme:

Príklad je takmer vyriešený:

Toto je odpoveď.

Najčastejšími chybami je zámena s hodnotami znamienka a, b A s. Alebo skôr s náhradou

záporné hodnoty do vzorca na výpočet koreňov. Tu prichádza na pomoc podrobný záznam vzorca

s konkrétnymi číslami. Ak máte problémy s výpočtami, urobte to!

Predpokladajme, že musíme vyriešiť nasledujúci príklad:

Tu a = -6; b = -5; c = -1

Všetko popisujeme podrobne, starostlivo, bez toho, aby niečo chýbalo so všetkými znakmi a zátvorkami:

Kvadratické rovnice často vyzerajú trochu inak. Napríklad takto:

Teraz si všimnite praktické techniky, ktoré výrazne znižujú počet chýb.

Prvé stretnutie. Predtým nebuďte leniví riešenie kvadratickej rovnice uviesť do štandardnej formy.

Čo to znamená?

Povedzme, že po všetkých transformáciách dostanete nasledujúcu rovnicu:

Neponáhľajte sa písať koreňový vzorec! Takmer určite si pomiešate šance a, b a c.

Správne zostavte príklad. Najprv X na druhú, potom bez štvorca, potom voľný výraz. Páči sa ti to:

Zbavte sa mínusov. Ako? Musíme vynásobiť celú rovnicu -1. Dostaneme:

Ale teraz si môžete pokojne zapísať vzorec pre korene, vypočítať diskriminant a dokončiť riešenie príkladu.

Rozhodnite sa sami. Teraz by ste mali mať korene 2 a -1.

Recepcia ako druhá. Skontrolujte korene! Autor: Vietov teorém.

Na riešenie daných kvadratických rovníc, t.j. ak koeficient

x 2 +bx+c=0,

Potomx 1 x 2 = c

x 1 + x 2 =-b

Pre úplnú kvadratickú rovnicu, v ktorej a≠1:

x 2 +bx+c=0,

vydeľte celú rovnicu o A:

Kde x 1 A X 2 - korene rovnice.

Tretia recepcia. Ak má vaša rovnica zlomkové koeficienty, zbavte sa zlomkov! Vynásobte

rovnica so spoločným menovateľom.

Záver. Praktické rady:

1. Pred riešením uvedieme kvadratickú rovnicu do štandardného tvaru a zostavíme ju Správny.

2. Ak je pred druhou mocninou X záporný koeficient, odstránime ho vynásobením všetkého

rovnice o -1.

3. Ak sú koeficienty zlomkové, zlomky odstránime vynásobením celej rovnice zodpovedajúcim

faktor.

4. Ak je x na druhú čistú, jeho koeficient je rovný jednej, riešenie sa dá ľahko skontrolovať pomocou

Kvadratické rovnice sa študujú v 8. ročníku, takže tu nie je nič zložité. Schopnosť ich vyriešiť je absolútne nevyhnutná.

Kvadratická rovnica je rovnica v tvare ax 2 + bx + c = 0, kde koeficienty a, b a c sú ľubovoľné čísla a a ≠ 0.

Pred štúdiom konkrétnych metód riešenia si všimnite, že všetky kvadratické rovnice možno rozdeliť do troch tried:

  1. Nemať korene;
  2. Mať presne jeden koreň;
  3. Majú dva rôzne korene.

Toto je dôležitý rozdiel medzi kvadratickými rovnicami a lineárnymi rovnicami, kde koreň vždy existuje a je jedinečný. Ako určiť, koľko koreňov má rovnica? Je na to úžasná vec - diskriminačný.

Diskriminačný

Nech je daná kvadratická rovnica ax 2 + bx + c = 0. Potom je diskriminantom jednoducho číslo D = b 2 − 4ac.

Tento vzorec musíte poznať naspamäť. Odkiaľ pochádza, nie je teraz dôležité. Ďalšia vec je dôležitá: podľa znamienka diskriminantu môžete určiť, koľko koreňov má kvadratická rovnica. menovite:

  1. Ak D< 0, корней нет;
  2. Ak D = 0, existuje práve jeden koreň;
  3. Ak D > 0, budú existovať dva korene.

Upozorňujeme: diskriminant označuje počet koreňov a vôbec nie ich znaky, ako z nejakého dôvodu mnohí ľudia veria. Pozrite si príklady a sami všetko pochopíte:

Úloha. Koľko koreňov majú kvadratické rovnice:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Zapíšme si koeficienty pre prvú rovnicu a nájdime diskriminant:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Takže diskriminant je kladný, takže rovnica má dva rôzne korene. Druhú rovnicu analyzujeme podobným spôsobom:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

Diskriminant je negatívny, neexistujú žiadne korene. Zostáva posledná rovnica:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

Diskriminant je nula - koreň bude jedna.

Upozorňujeme, že koeficienty boli zapísané pre každú rovnicu. Áno, je to dlhé, áno, je to únavné, ale nebudete si miešať šance a robiť hlúpe chyby. Vyberte si sami: rýchlosť alebo kvalitu.

Mimochodom, ak na to prídete, po chvíli už nebudete musieť zapisovať všetky koeficienty. Takéto operácie budete vykonávať v hlave. Väčšina ľudí to začne robiť niekde po 50-70 vyriešených rovniciach - vo všeobecnosti nie až tak veľa.

Korene kvadratickej rovnice

Teraz prejdime k samotnému riešeniu. Ak je diskriminant D > 0, korene možno nájsť pomocou vzorcov:

Základný vzorec pre korene kvadratickej rovnice

Keď D = 0, môžete použiť ktorýkoľvek z týchto vzorcov - dostanete rovnaké číslo, ktoré bude odpoveďou. Nakoniec, ak D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12 x + 36 = 0.

Prvá rovnica:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ rovnica má dva korene. Poďme ich nájsť:

Druhá rovnica:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ rovnica má opäť dva korene. Poďme ich nájsť

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(zarovnať)\]

Nakoniec tretia rovnica:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ rovnica má jeden koreň. Môže sa použiť akýkoľvek vzorec. Napríklad ten prvý:

Ako vidíte z príkladov, všetko je veľmi jednoduché. Ak poznáte vzorce a viete počítať, nebudú žiadne problémy. Najčastejšie sa chyby vyskytujú pri dosadzovaní záporných koeficientov do vzorca. Aj tu vám pomôže technika opísaná vyššie: pozrite sa na vzorec doslovne, zapíšte si každý krok - a veľmi skoro sa zbavíte chýb.

