Что такое биологические ритмы и в чем их значение для живых организмов. Что такое биоритмы человека

Биологические ритмы — периодически повторяющиеся измене­ния характера и интенсивности биологических процессов и явле­ний в живых организмах. Биологические ритмы физиологических функций столь точны, что их часто называют «биологическими часами».

Есть основание полагать, что механизм отсчета времени заключен в каждой моле­куле человеческого тела, в том числе в молекулах ДНК, хранящих генетическую информацию. Клеточные биологические часы назы­вают «малыми», в отличие от «больших», которые, как считают, расположены в головном мозге и синхронизируют все физиологи­ческие процессы в организме.

Классификация биоритмов.

Ритмы , задаваемые внутренними «часами» или водителями рит­ма, называются эндогенными , в отличие от экзогенных , которые регулируются внешними факторами. Большинство биологических ритмов являются смешанными, т. е. частично эндогенными и час­тично экзогенными.

Во многих случаях главным внешним фактором, регулирующим ритмическую активность, служит фотопериод, т. е. продолжитель­ность светового дня. Это единственный фактор, который может быть надежным показателем времени, и он используется для установки «часов».

Конкретная природа «часов» неизвестна, но нет сомнений, что здесь действует физиологический механизм, который может вклю­чать как нервные, так и эндокринные компоненты.

Большинство ритмов формируются в процессе индивидуально­го развития (онтогенеза). Так, суточные колебания активности различных функций у ребенка наблюдаются до его рождения, их мож­но зарегистрировать уже во второй половине беременности.

  • Биологические ритмы реализуются в тесном взаимодействии с окружающей средой и отражают особенности приспособления орга­низма к циклично изменяющимся факторам этой среды. Вращение Земли вокруг Солнца (с периодом около года), вращение Земли вок­руг своей оси (с периодом около 24 ч), вращение Луны вокруг Зем­ли (с периодом около 28 дней) приводят к колебаниям освещеннос­ти, температуры, влажности, напряженности электромагнитного поля и т. п., служат своеобразными указателями, или датчиками, времени для «биологических часов».
  • Биологические ритмы имеют большие различия по частотам или периодам. Выделяют группу так называемых высокочастотных био­логических ритмов, периоды колебаний которых находятся в пре­делах от доли секунды до получаса. Примерами могут служить колебания биоэлектрической активности головного мозга, сердца, мышц, других органов и тканей. Регистрируя их с помощью спе­циальной аппаратуры, получают ценную информацию о фи­зиологических механизмах деятельности этих органов, которая используется также для диагностики заболеваний (электроэнцефа­лография, электромиография, электрокардиография и др.). К этой же группе можно отнести ритм дыхания.
  • Биологические ритмы с периодом 20-28 ч называются циркадианными (циркадными , или околосуточными), например, перио­дические колебания на протяжении суток температуры тела, час­тоты пульса, артериального давления, работоспособности человека и др.
  • Выделяют также группу биологических ритмов низкой часто­ты; это околонедельные, околомесячные, сезонные, окологодовые, многолетние ритмы .

В основе выделения каждого из них лежат четко регистрируе­мые колебания какого-либо функционального показателя.

Напри­мер: Околонедельному биологическому ритму соответствует уро­вень выделения с мочой некоторых физиологически активных веществ, околомесячному — менструальный цикл у женщин, сезон­ным биологическим ритмам — изменения продолжительности сна, мышечной силы, заболеваемости и т. д.

Наиболее изучен циркадианный биологический ритм, один из самых важных в организме человека, выполняющий как бы роль дирижера многочисленных внутренних ритмов.

Циркадианные ритмы высокочувствительны к действию различ­ных отрицательных факторов, и нарушение слаженной работы си­стемы, порождающей эти ритмы, служит одним из первых симптомов заболевания организма. Установлены циркадианные колебания более 300 физиологических функций организма человека. Все эти процессы согласованы во времени.

Многие околосуточные процессы достигают максимальных зна­чений в дневное время каждые 16-20 ч и минимальных — ночью или в ранние утренние часы.

Например: Ночью у человека самая низкая температура тела. К утру она повышается и достигает мак­симума во второй половине дня.

Основной причиной суточных колебаний физиологических фун­кций в организме человека являются периодические изменения возбудимости нервной системы, угнетающей или стимулирующей обмен веществ. В результате изменения обмена веществ и возни­кают изменения различных физиологических функций (рис.1).

Например: Частота дыхания днем выше, чем ночью. В ночное время понижена функция пищеварительного аппарата.

Рис. 1. Суточные биологические ритмы в организме человека

Например: Установлено, что суточная динамика температуры тела имеет волнообразный характер. Примерно к 18 ч температура достигает максимума, а к полуночи снижается: минимальное ее значение меж­ду часом ночи и 5 ч утра. Изменение температуры тела в течение суток не зависит от того, спит человек или занимается интенсив­ной работой. Температура тела определяет скорость биологических реакций , днем обмен веществ идет наиболее интенсивно.

С суточным рит­мом тесно связаны сон и пробуждение. Своеобразным внутренним сигналом для отдыха ко сну служит понижение температуры тела. На протяжении суток она изменяется с амплитудой до 1,3°С.

Например: Измеряя через каждые 2-3 ч на протяжении нескольких суток температуру тела под языком (обычным медицинским термомет­ром), можно довольно точно установить наиболее подходящий момент для отхода ко сну, а по температурным пикам определить периоды максимальной работоспособности.

Днем растет частота сердечных сокращений (ЧСС), выше артериальное давление (АД), чаще дыхание. Изо дня в день к моменту пробуждения, как бы пред­восхищая возрастающую потребность организма, в крови повыша­ется содержание адреналина — вещества, которое увеличивает ЧСС, повышает АД, активизирует работу всего организма; к этому времени в крови накапливаются биологические стимуляторы. Снижение концентрации этих веществ к вечеру — непременное условие спокойного сна. Недаром нарушения сна всегда сопровож­даются волнением и тревогой: при этих состояниях в крови нарас­тает концентрация адреналина и других биологически активных веществ, организм длительное время находится в состоянии «бое­вой готовности». Подчиняясь биологическим ритмам, каждый физиологический показатель в течение суток может существенно менять свой уровень.

Распорядок жизни, акклиматизация.

Биологические ритмы являются основой рациональной регла­ментации распорядка жизни человека, так как высокая работоспо­собность и хорошее самочувствие могут быть достигнуты только в том случае, если ритм жизни соответствует свойственному орга­низму ритму физиологических функций. В связи с этим необходи­мо разумно организовать режим труда (тренировок) и отдыха, а также прием пищи. Отклонение от правильного режима питания может привести к существенному увеличению веса, который в свою очередь, нарушая жизненные ритмы организма, вызывает измене­ние обмена веществ.

Например: Если принимать пищу общей кало­рийностью 2000 ккал только по утрам, вес снижается; если ту же пищу принимать в вечерние часы, увеличивается. Для того, чтобы сохранить вес тела, достигнутый к 20-25 годам, пищу следует принимать 3-4 раза в день в точном соответствии с индивидуаль­ными суточными затратами энергии и в те часы, когда появляется заметное чувство голода.

Однако эти общие закономерности иногда скрывают многооб­разие индивидуальных особенностей биологических ритмов. Не всем людям свойственны однотипные колебания работоспособнос­ти. Одни, так называемые «жаворонки», энергично работают в пер­вой половине дня; другие, «совы», — вечером. Люди, относящиеся к «жаворонкам», вечером испытывают сонливость, рано ложатся спать, но, рано просыпаясь, чувствуют себя бодрыми и работоспо­собными (рис.2).

Легче переносит акклиматизацию человек, если он принимает (3-5 раз в сутки) горячее питание и адаптогены, витаминные комп­лексы, а физические нагрузки увеличивает постепенно, по мере адаптации к ним (рис.3).

Рис. 2. Кривые ритма трудоспособности в течение суток

Рис. 3. Суточные ритмы протекания жизненных процессов при неизменных внешних условиях жизни (по Графу)

При несоблюдении этих условий может наступить так называе­мый десинхроноз (своеобразное патологическое состояние).

Явление десинхроноза наблюдается и у спортсменов, особенно у тренирующихся в условиях жары и влажного климата или среднегорья. Поэтому спортсмен, вылетающий на международные со­ревнования, должен быть хорошо подготовлен. Сегодня существу­ет целая система мероприятий, направленных на сохранение привычных биоритмов.

Для биологических часов человека важен правильный ход не только в суточных, но и в так называемых низкочастотных ритмах, например в околонедельном.

В настоящее время установлено, что недельный ритм вырабо­тан искусственно: убедительных данных о существовании врожден­ных семидневных ритмов у человека не обнаружено. Очевидно, что это эволюционно закрепленная привычка. Семидневная неделя ста­ла основой ритма и отдыха еще в древнем Вавилоне. За тысячеле­тия сформировался недельный социальный ритм: человек продук­тивнее работает в середине недели, чем в начале или в конце ее.