Neúplné kvadratické rovnice

Stáva sa, že kvadratická rovnica sa mierne líši od toho, čo je uvedené v definícii. Napríklad:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Je ľahké si všimnúť, že v týchto rovniciach chýba jeden z výrazov. Takéto kvadratické rovnice sa riešia ešte ľahšie ako štandardné: nevyžadujú si ani výpočet diskriminantu. Predstavme si teda nový koncept:

Rovnica ax 2 + bx + c = 0 sa nazýva neúplná kvadratická rovnica, ak b = 0 alebo c = 0, t.j. koeficient premennej x alebo voľného prvku sa rovná nule.

Samozrejme, je možný veľmi ťažký prípad, keď sa oba tieto koeficienty rovnajú nule: b = c = 0. V tomto prípade má rovnica tvar ax 2 = 0. Je zrejmé, že takáto rovnica má jeden koreň: x = 0.

Zoberme si zvyšné prípady. Nech b = 0, potom dostaneme neúplnú kvadratickú rovnicu v tvare ax 2 + c = 0. Trochu ju transformujme:

Od aritmetiky Odmocnina existuje len od nezáporného čísla, posledná rovnosť má zmysel len pre (−c /a) ≥ 0. Záver:

  1. Ak je v neúplnej kvadratickej rovnici tvaru ax 2 + c = 0 splnená nerovnosť (−c /a) ≥ 0, budú korene dva. Vzorec je uvedený vyššie;
  2. Ak (-c /a)< 0, корней нет.

Ako vidíte, diskriminant nebol potrebný - v neúplných kvadratických rovniciach nie je žiadny zložité výpočty. V skutočnosti si ani netreba pamätať nerovnosť (−c /a) ≥ 0. Stačí vyjadriť hodnotu x 2 a pozrieť sa, čo je na druhej strane znamienka rovnosti. Ak existuje kladné číslo, budú existovať dva korene. Ak je negatívny, nebudú tam žiadne korene.

Teraz sa pozrime na rovnice tvaru ax 2 + bx = 0, v ktorých sa voľný prvok rovná nule. Všetko je tu jednoduché: vždy budú existovať dva korene. Postačuje rozpočítať polynóm:

Vyňatie spoločného faktora zo zátvoriek

Súčin je nula, keď je aspoň jeden z faktorov nulový. Odtiaľ pochádzajú korene. Na záver sa pozrime na niektoré z týchto rovníc:

Úloha. Riešte kvadratické rovnice:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Neexistujú žiadne korene, pretože štvorec sa nemôže rovnať zápornému číslu.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = -1,5.

V pokračovaní témy „Riešenie rovníc“ vám materiál v tomto článku predstaví kvadratické rovnice.

Pozrime sa na všetko podrobne: podstatu a zápis kvadratickej rovnice, definujte sprievodné pojmy, analyzujte schému riešenia neúplných a úplných rovníc, zoznámte sa so vzorcom koreňov a diskriminantu, vytvorte súvislosti medzi koreňmi a koeficientmi, a samozrejme dáme aj názorné riešenie praktických príkladov.

Yandex.RTB R-A-339285-1

Kvadratická rovnica, jej typy

Definícia 1

Kvadratická rovnica je rovnica napísaná ako a x 2 + b x + c = 0, Kde X– premenné, a , b a c– niektoré čísla, kým a nie je nula.

Kvadratické rovnice sa často nazývajú aj rovnice druhého stupňa, pretože kvadratická rovnica je v podstate algebraická rovnica druhého stupňa.

Uveďme príklad na ilustráciu danej definície: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 atď. Toto sú kvadratické rovnice.

Definícia 2

Čísla a, b a c sú koeficienty kvadratickej rovnice a x 2 + b x + c = 0, pričom koeficient a sa nazýva prvý, alebo senior, alebo koeficient pri x 2, b - druhý koeficient, alebo koeficient pri X, A c nazývaný voľný člen.

Napríklad v kvadratickej rovnici 6 x 2 − 2 x − 11 = 0 vodiaci koeficient je 6, druhý koeficient je − 2 , a voľný termín sa rovná − 11 . Venujme pozornosť tomu, že keď koeficienty b a/alebo c sú negatívne, potom sa použije krátka forma formulára 6 x 2 − 2 x − 11 = 0, ale nie 6 x 2 + (− 2) x + (− 11) = 0.

Ujasnime si aj tento aspekt: ​​ak koeficienty a a/alebo b rovný 1 alebo − 1 , potom sa nemôžu explicitne podieľať na písaní kvadratickej rovnice, čo sa vysvetľuje zvláštnosťami zápisu uvedených číselných koeficientov. Napríklad v kvadratickej rovnici y2 − y + 7 = 0 vodiaci koeficient je 1 a druhý koeficient je − 1 .

Redukované a neredukované kvadratické rovnice

Na základe hodnoty prvého koeficientu sa kvadratické rovnice delia na redukované a neredukované.

Definícia 3

Redukovaná kvadratická rovnica je kvadratická rovnica, kde vodiaci koeficient je 1. Pre ostatné hodnoty vedúceho koeficientu je kvadratická rovnica neredukovaná.

Uveďme príklady: kvadratické rovnice x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 sú redukované, v každej z nich je vodiaci koeficient 1.

9 x 2 − x − 2 = 0- neredukovaná kvadratická rovnica, kde prvý koeficient je odlišný od 1 .

Akákoľvek neredukovaná kvadratická rovnica môže byť prevedená na redukovanú rovnicu vydelením oboch strán prvým koeficientom (ekvivalentná transformácia). Transformovaná rovnica bude mať rovnaké korene ako daná neredukovaná rovnica alebo tiež nebude mať žiadne korene.

Zváženie konkrétneho príkladu nám umožní názorne demonštrovať prechod z neredukovanej kvadratickej rovnice na redukovanú.

Príklad 1

Vzhľadom na rovnicu 6 x 2 + 18 x − 7 = 0 . Pôvodnú rovnicu je potrebné previesť do redukovanej podoby.

Riešenie

Podľa vyššie uvedenej schémy vydelíme obe strany pôvodnej rovnice vodiacim koeficientom 6. Potom dostaneme: (6 x 2 + 18 x − 7): 3 = 0: 3 a toto je to isté ako: (6 x 2) : 3 + (18 x) : 3 − 7: 3 = 0 a ďalej: (6: 6) x 2 + (18: 6) x − 7: 6 = 0. Odtiaľ: x 2 + 3 x - 1 1 6 = 0 . Takto sa získa rovnica ekvivalentná danej rovnici.

odpoveď: x 2 + 3 x - 1 1 6 = 0 .

Úplné a neúplné kvadratické rovnice

Prejdime k definícii kvadratickej rovnice. V ňom sme to špecifikovali a ≠ 0. Podobná podmienka je potrebná pre rovnicu a x 2 + b x + c = 0 bol presne štvorcový, keďže o hod a = 0 v podstate sa transformuje na lineárnu rovnicu b x + c = 0.

V prípade, že koeficienty b A c sa rovnajú nule (čo je možné jednotlivo aj spoločne), kvadratická rovnica sa nazýva neúplná.

Definícia 4

Neúplná kvadratická rovnica- taká kvadratická rovnica a x 2 + b x + c = 0, kde je aspoň jeden z koeficientov b A c(alebo oboje) je nula.

Kompletná kvadratická rovnica– kvadratická rovnica, v ktorej sa všetky číselné koeficienty nerovnajú nule.

Poďme diskutovať o tom, prečo sa typom kvadratických rovníc dávajú práve tieto názvy.

Keď b = 0, kvadratická rovnica nadobúda tvar a x 2 + 0 x + c = 0, ktorý je rovnaký ako a x 2 + c = 0. O c = 0 kvadratická rovnica je napísaná ako a x 2 + b x + 0 = 0, čo je ekvivalentné a x 2 + b x = 0. O b = 0 A c = 0 rovnica bude mať tvar a x 2 = 0. Rovnice, ktoré sme získali, sa líšia od úplnej kvadratickej rovnice tým, že ich ľavé strany neobsahujú ani člen s premennou x, ani voľný člen, ani oboje. V skutočnosti táto skutočnosť dala tomuto typu rovnice názov – neúplná.

Napríklad x 2 + 3 x + 4 = 0 a − 7 x 2 − 2 x + 1, 3 = 0 sú úplné kvadratické rovnice; x 2 = 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 – neúplné kvadratické rovnice.

Riešenie neúplných kvadratických rovníc

Vyššie uvedená definícia umožňuje rozlíšiť nasledujúce typy neúplných kvadratických rovníc:

  • a x 2 = 0, táto rovnica zodpovedá koeficientom b = 0 a c = 0;
  • a x2 + c = 0 pri b = 0;
  • a x 2 + b x x = 0 pri c = 0.

Uvažujme postupne o riešení každého typu neúplnej kvadratickej rovnice.

Riešenie rovnice a x 2 =0

Ako bolo uvedené vyššie, táto rovnica zodpovedá koeficientom b A c, rovná nule. Rovnica a x 2 = 0 možno previesť na ekvivalentnú rovnicu x 2 = 0, ktorý dostaneme vydelením oboch strán pôvodnej rovnice číslom a, nerovná sa nule. Zjavným faktom je, že koreň rovnice x 2 = 0 toto je nula, pretože 0 2 = 0 . Táto rovnica nemá žiadne iné korene, čo možno vysvetliť vlastnosťami stupňa: pre ľubovoľné číslo p, nerovná sa nule, nerovnosť je pravdivá p2 > 0, z ktorého vyplýva, že kedy p ≠ 0 rovnosť p2 = 0 sa nikdy nedosiahne.

Definícia 5

Pre neúplnú kvadratickú rovnicu a x 2 = 0 teda existuje jeden koreň x = 0.

Príklad 2

Napríklad vyriešme neúplnú kvadratickú rovnicu − 3 x 2 = 0. Je ekvivalentná rovnici x 2 = 0, jej jediným koreňom je x = 0, potom má pôvodná rovnica jediný koreň - nulu.

Stručne povedané, riešenie je napísané takto:

− 3 x 2 = 0, x 2 = 0, x = 0.

Riešenie rovnice a x 2 + c = 0

Ďalšie v poradí je riešenie neúplných kvadratických rovníc, kde b = 0, c ≠ 0, teda rovnice tvaru a x 2 + c = 0. Transformujme túto rovnicu presunutím člena z jednej strany rovnice na druhú, zmenou znamienka na opačnú stranu a vydelením oboch strán rovnice číslom, ktoré sa nerovná nule:

  • prevod c na pravú stranu, čo dáva rovnicu a x 2 = − c;
  • vydeľte obe strany rovnice a, skončíme s x = - c a .

Naše transformácie sú ekvivalentné, teda aj výsledná rovnica je ekvivalentná pôvodnej a táto skutočnosť umožňuje vyvodiť závery o koreňoch rovnice. Z toho, aké sú hodnoty a A c hodnota výrazu - c a závisí: môže mať znamienko mínus (napríklad ak a = 1 A c = 2, potom - c a = - 2 1 = - 2) alebo znamienko plus (napríklad ak a = - 2 A c = 6 potom - ca = - 6 - 2 = 3); nie je nulová, pretože c ≠ 0. Zastavme sa podrobnejšie pri situáciách, keď - c a< 0 и - c a > 0 .

V prípade, keď - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p rovnosť p 2 = - c a nemôže byť pravdivá.

Všetko je iné, keď - c a > 0: zapamätajte si druhú odmocninu a bude zrejmé, že koreň rovnice x 2 = - c a bude číslo - c a, keďže - c a 2 = - c a. Nie je ťažké pochopiť, že číslo - - c a je tiež koreňom rovnice x 2 = - c a: skutočne - - c a 2 = - c a.

Rovnica nebude mať žiadne iné korene. Môžeme to demonštrovať pomocou metódy protirečenia. Na začiatok si definujme zápisy pre korene nájdené vyššie ako x 1 A − x 1. Predpokladajme, že aj rovnica x 2 = - c a má koreň x 2, ktorý sa líši od koreňov x 1 A − x 1. Poznáme to dosadením do rovnice X jej korene, transformujeme rovnicu na spravodlivú číselnú rovnosť.

Pre x 1 A − x 1 píšeme: x 1 2 = - c a , a pre x 2- x 2 2 = - c a . Na základe vlastností číselných rovníc odčítame jeden správny člen rovnosti po člene od druhého, čím získame: x 1 2 − x 2 2 = 0. Vlastnosti operácií s číslami využívame na prepísanie poslednej rovnosti ako (x 1 − x 2) · (x 1 + x 2) = 0. Je známe, že súčin dvoch čísel je nula vtedy a len vtedy, ak aspoň jedno z čísel je nula. Z uvedeného vyplýva, že x 1 − x 2 = 0 a/alebo x 1 + x 2 = 0, čo je to isté x 2 = x 1 a/alebo x 2 = − x 1. Vznikol zjavný rozpor, pretože najprv sa zhodlo, že koreň rovnice x 2 sa líši od x 1 A − x 1. Takže sme dokázali, že rovnica nemá iné korene ako x = - ca a x = - - c a.