Биологические часы человека отражают не только суточные природные ритмы, но и имеющие большую продолжительность, например сезонные. Они проявляются в повышении обмена веществ весной и в снижении его осенью и зимой, в увеличении процента гемоглобина в крови и в изменении возбудимости дыхательного центра в весеннее и летнее время.

Состояние организма в летнее и зимнее время в какой-то степе­ни соответствует его состоянию днем и ночью. Так, зимой по срав­нению с летом снижалось в крови содержание сахара (аналогичное явление происходит и ночью), увеличивалось количество АТФ и холестерина.

Биоритмы и работоспособность.

Ритмы работоспособности, подобно ритмам физиологических процессов, по своей природе эндогенны.

Работоспособность может зависеть от многих факторов, дей­ствующих по отдельности или совместно. К этим факторам отно­сятся: уровень мотивации, прием пищи, факторы внешней среды, физическая готовность, состояние здоровья, возраст и другие факторы. По-видимому, на динамику работоспособности влияет и утомление (у элитных спортсменов — хроническое утомление), хотя не вполне ясно, каким именно образом. Утомление, возникающее при выполнении упражнений (тренировочных нагрузок), трудно преодо­левать даже достаточно мотивированному спортсмену.

Например: Утомление снижает работоспособность, а повторная тренировка (с интерва­лом в 2-4 ч после первой) улучшает функциональное состояние спортсмена.

При трансконтинентальных перелетах циркадианные ритмы различных функций перестраиваются с разной скоростью — от 2-3 дней до 1 месяца. Для нормализации циклично­сти до перелета необходимо каждый день сдвигать на 1 ч отход ко сну. Если это делать в течение 5-7 дней до отлета и ложиться спать в темной комнате, то удастся быстрее пройти акклиматизацию.

При прибытии в новый временной пояс необходимо плавно вхо­дить в тренировочный процесс (умеренные физические нагрузки в те часы, когда будут производиться соревнования). Тренировки не должны носить «ударный характер».

Следует отметить, что естественный ритм жизнедеятельности организма обусловлен не только внутренними факторами, но и вне­шними условиями. В результате исследований был выявлен волно­вой характер изменения нагрузок на тренировке. Прежние представ­ления о неуклонном и прямолинейном наращивании тренировочных нагрузок оказались несостоятельными. Волнообразный характер изменения нагрузок в процессе тренировок связан с внутренними биологическими ритмами человека.

Например: Различают три категории «волн» тренировок: «малые», охватывающие от 3 до 7 дней (или не­сколько более), «средние» — чаще всего 4-6 недель (недельные тре­нировочные процессы) и «большие», продолжающиеся несколько месяцев.

Нормализация биологических ритмов позволяет осуществлять интенсивные физические нагрузки, а тренировки при нарушенном биологическом ритме приводят к различным функциональным рас­стройствам (например, десинхронозу), а иногда и к заболеваниям.

Источник информации: В.Смирнов, В.Дубровский (Физиология физического воспитания и спорта).

Биологический ритм - это колебательный процесс, приводящий к воспроизведению биологического явления или состояния биологической системы через приблизительно равные промежутки времени.

Мы считаем вполне естественным и ничуть не удивляемся, когда, например, ощущаем вечером сонливость и отправляемся спать, подчиняясь по существу своим биологическим часам. Еще более понятным и не требующим особых пояснений кажется нам появление с наступлением темноты ощущения усталости, которое, собственно, и вызывает сонливость. Но если человек на протяжении нескольких недель находится, ничего не делая, в полутемном помещении, куда не проникают никакие звуки, то и тогда он будет засыпать и просыпаться примерно каждые 24 часа, как бы отмеряя сутки за сутками.

В жизнедеятельности растений и животных помимо сна немало проявлений и других ритмов: более 2400 лет назад Гиппократ писал о подъемах и падениях, присущих физическому состоянию людей, почти 300 лет назад (1729) французский математик и астроном Жан жак де Меран обнаружил 24-часовую периодическую активность у растений, в дальнейшем Христофор Гуфелянд (1797), рассматривая колебания температуры тела у здоровых и больных пациентов, высказал предположение о том, что в организме существуют "внутренние часы", ход которых определяется вращением Земли вокруг своей оси. Он впервые обратил внимание на универсальность ритмических процессов у биологических объектов и подчеркнул, что наша жизнь, очевидно, повторяется в определенных ритмах, а каждый день представляет маленькое изложение нашей жизни.

Прогрессивное развитие учения о биологических ритмах провело к возникновению новой междисциплинарной фундаментальной науки - хронобиологии, которая изучает закономерности осуществления процессов жизнедеятельности организма во времени. Учение о биологических ритмах стало составной частью хронобиологии. Однако до настоящего времени, несмотря на внедрение методов хронобиологии в другие области исследования живых систем и формирование в медико-биологической науке новых направлений (хрономедицна, хронофармакология, хронопатология и т.д.), ученые так и не выработали единый словарь для новой науки, в результате чего проявления хронобиологических феноменов нередко именуют неодинаково, а термины, уже закрепленные, применяют в ином смысле или пытаются пересмотреть более или менее устоявшиеся термины. В процессе ознакомления с предметом мы рассмотрим эти противоречия.

Понятия хронобиологии и биоритмологии близки, но не тождественны. Согласно наиболее универсальному определению, принятому Международным обществом изучения биологических ритмов, хронобиология - наука, объективно исследующая на количественной основе механизмы биологической временнóй структуры, включая ритмические проявления жизни на всех уровнях организации живой системы. Действительно, хотя изучение периодичности жизненных явлений образует основу хронобиологических подходов, не всегда принимается во внимание, что колебания сочетаются с более медленными изменениями, которые не обязательно периодичны.

Биоритмология - наука, изучающая условия возникновения, природу, закономерности и значение биологических ритмов. Биоритм представляет собой колебания какого-либо биологического процесса (состояния), наступающие через приблизительно равные промежутки времени, когда процесс (состояние) возвращается к исходному проходя цикл. Повторяемость состояния (например, деление клетки) в ритме относительна. На самом деле каждый цикл повторения по своему содержанию отличается от предыдущего, но воспроизводится по тем же закономерностям.

Понятия "цикл" и "ритм" близки, их употребление определяется семантическими оттенками, что зависит от контекста. Под цикличностью чаще имеют в виду только повторяемость событий, употребляя термин "ритм", обычно подразумевают, что, кроме периода, известны и другие его параметры.

Интенсивность процесса на протяжении цикла меняется по сложным и у разных процессов неодинаковым законам, так что кривые, ее отражающие (форма волны), имеют сложную конфигурацию, например конфигурация электрокардиограммы, для описания которой требуется привлечение теорий предельных циклов и релаксационных колебаний.

Простейшая кривая, описывающая циклы (ритмы), – это синусоида, характеризующаяся определенными параметрами , используемыми для описания биологического ритма.

Классификация биоритмов

Проявлением и характеристикой, позволяющей судить о временной организации человека, является его хронотип. Чаще всего под этим термином понимают околосуточную динамику показателей, характеризующих общее состояние организма. Хронотип человека индивидуален, т.к. обусловлен, с одной стороны генетическими механизмами, а с другой – взаимодействием организма со средой.

Чаще всего хронотип человека определяют по уровню работоспособности - активной фазы биологического ритма "сон-бодрствование". Различия в этом ритме позволили распределить людей на "утренние" группы ("жаворонки"), "вечерние" группы ("совы") и "аритмичные" группы ("голуби"). "Совы" – поздно засыпают и поздно просыпаются, максимум суточных биоритмов активности и покоя у них сдвинут на более поздние часы в отличии от "жаворонков", которые рано просыпаются и рано засыпают. У "голубей" пик активности приходится примерно на середину дневного периода. На протяжении жизни временная организация человека может меняться: с возрастом смещаться в сторону "жаворонка" Происходит это вследствие изменения скорости секреции гормонов (в частности, гормона мелатонина, отвечающего за нормальное ритмическое течение биологических процессов организма). Именно отсюда склонность пожилых рано вставать и пораньше ложиться, а у молодых - бодрствовать допоздна и утром подольше поспать.

Любое биологическое явление, любая физиологическая реакция имеют периодическую природу, так как у живых организмов, в течение многих миллионов лет живущих в условиях ритмических изменений геофизических параметров среды, выработались и способы приспособления к ним.

Ритмичность - фундаментальная характеристика функционирования живого организма - прямо связана с механизмами обратной связи, саморегуляции и адаптации, а согласование ритмических циклов достигается благодаря важной особенности колебательных процессов - стремлению к синхронизации. Основное назначение ритмичности заключается в поддержании гомеостаза организма при изменении факторов внешней среды. При этом гомеостаз понимается не как статичная устойчивость внутренней среды, а как динамический ритмический процесс - ритмостаз, или гомеокинез.