Zhrňme si všetky vyššie uvedené argumenty.

Definícia 6

Neúplná kvadratická rovnica a x 2 + c = 0 je ekvivalentná rovnici x 2 = - c a, ktorá:

  • nebude mať korene v - c a< 0 ;
  • bude mať dva korene x = - ca a x = - - c a pre - c a > 0.

Uveďme príklady riešenia rovníc a x 2 + c = 0.

Príklad 3

Daná kvadratická rovnica 9 x 2 + 7 = 0. Je potrebné nájsť riešenie.

Riešenie

Presuňme voľný člen na pravú stranu rovnice, potom rovnica nadobudne tvar 9 x 2 = - 7.
Vydelme obe strany výslednej rovnice o 9 , dospejeme k x 2 = - 7 9 . Na pravej strane vidíme číslo so znamienkom mínus, čo znamená: daná rovnica nemá korene. Potom pôvodná neúplná kvadratická rovnica 9 x 2 + 7 = 0 nebude mať korene.

odpoveď: rovnica 9 x 2 + 7 = 0 nemá korene.

Príklad 4

Je potrebné vyriešiť rovnicu − x 2 + 36 = 0.

Riešenie

Presuňme sa o 36 na pravú stranu: − x 2 = − 36.
Rozdeľme obe časti podľa − 1 , dostaneme x 2 = 36. Na pravej strane je kladné číslo, z čoho to môžeme usúdiť x = 36 resp x = -36.
Vyberme koreň a zapíšme si konečný výsledok: neúplná kvadratická rovnica − x 2 + 36 = 0 má dva korene x = 6 alebo x = − 6.

odpoveď: x = 6 alebo x = − 6.

Riešenie rovnice a x 2 +b x=0

Analyzujme tretí typ neúplných kvadratických rovníc, keď c = 0. Nájsť riešenie neúplnej kvadratickej rovnice a x 2 + b x = 0, použijeme metódu faktorizácie. Rozložme polynóm, ktorý je na ľavej strane rovnice, a vyberme spoločný faktor zo zátvoriek X. Tento krok umožní transformovať pôvodnú neúplnú kvadratickú rovnicu na jej ekvivalent x (a x + b) = 0. A táto rovnica je zase ekvivalentná množine rovníc x = 0 A a x + b = 0. Rovnica a x + b = 0 lineárny a jeho koreň: x = − b a.

Definícia 7

Teda neúplná kvadratická rovnica a x 2 + b x = 0 bude mať dva korene x = 0 A x = − b a.

Posilnime materiál príkladom.

Príklad 5

Je potrebné nájsť riešenie rovnice 2 3 · x 2 - 2 2 7 · x = 0.

Riešenie

Vytiahneme to X mimo zátvorky dostaneme rovnicu x · 2 3 · x - 2 2 7 = 0 . Táto rovnica je ekvivalentná s rovnicami x = 0 a 2 3 x - 2 2 7 = 0. Teraz by ste mali vyriešiť výslednú lineárnu rovnicu: 2 3 · x = 2 2 7, x = 2 2 7 2 3.

Stručne napíšte riešenie rovnice takto:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 alebo 2 3 x - 2 2 7 = 0

x = 0 alebo x = 3 3 7

odpoveď: x = 0, x = 3 3 7.

Diskriminant, vzorec pre korene kvadratickej rovnice

Na nájdenie riešení kvadratických rovníc existuje koreňový vzorec:

Definícia 8

x = - b ± D 2 · a, kde D = b 2 − 4 a c– takzvaný diskriminant kvadratickej rovnice.

Zápis x = - b ± D 2 · a v podstate znamená, že x 1 = - b + D 2 · a, x 2 = - b - D 2 · a.

Bolo by užitočné pochopiť, ako bol tento vzorec odvodený a ako ho aplikovať.

Odvodenie vzorca pre korene kvadratickej rovnice

Postavme sa pred úlohu vyriešiť kvadratickú rovnicu a x 2 + b x + c = 0. Urobme niekoľko ekvivalentných transformácií:

  • vydeľte obe strany rovnice číslom a, odlišné od nuly, dostaneme nasledujúcu kvadratickú rovnicu: x 2 + b a · x + c a = 0 ;
  • Vyberme celý štvorec na ľavej strane výslednej rovnice:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Potom rovnica nadobudne tvar: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • Teraz je možné preniesť posledné dva pojmy na pravú stranu, pričom znamienko zmeníme na opačné, po čom dostaneme: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • Nakoniec transformujeme výraz napísaný na pravej strane poslednej rovnosti:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Dostávame sa teda k rovnici x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , ekvivalentnej pôvodnej rovnici a x 2 + b x + c = 0.

Riešenie takýchto rovníc sme skúmali v predchádzajúcich odsekoch (riešenie neúplných kvadratických rovníc). Už získané skúsenosti umožňujú vyvodiť záver o koreňoch rovnice x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • s b 2 - 4 a c 4 a 2< 0 уравнение не имеет действительных решений;
  • keď b 2 - 4 · a · c 4 · a 2 = 0, rovnica je x + b 2 · a 2 = 0, potom x + b 2 · a = 0.

Odtiaľ je zrejmý jediný koreň x = - b 2 · a;

  • pre b 2 - 4 · a · c 4 · a 2 > 0 bude platiť nasledovné: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 alebo x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , čo je rovnaké ako x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 alebo x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, t.j. rovnica má dva korene.

Je možné dospieť k záveru, že prítomnosť alebo neprítomnosť koreňov rovnice x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (a teda pôvodnej rovnice) závisí od znamienka výrazu b 2 - 4 · a · c 4 · a 2 napísané na pravej strane. A znak tohto výrazu je daný znakom čitateľa (menovateľ 4 a 2 bude vždy kladný), teda znak výrazu b 2 − 4 a c. Tento výraz b 2 − 4 a c je uvedený názov - diskriminant kvadratickej rovnice a písmeno D je definované ako jej označenie. Tu môžete napísať podstatu diskriminantu - na základe jeho hodnoty a znamienka môžu usúdiť, či kvadratická rovnica bude mať skutočné korene, a ak áno, aký je počet koreňov - jeden alebo dva.

Vráťme sa k rovnici x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Prepíšme to pomocou diskriminačného zápisu: x + b 2 · a 2 = D 4 · a 2 .

Znova sformulujme naše závery:

Definícia 9

  • pri D< 0 rovnica nemá skutočné korene;
  • pri D = 0 rovnica má jeden koreň x = - b 2 · a ;
  • pri D > 0 rovnica má dva korene: x = - b 2 · a + D 4 · a 2 alebo x = - b 2 · a - D 4 · a 2. Na základe vlastností radikálov možno tieto korene zapísať v tvare: x = - b 2 · a + D 2 · a alebo - b 2 · a - D 2 · a. A keď otvoríme moduly a zlomky privedieme k spoločnému menovateľovi, dostaneme: x = - b + D 2 · a, x = - b - D 2 · a.

Takže výsledkom našej úvahy bolo odvodenie vzorca pre korene kvadratickej rovnice:

x = - b + D 2 a, x = - b - D 2 a, diskriminant D vypočítané podľa vzorca D = b 2 − 4 a c.

Tieto vzorce umožňujú určiť oba skutočné korene, keď je diskriminant väčší ako nula. Keď je diskriminant nulový, použitie oboch vzorcov poskytne rovnaký koreň ako jediné riešenie kvadratickej rovnice. V prípade, že je diskriminant záporný, ak sa pokúsime použiť vzorec kvadratickej odmocniny, budeme čeliť potrebe vziať druhú odmocninu zo záporného čísla, čím sa dostaneme za hranice reálnych čísel. S negatívnym diskriminantom nebude mať kvadratická rovnica skutočné korene, ale je možný pár komplexne konjugovaných koreňov, určených rovnakými koreňovými vzorcami, aké sme získali.

Algoritmus riešenia kvadratických rovníc pomocou koreňových vzorcov

Je možné vyriešiť kvadratickú rovnicu okamžitým použitím koreňového vzorca, ale vo všeobecnosti sa to robí, keď je potrebné nájsť zložité korene.

Vo väčšine prípadov to zvyčajne znamená hľadanie nie komplexných, ale skutočných koreňov kvadratickej rovnice. Potom je optimálne pred použitím vzorcov pre korene kvadratickej rovnice najprv určiť diskriminant a uistiť sa, že nie je záporný (inak dôjdeme k záveru, že rovnica nemá žiadne skutočné korene), a potom pristúpiť k výpočtu hodnotu koreňov.

Vyššie uvedené úvahy umožňujú formulovať algoritmus na riešenie kvadratickej rovnice.

Definícia 10

Na vyriešenie kvadratickej rovnice a x 2 + b x + c = 0, potrebné:

  • podľa vzorca D = b 2 − 4 a c nájsť diskriminačnú hodnotu;
  • v D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • pre D = 0 nájdite jediný koreň rovnice pomocou vzorca x = - b 2 · a ;
  • pre D > 0 určte dva reálne korene kvadratickej rovnice pomocou vzorca x = - b ± D 2 · a.

Všimnite si, že keď je diskriminant nulový, môžete použiť vzorec x = - b ± D 2 · a, poskytne rovnaký výsledok ako vzorec x = - b 2 · a.

Pozrime sa na príklady.

Príklady riešenia kvadratických rovníc

Uveďme riešenie príkladov pre rôzne významy diskriminačný.

Príklad 6

Musíme nájsť korene rovnice x 2 + 2 x − 6 = 0.

Riešenie

Zapíšme si číselné koeficienty kvadratickej rovnice: a = 1, b = 2 a c = - 6. Ďalej postupujeme podľa algoritmu, t.j. Začnime s výpočtom diskriminantu, za ktorý dosadíme koeficienty a, b A c do diskriminačného vzorca: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Takže dostaneme D > 0, čo znamená, že pôvodná rovnica bude mať dva skutočné korene.
Na ich nájdenie použijeme koreňový vzorec x = - b ± D 2 · a a dosadením zodpovedajúcich hodnôt dostaneme: x = - 2 ± 28 2 · 1. Zjednodušme výsledný výraz odstránením faktora z koreňového znamienka a následným zmenšením zlomku:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 alebo x = - 2 - 2 7 2

x = - 1 + 7 alebo x = - 1 - 7

odpoveď: x = - 1 + 7, x = - 1 - 7.

Príklad 7

Treba vyriešiť kvadratickú rovnicu − 4 x 2 + 28 x − 49 = 0.

Riešenie

Definujme diskriminant: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. Pri tejto hodnote diskriminantu bude mať pôvodná rovnica len jeden koreň, určený vzorcom x = - b 2 · a.

x = - 28 2 (- 4) x = 3,5

odpoveď: x = 3,5.

Príklad 8

Je potrebné vyriešiť rovnicu 5 y2 + 6 y + 2 = 0

Riešenie

Číselné koeficienty tejto rovnice budú: a = 5, b = 6 a c = 2. Na nájdenie diskriminantu použijeme tieto hodnoty: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Vypočítaný diskriminant je záporný, takže pôvodná kvadratická rovnica nemá žiadne skutočné korene.

V prípade, že úlohou je označiť komplexné korene, použijeme koreňový vzorec a vykonáme akcie s komplexnými číslami:

x = - 6 ± - 4 2 5,

x = - 6 + 2 i 10 alebo x = - 6 - 2 i 10,

x = - 3 5 + 1 5 · i alebo x = - 3 5 - 1 5 · i.

odpoveď: neexistujú žiadne skutočné korene; komplexné korene sú nasledovné: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

IN školské osnovy Neexistuje žiadna štandardná požiadavka na hľadanie komplexných koreňov, preto, ak sa pri riešení určí, že diskriminant je záporný, okamžite sa zapíše odpoveď, že neexistujú žiadne skutočné korene.

Koreňový vzorec pre párne sekundové koeficienty

Koreňový vzorec x = - b ± D 2 · a (D = b 2 − 4 · a · c) umožňuje získať iný vzorec, kompaktnejší, umožňujúci nájsť riešenia kvadratických rovníc s párnym koeficientom pre x ( alebo s koeficientom v tvare 2 · n, napríklad 2 3 alebo 14 ln 5 = 2 7 ln 5). Ukážme si, ako je tento vzorec odvodený.