Собственные ритмы организма не автономны, а связаны с ритмическими процессами внешней среды: сменой дня и ночи, годовыми сезонами и т.д.

Внешние задаватели времени

В терминологии, характеризующей внешние факторы и порождаемые ими внутренние колебания, нет единообразия. Например, существуют названия «внешние и внутренние датчики времени», «задаватели времени», «внутренние биологические часы», «генераторы внутренних колебаний» - «внутренние осцилляторы».

Биологический ритм - периодическое повторение некоторого процесса в биологической системе через более или менее регулярные промежутки времени. Биоритм - не просто повторяющийся, а и самоподдерживающийся и самовоспроизводящийся процесс. Биологические ритмы характеризуются периодом, частотой, фазой и амплитудой колебаний.

Период - время между двумя одноимёнными точками в волнообразно изменяющемся процессе, т.е. продолжительность одного цикла до первого повтора.

Частота. Ритмы также могут быть охарактеризованы частотой - числом циклов, совершающихся в единицу времени. Частота ритмов может определяться частотой периодических процессов, протекающих во внешней среде.

Амплитуда - наибольшее отклонение исследуемого показателя в какую-либо сторону от средней. Амплитуда иногда выражается через мезор, т.е. в процентах от средней величины всех её значений, полученных при регистрации ритма. Удвоенная амплитуда равна размаху колебаний.

Фаза. Термин «фаза» относится к любой отдельно выделенной части цикла. Чаще всего этим термином пользуются, описывая связь одного ритма с другим. Например, пик активности у одних животных совпадает по фазе с тёмным периодом цикла свет-темнота, у других - со светлым периодом. Если два выделенных отрезка времени не совпадают, то вводится термин разность по фазе, выраженная в соответствующих долях периода. Опережение или отставание по фазе означает, что событие произошло раньше или позже ожидаемого срока. Фаза выражается в градусах. Например, если максимум одного ритма соответствует минимуму другого, то разность по фазе между ними составляет 180?.

Акрофаза - точка времени в периоде, когда отмечается максимальное значение исследуемого показателя. При регистрации акрофазы (батифазы) в течение нескольких циклов отмечено, что время её наступления варьирует в определённых пределах, и это время выделено как зона блуждания фазы. Величина зоны блуждания фазы, вероятно, связана с периодом (частотой) ритма. На частоту и фазу биоритмов влияют не только частота и фаза внешнего колебательного процесса, но и его уровень.

Существует циркадианное правило: для дневных организмов характерна положительная корреляция между освещённостью и частотой циркадианного ритма, а для ночных - отрицательная корреляция.

Классификации биоритмов

Классификация ритмов зависит от выбранных критериев: по их собственным характеристикам, по функциям, которые они выполня- ют, роду процесса, порождающего колебания, а также по биосистеме, в которой наблюдается цикличность.

Спектр возможных ритмов жизни охватывает широкий диапазон масштабов времени - от волновых свойств элементарных частиц

(микроритмов) до глобальных циклов биосферы (макро- и мегаритмов). Пределы их длительности - от многих лет до миллисекунд, группировка иерархическая, но границы между группами в боль- шинстве случаев условны. Верхнюю границу среднечастотных ритмов устанавливают на отметке от 28 ч до 3 с. Периоды от 28 ч до 7 суток либо относят к единой группе мезоритмов, либо часть их (до 3 суток) включают в среднечастотные, а от 4 суток - в низкочастотные.

Ритмы подразделяют по следующим критериям (Ю. Ашофф,

1984):

По собственным характеристикам (например, по периоду);

По биологической системе (например, популяция);

По роду процесса, порождающего ритм;

По функции, которую ритм выполняет.

Предложена классификация, основанная на структурно-функциональных уровнях организации жизни:

Ритмы молекулярного уровня с периодом секундно-минутного диапазона;

Клеточные - от околочасовых до окологодовых; организменные - от околосуточных до многолетних;

Популяционно-видовые - от окологодовых до ритмов длительностью десятки, сотни и тысячи лет;

Биогеоценотические - от сотен тысяч до миллионов лет;

Биосферные ритмы - с периодом сотни миллионов лет.

Наиболее популярна классификация биологических ритмов F. Halberg и A. Reinberg (1967) (рис. 4.1).

ОТДЕЛЬНЫЕ РИТМЫ

В живой природе наиболее отчётливо выражены ритмы с периодом около 24 ч - циркадианные (лат. circa - около, dies - день). Позднее префикс «circa» стали применять для остальных эндогенных ритмов,

Рис. 4-1. Классификация биоритмов (F. Halberg, A. Reinberg)

отвечающих циклам внешней среды: околоприливные, окололунные, окологодовые (circatidal, circalunar, circannual). Ритмы с периодом более коротким, чем циркадианные, определены как ультрадианные, с более длинным - инфрадианные. Среди инфрадианных ритмов выделяют циркасептидианные с периодом (7?3 суток), циркавигентидианные (21 ?3 суток), циркатригентидианные (30?5 суток) и цирканнуальные (1 год?2 мес.).

Ультрадианная ритмика

Если биологические ритмы этого диапазона расположить в порядке уменьшения их частоты, то получается ряд от многогерцовых до многочасовых колебаний. Наиболее высокой частотой (60-100 Гц) отличаются нервные импульсы, затем следуют колебания ЭЭГ с частотой от 0,5 до 70 Гц.

Декасекундные ритмы были зарегистрированы в биопотенциалах мозга. К этому диапазону относятся и колебания пульса, дыхания, перистальтики кишечника. Минутные ритмы характеризуют психолого-эмоциональное состояние человека: биоэлектрическая активность мышц, ЧСС и дыхания, амплитуда и частота движений изменяются в среднем через каждые 55 с.

Декаминутные (90 мин) ритмы были открыты в мозговых механизмах ночного сна, которые были названы медленно- и быстроволновой (или парадоксальной) фазами, при этом именно на вторую фазу приходятся сновидения, непроизвольные движения глаз. Такой же ритм в последующем был обнаружен в сверхмедленных колебаниях биопотенциалов бодрствующего мозга, связанных с временной динамикой внимания, бдительности оператора.

Околочасовые ритмы обнаружены не только на системном, но и на нижележащих иерархических уровнях. Этот ритм имеют многие происходящие на клеточном уровне явления: синтез белка, изменение клеточных размеров и массы, ферментативной активности, проницаемости клеточных мембран, секреции, электрической активности.

Циркадианные колебания

Циркадианная система - та основа, благодаря которой проявляются интегративная деятельность и регулирующая роль нейроэндокринной системы, осуществляющей точное и тонкое приспособление организма к постоянно меняющимся условиям окружающей среды.

Циркадианная периодичность обнаружена в интегральных показателях жизнедеятельности.

Работоспособность в ночное время снижается, и время выполнения задания, как при свете, так и в темноте ночью более продолжительное, чем днём в тех же условиях.

Тренировка в ранние утренние часы даёт несколько меньший эффект, чем в середине дня.

Работоспособность учащихся наиболее высока в предобеденные часы, к 14 ч отмечается значительное её снижение, второй её подъём приходится на 16-17 ч, затем наблюдается новый спад.

Суточная периодичность характерна не только для ВНД, но и для нижележащих иерархических систем организма.

Зарегистрированы 24-часовые изменения церебральной и кардиальной гемодинамики, ортостатической устойчивости.

Выявлен суточный ритм сопряжённости фаз сердечного цикла и дыхания.

В литературе имеются данные о ночном снижении лёгочной вентиляции и потребления кислорода, падении минутного объёма дыхания (МОД) у лиц молодого, зрелого и среднего возраста.

Циркадианная ритмичность присуща и функции системы пищеварения, в частности, слюноотделения, секреторной деятельности поджелудочной железы, синтетической функции печени, моторики желудка. Установлено, что наибольшая скорость секреции кислоты с желудочным соком наблюдается вечером, наименьшая - утром.

На уровне биохимической индивидуальности открыта суточная цикличность для некоторых веществ.

Концентрация макро- и микроэлементов: фосфора, цинка, марганца, натрия, калия, рубидия, цезия и хлора в крови чело- века, а также железа в сыворотке крови.

Суммарное содержание аминокислот и нейромедиаторов.

Основной обмен и связанный с ним уровень тиреотропного гормона гипофиза и гормонов щитовидной железы.

Система половых гормонов: тестостерон, андростерон, фолликулостимулирующий гормон, пролактин.

Гормоны нейроэндокринной системы регуляции стресса - АКТГ, кортизол, 17-оксикортикостероиды, что сопровожда-

ется цикличными изменениями уровня глюкозы и инсулина. Подобная ритмичность известна и для мелатонина.