Stojíme pred úlohou nájsť riešenie kvadratickej rovnice a · x 2 + 2 · n · x + c = 0 . Postupujeme podľa algoritmu: určíme diskriminant D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) a potom použijeme koreňový vzorec:

x = - 2 n ± D 2 a, x = - 2 n ± 4 n 2 - a c 2 a, x = - 2 n ± 2 n 2 - a c 2 a, x = - n ± n 2 - a · c a.

Označme výraz n 2 − a · c ako D 1 (niekedy sa označuje aj D "). Potom vzorec pre korene uvažovanej kvadratickej rovnice s druhým koeficientom 2 · n bude mať tvar:

x = - n ± D 1 a, kde D 1 = n 2 − a · c.

Je ľahké vidieť, že D = 4 · D 1 alebo D 1 = D 4. Inými slovami, D 1 je štvrtina diskriminantu. Je zrejmé, že znamienko D 1 je rovnaké ako znamienko D, čo znamená, že znamienko D 1 môže slúžiť aj ako indikátor prítomnosti alebo neprítomnosti koreňov kvadratickej rovnice.

Definícia 11

Na nájdenie riešenia kvadratickej rovnice s druhým koeficientom 2 n je teda potrebné:

  • nájdite D 1 = n 2 − a · c ;
  • v D 1< 0 сделать вывод, что действительных корней нет;
  • keď D 1 = 0, určte jediný koreň rovnice pomocou vzorca x = - n a;
  • pre D 1 > 0 určte dva skutočné korene pomocou vzorca x = - n ± D 1 a.

Príklad 9

Je potrebné vyriešiť kvadratickú rovnicu 5 x 2 − 6 x − 32 = 0.

Riešenie

Druhý koeficient danej rovnice môžeme reprezentovať ako 2 · (− 3) . Potom danú kvadratickú rovnicu prepíšeme ako 5 x 2 + 2 (− 3) x − 32 = 0, kde a = 5, n = − 3 a c = − 32.

Vypočítajme štvrtú časť diskriminantu: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169. Výsledná hodnota je kladná, čo znamená, že rovnica má dva reálne korene. Určme ich pomocou zodpovedajúceho koreňového vzorca:

x = - n ± D 1 a, x = - - 3 ± 169 5, x = 3 ± 13 5,

x = 3 + 13 5 alebo x = 3 - 13 5

x = 3 1 5 alebo x = - 2

Bolo by možné vykonať výpočty pomocou obvyklého vzorca pre korene kvadratickej rovnice, ale v tomto prípade by bolo riešenie ťažkopádnejšie.

odpoveď: x = 315 alebo x = -2.

Zjednodušenie tvaru kvadratických rovníc

Niekedy je možné optimalizovať tvar pôvodnej rovnice, čo zjednoduší proces výpočtu koreňov.

Napríklad kvadratickú rovnicu 12 x 2 − 4 x − 7 = 0 je jednoznačne vhodnejšie vyriešiť ako 1 200 x 2 − 400 x − 700 = 0.

Častejšie sa zjednodušenie tvaru kvadratickej rovnice vykonáva vynásobením alebo delením jej oboch strán určitým číslom. Napríklad vyššie sme ukázali zjednodušené znázornenie rovnice 1200 x 2 − 400 x − 700 = 0, získanej delením oboch strán číslom 100.

Takáto transformácia je možná, keď koeficienty kvadratickej rovnice nie sú prvočísla. Potom zvyčajne delíme obe strany rovnice najväčšou spoločný deliteľ absolútne hodnoty jeho koeficientov.

Ako príklad použijeme kvadratickú rovnicu 12 x 2 − 42 x + 48 = 0. Určme GCD absolútnych hodnôt jeho koeficientov: GCD (12, 42, 48) = GCD (GCD (12, 42), 48) = GCD (6, 48) = 6. Vydelme obe strany pôvodnej kvadratickej rovnice 6 a získame ekvivalentnú kvadratickú rovnicu 2 x 2 − 7 x + 8 = 0.

Vynásobením oboch strán kvadratickej rovnice sa zvyčajne zbavíte zlomkových koeficientov. V tomto prípade sa vynásobia najmenším spoločným násobkom menovateľov jeho koeficientov. Napríklad, ak sa každá časť kvadratickej rovnice 1 6 x 2 + 2 3 x - 3 = 0 vynásobí LCM (6, 3, 1) = 6, zapíše sa viac v jednoduchej forme x 2 + 4 x − 18 = 0 .

Nakoniec si všimneme, že mínus na prvom koeficiente kvadratickej rovnice sa takmer vždy zbavíme zmenou znamienka každého člena rovnice, čo sa dosiahne vynásobením (alebo delením) oboch strán − 1. Napríklad z kvadratickej rovnice − 2 x 2 − 3 x + 7 = 0 môžete prejsť na jej zjednodušenú verziu 2 x 2 + 3 x − 7 = 0.

Vzťah medzi koreňmi a koeficientmi

Nám už známy vzorec pre korene kvadratických rovníc x = - b ± D 2 · a vyjadruje korene rovnice prostredníctvom jej číselných koeficientov. Na základe tohto vzorca máme možnosť špecifikovať ďalšie závislosti medzi koreňmi a koeficientmi.

Najznámejšie a použiteľné vzorce sú Vietov teorém:

x 1 + x 2 = - ba a x 2 = c a.

Konkrétne pre danú kvadratickú rovnicu je súčet koreňov druhým koeficientom s opačným znamienkom a súčin koreňov sa rovná voľnému členu. Napríklad pri pohľade na tvar kvadratickej rovnice 3 x 2 − 7 x + 22 = 0 je možné okamžite určiť, že súčet jej koreňov je 7 3 a súčin koreňov je 22 3.

Medzi koreňmi a koeficientmi kvadratickej rovnice môžete nájsť aj množstvo ďalších súvislostí. Napríklad súčet druhých mocnín koreňov kvadratickej rovnice možno vyjadriť pomocou koeficientov:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ak si všimnete chybu v texte, zvýraznite ju a stlačte Ctrl+Enter

IN moderná spoločnosť schopnosť vykonávať operácie s rovnicami obsahujúcimi premennú druhú mocninu môže byť užitočná v mnohých oblastiach činnosti a je široko používaná v praxi vo vedeckom a technickom rozvoji. Dôkazom toho môžu byť návrhy námorných a riečnych plavidiel, lietadiel a rakiet. Pomocou takýchto výpočtov sú trajektórie pohybu najviac rôzne telá vrátane vesmírnych objektov. Príklady s riešením kvadratických rovníc sa využívajú nielen v ekonomických prognózach, pri projektovaní a výstavbe budov, ale aj v najbežnejších každodenných podmienkach. Môžu byť potrebné na peších výletoch, na športových podujatiach, v obchodoch pri nákupoch a v iných veľmi bežných situáciách.

Rozložme výraz na jednotlivé faktory

Stanoví sa stupeň rovnice maximálna hodnota stupeň premennej, ktorú tento výraz obsahuje. Ak sa rovná 2, potom sa takáto rovnica nazýva kvadratická.

Ak hovoríme jazykom vzorcov, potom uvedené výrazy, bez ohľadu na to, ako vyzerajú, môžu byť vždy uvedené do podoby, keď ľavú stranu výrazu tvoria tri výrazy. Medzi nimi: ax 2 (to znamená premenná na druhú so svojím koeficientom), bx (neznáma bez druhej mocniny so svojím koeficientom) a c (voľná zložka, tj. bežné číslo). To všetko na pravej strane sa rovná 0. V prípade, že takémuto polynómu chýba jeden zo svojich členov, s výnimkou osi 2, nazýva sa neúplná kvadratická rovnica. Najprv by sa mali zvážiť príklady s riešením takýchto problémov, hodnoty premenných, v ktorých sa dajú ľahko nájsť.

Ak výraz vyzerá, že má na pravej strane dva členy, presnejšie ax 2 a bx, najjednoduchší spôsob, ako nájsť x, je dať premennú zo zátvoriek. Teraz bude naša rovnica vyzerať takto: x(ax+b). Ďalej je zrejmé, že buď x=0, alebo problém spočíva v nájdení premennej z nasledujúceho výrazu: ax+b=0. Je to dané jednou z vlastností násobenia. Pravidlo hovorí, že súčin dvoch faktorov má za následok 0 iba vtedy, ak je jeden z nich nula.

Príklad

x = 0 alebo 8x - 3 = 0

Výsledkom je, že dostaneme dva korene rovnice: 0 a 0,375.

Rovnice tohto druhu môžu opísať pohyb telies pod vplyvom gravitácie, ktoré sa začali pohybovať od určitého bodu braného ako počiatok súradníc. Tu má matematický zápis nasledujúci tvar: y = v 0 t + gt 2 /2. Dosadením potrebných hodnôt, prirovnaním pravej strany k 0 a nájdením možných neznámych môžete zistiť čas, ktorý uplynie od momentu, kedy sa telo zdvihne do momentu jeho pádu, ako aj mnohé ďalšie veličiny. Ale o tom si povieme neskôr.

Faktorizácia výrazu

Vyššie popísané pravidlo umožňuje riešiť tieto problémy viac ťažké prípady. Pozrime sa na príklady riešenia kvadratických rovníc tohto typu.

X 2 - 33x + 200 = 0

Toto kvadratická trojčlenka je kompletný. Najprv transformujme výraz a rozložme ho. Sú dva z nich: (x-8) a (x-25) = 0. V dôsledku toho máme dva korene 8 a 25.

Príklady s riešením kvadratických rovníc v 9. ročníku umožňujú touto metódou nájsť premennú vo výrazoch nielen druhého, ale dokonca aj tretieho a štvrtého rádu.

Napríklad: 2x 3 + 2x 2 - 18x - 18 = 0. Pri rozkladaní pravej strany na faktory s premennou sú tri z nich, teda (x+1), (x-3) a (x+ 3).

V dôsledku toho je zrejmé, že táto rovnica má tri korene: -3; -1; 3.

Odmocnina

Ďalší prípad neúplná rovnica druhý rád je výraz reprezentovaný v jazyku písmen tak, že pravá strana je zostrojená zo zložiek ax 2 a c. Tu sa na získanie hodnoty premennej prevedie voľný termín pravá strana a potom sa odmocnina odoberie z oboch strán rovnosti. Treba poznamenať, že v v tomto prípade Zvyčajne existujú dva korene rovnice. Výnimkou môžu byť len rovnosti, ktoré vôbec neobsahujú člen s, kde sa premenná rovná nule, ako aj varianty výrazov, keď je pravá strana záporná. V druhom prípade neexistujú žiadne riešenia, pretože vyššie uvedené akcie nemožno vykonať s koreňmi. Mali by sa zvážiť príklady riešení kvadratických rovníc tohto typu.

V tomto prípade budú koreňmi rovnice čísla -4 a 4.

Výpočet plochy pozemku

Potreba tohto druhu výpočtov sa objavila v staroveku, pretože vývoj matematiky v týchto vzdialených časoch bol do značnej miery určený potrebou určiť s najväčšou presnosťou plochy a obvody pozemkov.

Mali by sme tiež zvážiť príklady riešenia kvadratických rovníc založených na problémoch tohto druhu.

Povedzme teda, že ide o obdĺžnikový pozemok, ktorého dĺžka je o 16 metrov väčšia ako šírka. Dĺžku, šírku a obvod pozemku by ste mali zistiť, ak viete, že jeho plocha je 612 m2.

Ak chcete začať, najprv vytvorte potrebnú rovnicu. Označme x šírku oblasti, potom jej dĺžka bude (x+16). Z napísaného vyplýva, že oblasť je určená výrazom x(x+16), ktorý je podľa podmienok našej úlohy 612. To znamená, že x(x+16) = 612.

Riešenie úplných kvadratických rovníc a tento výraz je presne taký, sa nedá urobiť rovnakým spôsobom. prečo? Hoci ľavá strana stále obsahuje dva faktory, ich súčin sa vôbec nerovná 0, preto sa tu používajú rôzne metódy.

Diskriminačný

Najprv urobme potrebné transformácie vzhľad tohto výrazu bude vyzerať takto: x 2 + 16x - 612 = 0. To znamená, že sme dostali výraz vo forme zodpovedajúcej predtým špecifikovanej norme, kde a=1, b=16, c=-612.

Toto by mohol byť príklad riešenia kvadratických rovníc pomocou diskriminantu. Tu potrebné výpočty sa vyrábajú podľa schémy: D = b 2 - 4ac. Táto pomocná veličina nielenže umožňuje nájsť požadované veličiny v rovnici druhého rádu, ale určuje veličinu možné možnosti. Ak D>0, sú dve; pre D=0 je jeden koreň. V prípade D<0, никаких шансов для решения у уравнения вообще не имеется.