Инфрадианные ритмы

Биоритмологами описаны не только суточные, но и многодневные (околонедельные, околомесячные) ритмы, охватывающие все иерар- хические уровни организма.

В литературе имеется анализ тонкого спектра колебаний (с периодом 3, 6, 9-10, 15-18, 23-24 и 28-32 дней) частоты сердечных сокращений, АД, мышечной силы.

Ритм 5-7-дневной длительности зафиксирован в динамике интенсивности энергетического обмена, массы и температуры тела человека.

Хорошо известны флюктуации результатов клинических анализов содержания в крови эритроцитов и лейкоцитов. У мужчин количество нейтрофилов в венозной крови изменяется с периодом от 14 до 23 дней.

Среди ритмов этого диапазона наиболее изучены месячные (лунные) циклы. Установлено, что в полнолуние количество случаев послеоперационных кровотечений на 82% больше, чем в другое время, в дни лунных фаз увеличивается частота возникновения инфаркта миокарда.

Цирканнуальные ритмы

В организме животных и человека обнаружены колебания различных физиологических процессов, период которых равен одному году - окологодовые (цирканнуальные), или сезонные ритмы. Цирканнуальная периодичность определена для возбудимости нервной системы, показателей гемодинамики, теплопродукции, реакции на острую холодовую нагрузку, содержание половых и других гормонов, нейромедиаторов, рост детей и др.

ХАРАКТЕРИСТИКА БИОРИТМОВ

При изучении периодических явлений в живых системах важно выяснить, отражает ли ритм, наблюдаемый в биологической системе, реакцию на внешнее по отношению к этой системе периодическое воздействие (экзогенный ритм, навязываемый задавателем ритма) или же ритм порождается внутри самой системы (эндогенный ритм), наконец, имеется ли сочетание экзогенного ритма и эндогенного генератора ритма.

Задаватели ритмов и функции

Внешние задаватели ритмов могут быть простыми и сложными.

Простые:

Подача пищи в одно и то же время, что вызывает простые реакции, ограничивающиеся, в основном, вовлечением в актив- ность пищеварительной системы;

Смена света и темноты - также относительно простой задаватель ритма, но он вовлекает в активность не только сон или бодрствование (т.е. одну систему), а весь организм.

Сложные:

Смена сезонов года, приводящая к длительным специфическим изменениям состояния организма, в частности, его реактивности, устойчивости по отношению к различным факторам: уровню обмена веществ, направленности обменных реакций, эндокринным сдвигам;

Периодические колебания солнечной активности, вызывающие зачастую замаскированные изменения в организме, в значительной мере зависящие от исходного состояния.

Связь времязадавателей с биоритмами

Современные нам представления о связи между экзогенными времязадавателями и эндогенными ритмами (представление о единых биологических часах, полиосцилляторная структура) приведены на рис. 4-2.

Гипотезы о единых биологических часах и полиосцилляторной временной структуре организма вполне совместимы.

Гипотеза централизованного управления внутренними колебательными процессами (наличие единых биологических часов) относится преимущественно к восприятию смены света и темноты и трансформации этих явлений в эндогенные биоритмы.

Рис. 4-2. Механизмы взаимодействия организма с внешними задавателями времени

Мультиосцилляторная модель биоритмов. Предполагается, что в многоклеточном организме может функционировать главный пейсмейкер, навязывающий свой ритм всем остальным системам. Не исключается существование (наряду с центральным водителем ритма) и второстепенных осцилляторов, также обладающих пейсмейкерными свойствами, но иерархически под- чинённых ведущему. По одному из вариантов этой гипотезы в организме могут функционировать разрозненные осцилляторы, которые образуют отдельные группы, работающие независимо друг от друга.

МЕХАНИЗМЫ РИТМОГЕНЕЗА

Существует несколько точек зрения на механизмы ритмогенеза. Возможно, что источником циркадианной ритмики являются циклические изменения АТФ в цитоплазме клеток или циклы метаболических реакций. Не исключено, что ритмы организма определяют биофизические эффекты, а именно влияние:

Гравитационного поля;

Космических лучей;

Электромагнитных полей (в том числе магнитного поля Земли);

Ионизации атмосферы и т.д.

Ритмы психической активности

Не только биологические и физиологические процессы, но и динамика психической деятельности, в том числе и эмоциональных состояний, подвержены закономерным колебаниям. Например, установлено, что бодрствующее сознание человека имеет волновую природу. Психологические ритмы могут быть систематизированы в тех же диапазонах, что и биологические.

Ультрадианные ритмы проявляются во флюктуациях порогов восприятия, времени двигательных и ассоциативных реакций, внимания. Соответствие био- и психоритмов в организме человека обеспечивает нормальную работу всех его органов и систем, так слух человека даёт наибольшую точность оценки интервала времени 0,5-0,7 с, что характерно для темпа движений при ходьбе.

Тактовые ритмы. В колебаниях психических процессов, кроме временных ритмов, были обнаружены так называемые тактовые ритмы, зависящие не от времени, а от номера пробы: человек не может постоянно одинаково реагировать на предъявляемые стиму-

лы, если в предыдущей пробе время реакции было коротким, то в следующий раз организм будет экономить энергию, что приведёт к снижению скорости реагирования и колебанию значения этого пока- зателя от пробы к пробе. Тактовые ритмы более выражены у детей, а у взрослых усиливаются при снижении функционального состояния нервной системы. При изучении умственного утомления выделены тактовые декасекундные, или двухминутные (0,95-2,3 мин) и десятиминутные (2,3-19 мин) ритмы.

Циркадианные ритмы вызывают значительные перестройки в деятельности организма, влияющие на психическое состояние и работоспособность человека. Так, электрическая чувствительность глаза изменяется на протяжении дня: в 9 ч утра она повышается, к 12 ч дня достигает максимума и затем снижается. Подобная суточная динамика присуща не только психическим процессам, но и психо- эмоциональным состояниям индивида. В литературе описаны суточные ритмы интеллектуальной работоспособности, субъективной готовности к работе и способности к сосредоточению, кратковременной памяти. У лиц с утренним типом работоспособности отмечается более высокий уровень тревоги, они отличаются меньшей устойчивостью к фрустрирующим факторам. Люди утреннего и вечернего типов имеют разный порог возбудимости, склонность к экстраили интроверсии.

ЭФФЕКТЫ ИЗМЕНЕНИЯ ВРЕМЯЗАДАВАТЕЛЕЙ

Биологические ритмы отличаются большой стойкостью, изменение привычных ритмов времязадавателей далеко не сразу сдвигает биоритмы и приводит к десинхронозу.

Десинхроноз - рассогласование циркадианных ритмов - нарушение исходной архитектоники циркадианной системы организма. При нарушении синхронизации ритмов организма и датчиков времени (внешний десинхроноз) организм вступает в стадию тревоги (внутренний десинхроноз). Сущность внутреннего десинхроноза заключается в рассогласовании по фазе циркадианных ритмов организма, в результате чего возникают различные нарушения его благополучия: расстройства сна, снижение аппетита, ухудшение самочувствия, настроения, падение работоспособности, невротические расстройства и даже органические заболевания (гастриты, язвенная болезнь и др.). Наиболее ярко перестройка биоритмов проявляется при быстрых перемещениях (авиаперелётах) в глобальном масш-табе.

Дальние перемещения вызывают выраженный десинхроноз, характер и глубина которого определяются: направлением, временем, длительностью перелёта; индивидуальными особенностями организма; трудовыми нагрузками; климатическим контрастом и т.д. Выделено пять типов перемещений (рис. 4-3).

Рис. 4-3. Хронофизиологическая классификация типов перемещения:

1 - трансмеридианное; 2 - трансширотное; 3 - диагональное (смешанное);

4 - трансэкваториальное; 5 - асинхронное. (В.А. Матюхин и др., 1999)

Трансмеридианное перемещение (1). Главный показатель такого перемещения - угловая скорость движения, выражаемая в градусах долготы. Её можно измерять числом часовых поясов (15?), пересечённых за сутки.

Если скорость перемещения превышает 0,5 часового пояса за сутки, возникает внешний десинхроноз - разность фаз фактического и должного максимумов суточной кривой физиологических функций.

Смена 1-2 часовых поясов не вызывает десинхронизации (имеется зона нечувствительности, в пределах которой фазовая десинхронизация не проявляется). При перелётах через 1-2 часовых пояса типичные для фазовой десинхронизации уплощения суточных колебаний физиологических функций не отмечаются, и ритм мягко «затягивается» внешними датчиками времени.

При дальнейшем перемещении на восток или запад фазовое рассогласование возрастает как функция времени. На разных географических широтах критическая угловая скорость достигается при различных линейных скоростях перемещения: в приполярных широтах даже при небольших скоростях, соответствующих скорости движения пешехода, не исключено возникновение десинхронизации. Практически скорость всех транспортных средств существенно превышает 0,5 угловых часа в сутки. Эффект десинхронизации биологических ритмов проявляется при таком типе перемещений в наиболее выраженной форме.