O koreňoch a ich vzorci

V našom prípade je diskriminant rovný: 256 - 4(-612) = 2704. To naznačuje, že náš problém má odpoveď. Ak poznáte k, riešenie kvadratických rovníc musí pokračovať pomocou nižšie uvedeného vzorca. Umožňuje vám vypočítať korene.

To znamená, že v prezentovanom prípade: x 1 = 18, x 2 = -34. Druhá možnosť v tejto dileme nemôže byť riešením, pretože rozmery pozemku nemožno merať v záporných veličinách, čiže x (čiže šírka pozemku) je 18 m. Odtiaľ vypočítame dĺžku: 18 +16=34 a obvod 2(34+18)=104(m2).

Príklady a úlohy

Pokračujeme v štúdiu kvadratických rovníc. Príklady a podrobné riešenia niekoľkých z nich budú uvedené nižšie.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Presuňme všetko na ľavú stranu rovnosti, vykonajte transformáciu, to znamená, že dostaneme typ rovnice, ktorá sa zvyčajne nazýva štandardná, a prirovnáme ju k nule.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Sčítaním podobných určíme diskriminant: D = 49 - 48 = 1. To znamená, že naša rovnica bude mať dva korene. Vypočítajme ich podľa vyššie uvedeného vzorca, čo znamená, že prvý z nich sa bude rovnať 4/3 a druhý 1.

2) Teraz poďme riešiť záhady iného druhu.

Poďme zistiť, či sú tu nejaké korene x 2 - 4x + 5 = 1? Aby sme získali komplexnú odpoveď, zredukujme polynóm na zodpovedajúcu zvyčajnú formu a vypočítajme diskriminant. Vo vyššie uvedenom príklade nie je potrebné riešiť kvadratickú rovnicu, pretože to vôbec nie je podstata problému. V tomto prípade D = 16 - 20 = -4, čo znamená, že v skutočnosti neexistujú žiadne korene.

Vietov teorém

Je vhodné riešiť kvadratické rovnice pomocou vyššie uvedených vzorcov a diskriminantu, keď sa druhá odmocnina berie z jeho hodnoty. Ale nie vždy sa to stane. V tomto prípade však existuje veľa spôsobov, ako získať hodnoty premenných. Príklad: riešenie kvadratických rovníc pomocou Vietovej vety. Je pomenovaná po tom, kto žil v 16. storočí vo Francúzsku a vďaka svojmu matematickému talentu a konexiám na dvore urobil skvelú kariéru. Jeho portrét si môžete pozrieť v článku.

Vzor, ktorý si slávny Francúz všimol, bol nasledovný. Dokázal, že korene rovnice sa numericky sčítavajú na -p=b/a a ich súčin zodpovedá q=c/a.

Teraz sa pozrime na konkrétne úlohy.

3x 2 + 21x - 54 = 0

Pre jednoduchosť transformujme výraz:

x 2 + 7 x - 18 = 0

Použime Vietovu vetu, to nám dá nasledovné: súčet koreňov je -7 a ich súčin je -18. Odtiaľto dostaneme, že korene rovnice sú čísla -9 a 2. Po kontrole sa presvedčíme, že tieto hodnoty premenných skutočne zapadajú do výrazu.

Parabolový graf a rovnica

Pojmy kvadratická funkcia a kvadratické rovnice spolu úzko súvisia. Príklady toho už boli uvedené skôr. Teraz sa pozrime na niektoré matematické hádanky trochu podrobnejšie. Každá rovnica opísaného typu môže byť znázornená vizuálne. Takýto vzťah, nakreslený ako graf, sa nazýva parabola. Jeho rôzne typy sú znázornené na obrázku nižšie.

Každá parabola má vrchol, teda bod, z ktorého vychádzajú jej vetvy. Ak a>0, idú vysoko do nekonečna a keď a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizuálne reprezentácie funkcií pomáhajú riešiť akékoľvek rovnice, vrátane kvadratických. Táto metóda sa nazýva grafická. A hodnota premennej x je súradnica x v bodoch, kde sa čiara grafu pretína s 0x. Súradnice vrcholu sa dajú nájsť pomocou práve daného vzorca x 0 = -b/2a. A dosadením výslednej hodnoty do pôvodnej rovnice funkcie môžete zistiť y 0, teda druhú súradnicu vrcholu paraboly, ktorá patrí k osi y.

Priesečník vetiev paraboly s osou x

Existuje veľa príkladov riešenia kvadratických rovníc, ale existujú aj všeobecné vzorce. Pozrime sa na ne. Je jasné, že priesečník grafu s osou 0x pre a>0 je možný iba vtedy, ak y 0 trvá záporné hodnoty. A pre a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Inak D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Z grafu paraboly môžete určiť aj korene. Platí to aj naopak. To znamená, že ak nie je ľahké získať vizuálnu reprezentáciu kvadratickej funkcie, môžete prirovnať pravú stranu výrazu k 0 a vyriešiť výslednú rovnicu. A ak poznáme priesečníky s osou 0x, je jednoduchšie zostaviť graf.

Z histórie

Pomocou rovníc obsahujúcich druhú mocninu premennej za starých čias nielen matematicky počítali a určovali plochy geometrických útvarov. Starovekí potrebovali takéto výpočty na veľké objavy v oblasti fyziky a astronómie, ako aj na vytváranie astrologických predpovedí.

Ako naznačujú moderní vedci, obyvatelia Babylonu boli medzi prvými, ktorí riešili kvadratické rovnice. Stalo sa to štyri storočia pred naším letopočtom. Samozrejme, ich výpočty boli radikálne odlišné od tých, ktoré sú v súčasnosti akceptované a ukázali sa ako oveľa primitívnejšie. Mezopotámski matematici napríklad netušili o existencii záporných čísel. Nepoznali ani ďalšie jemnosti, ktoré pozná každý moderný školák.

Možno ešte skôr ako vedci z Babylonu začal mudrc z Indie Baudhayama riešiť kvadratické rovnice. Stalo sa to asi osem storočí pred Kristovým obdobím. Je pravda, že rovnice druhého rádu, metódy riešenia, ktoré dal, boli najjednoduchšie. Okrem neho sa o podobné otázky za starých čias zaujímali aj čínski matematici. V Európe sa kvadratické rovnice začali riešiť až začiatkom 13. storočia, no neskôr ich vo svojich prácach začali používať takí veľkí vedci ako Newton, Descartes a mnohí ďalší.