При скорости перемещения, превышающей три и более часовых поясов в сутки, внешние синхронизаторы уже не в состоя- нии «затягивать» циркадианные колебания физиологических функций и наступает десинхроноз.

Трансширотное перемещение (2) - вдоль меридиана, с юга на север или с севера на юг - не вызывая фазового рассогласования датчиков, даёт эффект, воспринимаемый как рассогласование фактической и ожидаемой амплитуд синхронизаторов. При этом изменяются фазы годового ритма, проявляется сезонная десинхронизация.

На первое место при таких перемещениях выступает несоответствие сезонной готовности физиологических систем тре- бованиям иного сезона в новом месте. Фазового рассогласования ритмов внешних датчиков и биоритмов организма нет, но не совпадают их суточные амплитуды.

Дальность перемещения, при которой климатические условия и структура фотопериодизма на новом месте начинают вызывать напряжение механизмов поддержания сезонного ритма физиологических функций, зависит от географической широты: оценка ширины зоны нечувствительности показывает, что она может изменяться от 1400 км у экватора до 150 км на широте 80?.

- «Окно хронофизиологической нечувствительности», его линейные и угловые размеры зависят от широты. Скорость, выраженная в числе «окон», пересекаемых за сутки, будет при равной линейной скорости возрастать по направлению от экватора к полюсу до очень больших величин. Сужение

«окна» по мере движения к северу - важное обстоятельство, свидетельствующее о повышенной хронофизиологической напряжённости при перемещениях в приполярных широтах по сравнению с низкими или средними широтами.

Перемещение по диагонали (3) подразумевает изменение долготы и широты, большой климатический контраст и значительные изменения поясного времени. Эти перемещения не являются простой суммой (суперпозицией) эффектов «горизонтального» (1) и «вертикального» (2) перемещения. Это сложный комплекс хронобиологических раздражителей, реакция на который может существенно отличаться от реакций на каждый вид десинхронизации, рассматриваемый изолированно.

Перемещение в другое полушарие (4) с пересечением экваториальной зоны. Главный воздействующий фактор такого перемещения - контрастная смена сезона, вызывающая глубокий сезонный десинхроноз, смещение и инвертирование фазы годового цикла физиологических функций.

Пятый тип перемещений - хроноэкологический режим, при котором колебательные свойства среды резко ослаблены или полностью отсутствуют. К таким перемещениям относятся:

Орбитальные полёты;

Пребывание в условиях с резко ослабленными суточными и сезонными синхронизаторами (подводных лодках, космических кораблях);

Вахтовые режимы труда со скользящим графиком смен и т.д. Среды такого типа предложено называть «асинхронными». Воздействие подобной «хронодепривации» вызывает грубые нарушения суточной и другой периодики.

СУБЪЕКТИВНОСТЬ ВОСПРИЯТИЯ ВРЕМЕНИ

Течение времени воспринимается субъективно, в зависимости от интенсивности физической или психической деятельности каждого отдельного индивидуума. Время как бы становится более ёмким при большей занятости или при необходимости принять правильное решение в экстремальной ситуации.

За считанные секунды человек успевает проделать сложнейшую работу. Например, лётчик в аварийной ситуации принимает решение изменить тактику управления самолётом. При этом он

мгновенно учитывает и сопоставляет динамику развития многочисленных факторов, влияющих на условия полёта.

В процессе изучения субъективного восприятия времени исследователи применяли тест «индивидуальная минута». Человек по сигналу отсчитывает секунды, а экспериментатор следит за стрелкой секундомера. Оказалось, что у одних «индивидуальная минута» короче истинной, у других - длинней, расхождения в ту или иную сторону могут быть весьма значительными.

БИОЛОГИЧЕСКИЕ РИТМЫ В РАЗНЫХ КЛИМАТОГЕОГРАФИЧЕСКИХ УСЛОВИЯХ

Высокогорье. В условиях высокогорья околосуточные ритмы гемодинамики, дыхания, газообмена зависят от метеофакторов и изменяются прямо пропорционально изменениям температуры воздуха и скорости ветра и обратно пропорционально изменениям атмосферного давления и относительной влажности воздуха.

Высокие широты. Специфические свойства полярного климата и особенности среды определяют особенности биоритмов у жителей:

В период полярной ночи отсутствуют достоверные циркадианные колебания потребления кислорода. Поскольку зна- чение коэффициента использования кислорода отражает интенсивность энергообмена, то снижение размаха колебаний потребления кислорода во время полярной ночи является косвенным свидетельством в пользу фазового рассогласования различных энергозависимых процессов.

У жителей Крайнего Севера и у полярников в период полярной ночи (зимой) наблюдают снижение амплитуды суточного ритма температуры тела и смещение акрофазы на вечерние часы, а весной и летом - на дневные и утренние часы.

Аридная зона. При адаптации человека к пустыне ритмические колебания условий окружающей среды приводят к синхронизации ритмики функционального состояния организма с этими колебаниями. Таким путём достигается частичная оптимизация деятельности компенсаторных механизмов в экстремальных условиях среды. Например, акрофаза ритма средневзвешенной температуры кожи приходится на 16 ч 30 мин, что практически совпадает с максимумом температуры воздуха, температура тела

достигает максимума в 21 ч, коррелируя с максимумом теплообразования.

МЕТОДЫ СТАТИСТИЧЕСКОЙ ОЦЕНКИ В ХРОНОБИОЛОГИИ

Косинусоидальная функция. Простейшим периодическим процессом является гармонический колебательный процесс, описываемый косинусоидальной функцией (рис. 4-4):

Рис. 4-4. Основные элементы гармонического (косинусоидального) колебательного процесса: М - уровень; Т - период; ρ A , ρ B , αφ A ,αφ B - амплитуды и фазы процессов А и В; 2ρ A - размах процесса А; αφ Ч - разность фаз процессов А и В

x(t) = М + рХcos2π/ТХ(t-αφ Ч),

где:

М - постоянная составляющая; ρ - амплитуда колебаний; Т - период, ч; t - текущее время, ч; аαφ Ч - фаза, ч.

При анализе биоритмов обычно ограничиваются первым членом ряда - гармоникой с периодом, равным 24 ч. Иногда учитывается также гармоника с периодом 12 ч. В результате аппроксимации временной ряд оказывается представленным небольшим числом обобщённых параметров - уровнем М, амплитудой р, фазой αφ.

Фазовые соотношения между двумя гармоническими колебательными процессами могут быть различными. Если фазы двух процессов одинаковы, они называются синфазными, если разница между фазами равна Т/2, - противофазными. О фазовом опережении или фазовом отставании одного гармонического процесса А относительно другого В, говорят тогда, когда αφ A <αφ B или αφ A >αφ B соответственно.

Описанные параметры, строго говоря, можно использовать только применительно к гармоническому колебательному процессу. Фактически суточная кривая отличается от математической модели: она может быть несимметричной относительно среднего уровня, а интервал между максимумом и минимумом, в отличие от косинусоиды, оказаться равным не 12 ч и т.д. Ввиду указанных причин использование этих параметров для описания реального колебательного периодического или близкого к периодическому процессу требует известной осторожности.

Хронограммы. Наряду с гармонической аппроксимацией временного ряда широко используется традиционный метод представления результатов биоритмологического исследования в виде суточных хронограмм, т.е. усреднённых по множеству индивидуальных замеров суточных кривых. На хронограмме одновременно со средним значением показателя на определённый час суток указывается доверительный интервал в виде среднеквадратического отклонения или ошибки среднего.

В литературе встречается несколько типов хронограмм. Если дисперсия индивидуальных уровней велика, периодическая компонента может оказаться замаскированной. В таких случаях применяют предварительное нормирование суточных кривых, так что усреднению подвергаются не абсолютные значения амплитуды р, а относительные (p/M). Для некоторых показателей хронограмма исчисляется в долях (процентах) общего суточного объё- ма потребления или выделения некоторого субстрата (например, потребления кислорода или выделения калия с мочой).

Хронограмма даёт достаточно наглядное представление о характере суточных кривых. Путём анализа хронограммы можно приблизительно определить фазу колебаний, абсолютную и относительную амплитуду, а также их доверительные интервалы.

Косинор - статистическая модель биоритмов, основанная на аппроксимации кривой колебаний физиологического показателя

гармонической функцией - косинор-анализа. Назначение косиноранализа - представление индивидуальных и массовых биоритмо- логических данных в сопоставимой унифицированной и доступной для статистических оценок форме. Суточные косинор-параметры характеризуют выраженность биоритма, переходные процессы при его перестройке, наличие статистически значимого отличия одних групп от других.

Косинор-анализ имеет очевидные преимущества по сравнению с методом хронограмм, поскольку он позволяет использовать для анализа структуры биоритмов корректные статистические методы.

Косинор-анализ выполняют в два этапа:

На первом этапе индивидуальные суточные кривые аппроксимируют гармонической (косинусоидой) функцией, в результате чего определяют основные параметры биоритма - среднесуточный уровень, амплитуду и акрофазу;

На втором этапе производят векторное усреднение индивидуальных данных, определяют математическое ожидание и доверительные интервалы амплитуды и акрофазы суточных колебаний изучаемого показателя.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Приведите примеры временных параметров организма и его систем?

2. В чём сущность синхронизации работы различных систем организма?

3. Что такое биологический ритм? Какие он имеет характеристики?

4. Какие классификации биоритмов вы можете привести? В чём принципиальное отличие разных типов биоритмов?

5. Назовите механизмы ритмогенеза.

6. Какие ритмы психической активности вы знаете?

7. Что происходит при устранении или изменении времязадавателей?

8. Какие типы перемещений вы знаете?

9. Назовите методы статистического анализа в хронобиологии.

10. В чём принципиальное отличие косинор-анализа?

Под биологическими ритмами здоровья понимается цикличность происходящих в организме процессов. На внутренние ритмы человека влияют внешние факторы:

  • природные (излучения Луны, Земли и Солнца);
  • социальные (смены на предприятии).

Изучением биоритмов занимаются биоритмологи или хронобиологи. Они считаются, что биоритмы это периодические процессы, которые происходят в живой материи. Эти процессы могут охватывать абсолютно разные временные промежутки: от пары секунд до десятков лет. Изменение биологических ритмов может быть вызвано различными процессами. Они могут быть и внешними (приливы и отливы), и внутренними (работа сердца).

Классификация биоритмов

Основным критерием для разделения ритмов по группам является их продолжительность. Хронибиологи выделят три типа биологических ритмов человека. Самые длительные называются низкочастотными. Амплитуда таких колебаний в работе организма определяется лунными, сезонными, месячными или недельными промежутками. В качестве примеров процессов, подчиняющихся низкочастотным ритмам, можно выделать работу эндокринной и половой системы.

Ко второй группе относятся среднечастотные ритмы. Они ограничены временным промежутком от 30 минут до 6 дней. По законам таких колебаний работает обменный процесс и процесс деления клеток в организме. Периоды сна и бодрствования также подчиняются этим биоритмам.

Ритмы с высокой частоты длятся менее 30 минут. Они определяются работу кишечника, сердечной мышцы, легких и скорость биохимических реакций.

Кроме названных выше типов, есть еще фиксированные биоритмы. Под ними понимаются ритмы, длительность которых всегда равна 90 минутам. Это, например, эмоциональные колебания, смена фаз сна, периоды концентрации и обостренного внимания.

Особый интерес вызывает тот факт, что биологические циклы могут передаваться по наследству и обуславливаются генетически. Экология также оказывает на них влияние.

Виды биологических ритмов

С рождения человеческий организм подчиняется влиянию трех ритмов:

  • интеллектуального,
  • эмоционального,
  • физического.

Интеллектуальный биологический ритм человека определяет его умственные способности. Кроме этого, он отвечает за осторожность и рациональность действий в поведении. Сильнее всего прочувствовать влияние этого биоритма могут представители интеллектуальных профессий: преподаватели, ученые, профессора и финансисты. От интеллектуальных биоциклов зависит способность к концентрации и восприятию информации.

За настроение человека отвечает эмоциональный биоритм. Он влияет на восприятие и чувствительность, а также может преображать спектр ощущений человека. Именно из-за этого ритма люди склонны к смене настроения в течение дня. Он отвечает за творческое начало, интуицию и способность к сопереживанию. Женщины и люди с художественным складом более подвержены воздействию этого цикла. Эмоциональное состояние, вызванное колебаниями данного ритма, влияет на семейные отношение, любовь, секс.

Физический биоритм напрямую связан с работой организма человека. Он определяет внутреннюю энергию, выносливость, скорость реакции и метаболизма. Достигая своего пика, данный биологический ритм увеличивает способность организма к восстановлению. Особенную важность это представляет для спортсменов и людей, чья деятельность связана с физической активностью.


Смена биоритмов в течение дня

Самые заметные изменения биологических ритмов наблюдаются в течении полного дня. Они определяют благоприятные часы для работы, сна, отдыха, усваивания новой информации, приема пищи и занятий спортом. Так, например, период с 7 до 8 утра является самым удачным для завтрака, а время с 16 до 18 часов наиболее подходит для интеллектуальной работы.

Суточные биоритмы человека легко и быстро подстраиваются под часовые пояса. Процесс работы организма человека напоминает внутренние часы. И, как в случае перехода на зимнее время, при смене пояса организм сам «переводит стрелки» в нужном ему направлении.

Показатели биологических ритмов могут несколько колебаться в пользу индивидуальных особенностей человеческого организма. К тому же, существуют несколько хронотипов, которые обладают отличными суточными биоритмами.

Хронотипы человека

По характеру суточной активности выделяют три типа людей:

  • совы,
  • жаворонки,
  • голуби.

Примечательным является то, что лишь небольшой процент людей являются полностью хронотипичными. Подавляющее большинство представляют переходные формы между «совами» и «голубями» и «голубями» и «жаворонками».

«Люди-совы» обычно ложатся спать после полуночи, встают поздно и наиболее активно в вечернее и ночное время. Поведение «жаворонков» противоположно: они рано встают, раньше ложатся спать и более активны в начале дня.

С «голубями» все обстоит интереснее. Они встают позже, чем «жаворонки», но и спать идут ближе к полуночи. Их активность в течение дня более равномерно распределена. Принято считать, что «голуби» являются лишь адаптированной формой. То есть люди, которые живут с таким биологическим ритмом просто подстраиваются под график работы или учебы, в то время как два других хронотипа обладают своими особенностями с рождения.

Резкая смена распорядка дня может вызвать ухудшение самочувствия, неконтролируемые перепады настроения. Бороться с таким состоянием будет крайне сложно, а восстановить нормальный ритм функционирования организма трудно. Поэтому четкий режим дня - это не роскошь, а способ всегда быть в хорошем расположении духа.

Биологические ритмы внутренних органов человека

Особое значения для человека и его здоровья имеют не только биологические ритмы организма, но и отдельных частей. Каждый орган является самостоятельной единицей и работает в своем ритме, который также меняется в течение дня.

Время с 1 до 3 ночи считается периодом печени. С 7 до 9 утра лучше всего работает желудок. Именно поэтому завтра называют самым важным приемом пищи. С 11 до 13 часов дня самое благоприятное время для сердечной мышцы, поэтому тренировки, проводимые в это время, дают больший результат. С 15 до 17 часов активнее всего работает мочевой. Некоторые люди отмечают, что они испытывают более сильные и частые позывы в туалет в этот промежуток времени. Время почек начинается в 5 часов вечера и заканчивается в 7.

Сбить работу своих внутренних органов можно неправильным питанием, несоблюдением режима сна, чрезмерными физическими и психологическими нагрузками.

Способы расчета биоритмов

Если человек знает, как работает его организм, он может с большей эффективностью планировать свою трудовую, учебную и другие виды деятельности. Определить биоритмы здоровья достаточно просто. Результат будет верен для всех хронобиологических типов.

Для расчета точных биологически циклов организма нужно количество дней в году умножить на возраст, за исключением високосных годов. Затем количество високосных лет умножить на 366 дней. Оба получившихся показателя складываются. После этого нужно разделить получившееся число на 23, 28 или 33, в зависимости от того, какой ритм нужно рассчитать.

Как известно, каждое колебание биологического ритма проходит три стадии: фазу низкой энергии, фазу высокой энергии и критические дни. Если нужно узнать физическое состояние, то оно определяется 23-дневным циклом. Первые 11 дней будут днями хорошего самочувствия, большей устойчивости к стрессам, полового влечения. С 12 по 23 дней проявляется повышенная утомляемость, слабость, плохой сон. В этот период нужно больше отдыхать. Дни под номерами 11, 12 и 23 можно считать критическими.

Цикл в 28 дней определяет эмоциональные показатели. В первые 14 дней энергия будет высокой. Это благоприятное время для дружбы, любви и отношений. Человека будут переполнять эмоции, все творческие способности обострятся. Период с 14 по 28 станет временем упадка эмоциональных сил, пассивности, сниженной работоспособности. Критических дней в цикле всего два: 14 и 28. Они характеризуются возникновением конфликтов и снижением иммунитета.

Интеллектуальный цикл длится 33 дня. В первые 16 дней наблюдается способность мыслить ясно и четко, повышенная концентрация, хорошая память и общая умственная активность. В оставшиеся дни цикла реакции замедленны, наступает творческий спад и снижение интереса ко всему. В три критических дня цикла (16, 17, 33) становится крайне трудно сконцентрироваться, появляются ошибки в работе, рассеянность, возраст риск аварий и других происшествий из-за невнимательности.

Для более быстрого расчета можно воспользоваться калькулятором биоритмов человека. В Интернете можно найти много разных ресурсов, где помимо самих приложений для расчета, можно ознакомиться с отзывами реальных людей о них.

Знание биологических ритмов организма может помочь человеку в достижении его целей, гармонизации межличностных отношений и жизни в целом. Также это благоприятно скажется на физиологии и эмоциональном состоянии.

Огромное количество домыслов существует вокруг биоритмов. В этой статье мы поговорим о биологических ритмах с научной точки зрения, узнаем о том, что они собой представляют, какова их природа и роль в нашей жизни.

Ритмом называется повторение какого-либо события в биологической системе через более-менее регулярные промежутки времени. Исследованиями биоритмов занимается биоритмология, или хронобиология. Эта наука изучает периодические процессы, происходящие на всех уровнях организации живой материи: от отдельной клеточки нашего организма и до общества в целом. Миллиарды лет живые организмы приспосабливались к условиям существования, изменяя временную организацию работы систем своих органов. Это позволяло им лучше адаптироваться к переменчивым условиям существования, выжить и жить.

Единство в разнообразии

Биоритмы можно разделить на несколько групп:

  1. по временной характеристике ритма - через какие периоды происходят те или иные изменения;
  2. по тому, где данный ритм наблюдается - в клетке, органе или всем организме;
  3. по функции ритма.

Биологические ритмы могут охватывать очень большой спектр временных периодов - от доли секунды до десятков лет. Периодические изменения в организме могут быть вызваны как чисто внешними причинами (например, хорошо известное медикам сезонное обострение хронических заболеваний), так и внутренними процессами (ритм сердца). Первый тип биоритмов называется экзогенным (внешним), второй - эндогенным (внутренним).

Как правило, биоритмы могут чрезвычайно отличаться по продолжительности своего периода, как у разных людей, так и у животных. Однако есть четыре главных ритма, периоды которых практически не меняются. Они связаны с процессами, происходящими в природе: приливами, сменой дня и ночи, фазами Луны, временами года. Они сохраняют свою периодичность, даже если поместить организм вне действия периодических факторов. Так, учеными проводились опыты по изучению суточного ритма у человека. Группа добровольцев спускалась в глубокую пещеру для того, чтобы люди не могли никак ощущать смену дня и ночи, происходящую на поверхности. Добровольцы, обеспеченные всем необходимым, должны были прожить в таких условиях около недели.

В результате выяснилось, что у людей сохранялась периодичность сна и бодрствования. Только этот ритм активности имел период не 24 часа, как в обычных сутках, а 25 часов.

Ритмы, связанные со сменой дня и ночи, называются циркадианными, или околодневными (circa - в переводе с латыни «около», dies - «день»). Остальные ритмы были названы окололунными, околоприливными и окологодовыми.

Поскольку суточные ритмы играют в нашей жизни основную роль, то все остальные ритмы были разделены по отношению к ним на ультрадианные и инфрадианные, то есть на ритмы с периодом меньше и больше 24 часов соответственно.

К ультрадианным ритмам, например, относятся ритмы двигательной активности и работоспособности человека. Так. работоспособность (т.е. эффективность выполнения какой-нибудь работы, решения поставленной задачи), определяемая простыми тестами вроде запоминания бессвязных слогов, сильно зависит от времени суток. Это происходит потому, что в разные периоды функциональное состояние нервной системы неодинаково: периоды «заторможенности» сменяются активностью, повышением восприимчивости, увеличением скорости нервных процессов - голова ясная, мысли четкие и определенные, любая робота так и кипит.

С ритмами активности нервной системы связаны колебания двигательной активности. В разное время суток (при исследованиях влияние сна и усталости исключалось) количество выполненных человеком движений будет разниться. Понаблюдав за собой, можно обнаружить у себя чередование периодов активности и апатии.

К инфрадианным ритмам относится выявленная трехнедельная периодичность в эндокринной системе человека. Доказано существование 21-дневного ритма динамики выработки гормонов стресса и половой активности: тестостерона, кортикостероидов, адреналина (с соответствующими изменениями в управляемых данными гормонами функциях - выявлено периодическое повышение сексуальной активности у большинства здоровых людей через 3 и 7 дней).

Из инфрадианных ритмов человека, пожалуй, наиболее исследованным является циклическое функционирование женского организма, продолжительность периода которого приблизительно равна лунному месяцу (28 дней). Во время менструального цикла в женском организме происходит комплекс ритмических изменений: температуры тела, содержания сахара в крови, массы тела, прочих физиологических показателей. Все биоритмы являются тесно связанными между собой и постоянно взаимодействуют, влияя друг на друга. Например, медикам хорошо известна модуляция сердечных сокращений дыханием: после быстрого бега несколько медленных вдохов и выдохов быстро нормализуют частоту сердечных сокращений. Часовые ритмы меняются под воздействием суточных, а суточные - под влиянием годовых.

Зачем нужны «биологические часы»?

Функции биоритмов необычайно разнообразны и очень важны для работы организма. Передача информации в некоторых нервных клетках зависит от изменения - частоты их импульсов; правильная работа нашего сердца обеспечивается ритмоводителями (пейсмейкерами), околодневные, окололунные, околоприливные и окологодовые ритмы служат для максимальной адаптации организма к периодическим изменениям окружающей среды, для согласования процессов, происходящих в организме, с процессами окружающего мира.

Повторяя в своих биоритмах природные циклы, человек получает инструмент для измерения времени - так называемые биологические часы. Наша природа удивительно ритмична, удивительно повторяема. Эта повторяемость, предсказуемость явлений делает возможной саму жизнь, которая усваивает в себе эту природную ритмичность. Биологические же часы отсчитывают не только абсолютное время - часы и дни, но и саму продолжительность нашей жизни.

У новорожденного сон и бодрствование чередуются каждые 3-4 часа. Все биоритмы младенца имеют такую же периодичность. Потом происходит постепенная настройка на период в 24 часа, а с ней - и определение типа личности («сова»/«жаворонок»).

Наши биологические ритмы наиболее стабильны в период с 20 до 50 лет. Потом начинают происходить изменения («совы» становятся похожи на «жаворонков» и наоборот), ритмы меняют свою периодичность, часто происходят сбои, человеку становится все труднее перенастраиваться под влиянием внешних факторов. Чем «исправнее» будут идти наши часы, тем выше наши шансы на долголетие.

Режим дня - не роскошь

Известно, что на ритмику работоспособности человека влияют такие факторы, как мотивация, рабочая обстановка и особенности психики. Исходя из вышесказанного можно дать некоторые рекомендации.

Важно понаблюдать за собой: когда вам лучше всего удается творческая работа, а когда - сугубо механическая, и соответственно спланировать свой рабочий день, выделив то время, когда вы выполняете основную массу заданий. Конечно, далеко не всегда мы выбираем работу по своему желанию, не всякая работа соответствует нашим ритмам на 100%. Однако не стоит усугублять этот дисбаланс собственной неорганизованностью. Вот для чего необходим хотя бы примерный распорядок дня. Ритмы человеческого организма могут подстроиться под внешние воздействия - важно только, чтобы они также обладали определенной периодичностью.

Сколько нужно спать?

Минимум сна для взрослого человека составляет 4,5 часа в сутки. Длительное уменьшение времени сна приводит к значительному сокращению работоспособности. Также ученые показали, что длительное ограничение сна удлиняет время неограниченного сна - вспомним, как мы отсыпаемся по 11 часов после тяжелой трудовой недели.

Однако важно заметить, что потребность людей во сне сугубо индивидуальна. Например, Уинстону Черчиллю хватало 4 часов сна в сутки и небольшого сна урывками днем, а Альберт Эйнштейн любил поспать - до 10 часов ежесуточно. Также следует помнить, что продолжительность сна должна быть больше при напряженной работе, особенно умственной, при нервных перенапряжениях, к которым можно отнести и беременность. Соблюдение режима бодрствования и сна задает нормальную основу для остальных биологических ритмов.

Биоритмы в медицине

Биологические ритмы имеют большое значение в медицине, особенно при диагностике и терапии различных заболеваний, поскольку реакция организма на любое воздействие зависит от фазы околосуточного ритма. Так, при введении мышам токсина кишечной палочки в конце фазы покоя(когдавсепоказателижизнедеятельности снижены) смертность составляла 80%, а если инъекция проводилась в середине фазы активности (при повышенных показателях), то смертность была менее 20%.

Для человека четко установлена зависимость действия лекарств от околосуточного биоритма. Например, эффект обезболивания зуба сильнее всего проявляется в период от 12 до 18 часов дня. Да и порог болевой чувствительности в это время в полтора раза выше, чем ночью, а онемение в результате наркоза длится в несколько раз дольше. Вот почему вполне разумно посещать стоматолога не рано утром, а в послеобеденное время. Можно предположить, что и родовая боль тоже имеет разный порог в зависимости от времени суток. Но данные явления пока не исследованы учеными.

Изучение ритмов чувствительности человеческого организма к лекарствам положило начало развитию хронофармакологии. Основываясь на знании суточных биоритмов, можно разрабатывать более эффективные режимы приема лекарственных средств. Так, например, ритмы колебаний артериального давления у каждого индивидуальны, а эффект понижающих давление препаратов также зависит от времени суток. Зная эти параметры, можно осуществлять более целесообразный подбор лекарств при лечении гипертонии, ишемической болезни сердца.

Для предотвращения гипертонического криза предрасположенным к этому людям лекарства нужно принимать вечером (именно в это время человек наиболее уязвим).

При бронхиальной астме лекарственные препараты лучше употреблять незадолго до полуночи; при язвенной болезни - утром и вечером. Циркадианные (околосуточные) ритмы необходимо учитывать и при диагностике, особенно когда используются количественные показатели, например температура тела, которые также подвержены колебаниям в течение суток. Необходимо, чтобы измерения таких показателей производились в одной и той же циркадианной фазе.

Кроме того что биоритмы нашего организма влияют на терапевтический эффект лекарств, нарушения сложной ритмики могут становиться причинами различных заболеваний (динамические болезни). Для коррекции биоритмов используют вещества, способные влиять на различные фазы биологических ритмов (хронобиотики). Лекарственные растения левзея и дягиль, кофе и чай, элеутерококк, хвойные экстракты - это дневные хронобиотики, которые действуют на дневные биоритмы; валериана, душица, хмель, мята перечная, корень пиона - ночные хронобиотики.

О «совах» и «жаворонках»

А теперь рассмотрим ритмы работоспособности. Несомненно, вопрос о том, как изменяется наша работоспособность в зависимости от времени суток, очень важен. История изучения этой проблемы насчитывает более ста с лишним лет, но до сих пор многое остается невыясненным, а выводы зачастую не позволяют дать конкретные рекомендации. Что же известно на сегодня? Достоверно установлено, что работоспособность действительно сильно зависит от времени суток. Эта зависимость может быть очень разной. Так, в одних случаях отмечают утренний пик повышеннойработоспособности и послеполуденный ее спад. С другой стороны, Бехтерев полагал, что утром все психические процессы человека замедлены, а вечером - ускорены. И исследованиях с применением теста на быструю обработку информации также был обнаружен пик работоспособности в районе 21 часа. Изучение работоспособности школьников, которым предлагалось выполнить простые арифметические вычисления, выявило два максимума активности: утренний (около 11 часов утра) и вечерний (во второй половине дня). Небольшой спад наблюдался около 12 часов утра и в послеобеденное время. Также доказано, что максимумы и минимумы работоспособности также зависят от вида работы: чисто механическое выполнение каких-то заданий или же труд,требующий интеллектуального напряжения. Хотя кратковременное запоминание лучше всего происходит утром, долговременная память наилучшим способом функционировала, когда материал для запоминания ученикам предъявлялся во второй половине дня. Так что лучше всего усваивается информация, которая была запоминаема вечером, в спокойной обстановке.

Приведенные выше данные, однако, никоим образом не могут свидетельствовать о пользе ночных бдений - к примеру, характерных для студентов перед сессией. Запомненная таким образом информация весьма скоро испарится из памяти. А попытки за неделю выучить полугодичный материал приведут к изменению ритмов работоспособности.

После такой встряски довольно трудно войти в колею. Ведь человеку необходим здоровый сои продолжительностью не менее 7 часов в сутки. Впрочем, иногда это может привести к появлению нового своеобразного ритма - чередования «авралов» и «расслаблений».

Большинство ритмов работоспособности можно разделить на три класса:

1) непрерывное возрастание работоспособности на протяжении большей части дня;

2) утренний подъем, после которого наступает спад;

3) утренний максимум работоспособности, в обед - понижение и еще один пик во второй половине дня. Как правило, для типичных «сов» и «жаворонков» характерны 1 и 2 классы ритмов работоспособности, большинство же имеет два максимума работоспособности.

Зачатия по... сезонам

Также не подлежит сомнению наличие у человека окологодовых ритмов. Наиболее любопытны данные о зачатиях. Цифры свидетельствуют о том, что максимум зачатий приходится на конец мая - июль, однако с течением времени годовые колебания становятся все менее выражены. Происходитэто из-за развития цивилизации, улучшения условий проживания. В большинстве люди становятся менее зависимы от погоды, от годовых колебаний температуры. Так, ученые полагают, что максимум зачатий приходится на конец мая именно потому, что к этому времени температура достигает отметки + 18 °С, которая считается «оптимальной» для зачатия (по мнению исследователей).

Но с появлением центрального отопления и возможности круглый год получать свежие овощи и фрукты, с созданием разнообразных витаминных добавок и прочих облегчающих нашу жизнь вещей зависимость человека от внешних условий уменьшается. Мы становимся свидетелями того, как развитие материальной культуры устраняет ритмообразуюшее влияние природных факторов. Ведь помимо температуры, годовые ритмы задаются и продолжительностью светового дня, и составом солнечного света. А с появлением ламп дневного света, ИФ-ламп мы можем получать недостающие нам лучики света и тепла. Однако полностью устранить влияние природных факторов на нашу жизнедеятельность мы не можем, чему подтверждение - сезонные колебания настроения (сезонные депрессии).

Сон и биоритмы

Еще одним важным показателем деятельности человеческого организма является наш сон. Что же такое сон с точки зрения науки, какова его связь с биоритмами?

В первую очередь необходимо отметить, что сон - это не пассивное состояние, возникающее вследствие прекращения бодрствования, а активный процесс работы определенных структур мозга. Во время сна происходят уменьшение частоты дыхательных движений, частота пульса уменьшается, замедляется обмен веществ, понижается температура тела. Вот эта ритмичность колебания физиологических показателей весьма важна для правильного функционирования нашего организма, она определяет наше здоровье.

Выделяют две фазы сна - медленный и быстрый (парадоксальный). Для фазы быстрого сна характерны быстрые движения глаз (25 раз в минуту) и деятельность мозга, как в состоянии дремы. В первой половине ночи преобладает глубокий, медленный сон с короткими эпизодами быстрого, а во второй половине ночи - поверхностный сон со значительными периодами (20-30 минут) быстрого сна. За ночь может происходить до 5 циклов смены фаз сна. В первой половине ночи у человека доминирует медленный глубокий сон. во второй половине - поверхностный сон со значительными периодами быстрого сна.

Именно во время фазы быстрого сна и могут возникать сновидения. В это время возрастает активность участков мозга, отвечающих за восприятие зрительных образов: человек ничего не видит глазами, это лишь память мозга, его внутренние образы. Ученые полагают, что сновидения - физиологически полезный процесс, поддерживающий функциональное состояние нервной системы, очищающий память от ненужного. Частота сновидений может возрастать во время болезней, сложных жизненных ситуаций, связанных с повышенным нервным напряжением. Знаменитый физиолог Сеченов называл сон «небывалыми комбинациями бывалых впечатлений». Активная работа мозга ночью не останавливается, она лишь переносится из области сознательного в подсознание, которое и комбинирует по-своему события прожитого дня. Поэтому утром мы иногда находим удачные решения проблем, тревоживших нас накануне. Существует гипотеза о том, что мы видим сны каждую ночь, а помним - лишь малую часть.

Чередование периодов сна и бодрствования является одним из важнейших ритмов человека, оно в значительной мере определяет наше состояние здоровья. Так, именно во время сна, в первые его часы, происходит выброс в кровь гормона роста. В состоянии же бодрствования его уровень обычно низок. Выделение этого гормона также происходит в период послеобеденного сна. Вот почему так важно соблюдать режим дня детям, недаром ведь говорят, что маленькие дети во сне растут.

Напоследок снова хочу акцентировать внимание читателей, в особенности будущих мам, на двух важных принципах - это самонаблюдение и режим дня. Помните, что все кривые активности и трудоспособности, построенные учеными, являются усредненными, обобщенными при наблюдениях больших групп добровольцев. Только путем самонаблюдения вы можете определить свои собственные ритмы, индивидуальные колебания настроения и активности и постараться максимально приспособить свой распорядок дня к этим ритмам. Люди могут работать даже в ночную смену - их ритмы перестраиваются, однако и здесь прежде всего важна регулярность и периодичность.

Только в этом случае организм, его клетки и ткани могут приспособиться к определенному распорядку, а внутренние часы - выполнять свою роль: отсчитывать время отведенной нам полноценной и здоровой жизни.