Электромагнитные поля и излучения. Источники электромагнитных полей. Электромагнитное излучение — воздействие на человека, защита

Источники электромагнитных полей. Электромагнитные поля в среде обитания человека создаются природными и искусственны­ми источниками. Природными источниками являются солнечные и космические излучения, магнитные свойства Земли, грозовые разряды и другие.

Антропогенные источники электромагнитных полей делятся на две группы:

1-я группа - источники, генерирующие статические электри­ческие и магнитные поля, а также крайне низкие и сверхнизкие частоты, к которым относятся все средства выработки, передачи и распределения электроэнергии - электростанции, оборудование и электротехнические устройства передачи, распределения и использования электроэнергии (в том числе линии электропередач постоянного и переменного тока промышленной частоты - 50 Гц).

2-я группа - источники, генерирующие электромагнитные поля в радиочастотном диапазоне, в том числе и микроволновом - от 300 МГц до 300 ГГц (радио- и телевизионные передатчики, ра­диолокационные станции, телекоммуникационное оборудование и связанные с ними устройства, такие как мобильные телефоны, станции радиорелейной связи и спутниковой связи, системы локации и навигации, телевизоры, компьютеры и другое оборудо­вание).

С эколого-медицинских позиций, электромагнитные поля мож­но разделить на четыре основных вида - электростатические, постоянные магнитные, промышленной частоты и радиочастот­ного диапазона. Проблема воздействия на здоровье электростати­ческих полей затрагивает преимущественно работающий персо­нал, но и в современном жилище, отделанном синтетическими материалами, оснащенном телевизорами и персональными ком­пьютерами, возможно повышение уровня напряженности элек­тромагнитного поля.

Проблема воздействия постоянных электромагнитных полей актуальна для работников установок ядерно-магнитного резонан­са, магнитных сепараторов и другого оборудования, в котором использованы постоянные магниты.

Наиболее существенными источниками электромагнитных по­лей являются широко распространенные радио-, телевизионные и радиолокационные станции и высоковольтные линии электро­передач. Эксплуатация этих объектов сопровождается поступле­нием в окружающую среду электромагнитных излучений в широ­ком диапазоне частот - от 50 Гц до 300 ГГц. В городах России постоянно увеличивается число передатчиков на башнях телецент­ров, находящихся в черте жилой застройки в крупных городах. Кроме того, появляются независимые станции радио- и телеве­щания, причем в ряде случаев уровень напряженности электро­магнитных полей вокруг них не отвечает санитарно-гигиениче­ским требованиям. Это может существенно осложнить электро­магнитную обстановку в прилегающих жилых районах. В после­дние годы широкое распространение получили такие источники электромагнитных полей, как видеодисплейные терминалы и ра­диотелефоны, системы мобильной связи.


Гигиеническое нормирование. Частота электромагнитного поля выражается в герцах (Гц). Основными количественными характе­ристиками электромагнитного поля в диапазоне от долей Гц до 300 мГц являются электрическая напряженностьЕ (В/м) и маг­нитная напряженность #(А/м). В диапазоне частот от 300 МГц до 300 ГГц интенсивность электромагнитного излучения оценивают плотностью потока энергии, единицей измерения которой явля­ется Вт/м 2 . В случае низких и крайне низких частот используют также размерность в теслах (Тл), одна миллионная часть которой соответствует 1,25 А/м.

Гигиенические регламенты на электромагнитные поля были установлены на основании:

Обнаружения, измерения (мониторинга) и установления ос­новных закономерностей их изменения в пространстве и времени в сочетании с другими факторами окружающей среды;установления характера и степени их биологического дей­ствия в экспериментах на животных и в ходе наблюдения за людьми;

Нормирования электромагнитных полей различных частот, т.е, научного обоснования допустимых уровней их выраженности н окружающей среде» нормализации, т.е. разработки и внедрения технических, тех­нологических, планировочных и иных мероприятий по ограниче­нию электромагнитного облучения людей;

Прогнозирования электромагнитной обстановки на перспек­тиву.

Длительное изучение биологических эффектов воздействия электромагнитных полей на здоровье населения СССР привело к созданию первых в мире санитарных норм и правил размещения радио-, телевизионных и радиолокационных станций. В дальней­шем эти нормы были усовершенствованы, и в настоящее время основным нормативным документом РФ, регламентирующим до­пустимые уровни воздействия электромагнитных полей, являются Санитарные нормы и правила СанПиН 2.2.4/2.1.8.055 - 96 «Элек­тромагнитные излучения радиочастотного диапазона (ЭМП РЧ)». В этом документе ПДУ напряженности электрического поля нор­мируются в зависимости от диапазона частот. ПДУ напряженнос­ти магнитных полей для населения пока не установлены.

В целях защиты населения от воздействия электромагнитных полей вокруг линий электропередач устанавливают специальные охранные зоны, в которых запрещается размещать жилые здания, стоянки и остановки всех видов транспорта, устраивать места от­дыха, спортивные и игровые площадки. Вокруг радиолокацион­ных станций, антенных полей, мощных радиопередатчиков со­здают защитные зоны, размеры и конфигурация которых опреде­ляются параметрами оборудования и рельефом местности.

Препятствиями на пути совершенствования гигиенических нор­мативов, как считает Г.А.Суворов с соавт. (1998), являются недо­статочная изученность биологических эффектов, вызываемых элек­тромагнитным фактором, зависимость их от физических парамет­ров облучения, отсутствие данных о первичных механизмах взаи­модействия электромагнитных полей различных частотных диапа­зонов с тканями организма и о поглощении и распределении энер­гии в биосредах.

В местах размещения передающих радиостанций, телецентров, ретрансляторов и радиолокаторов интенсивность электромагнит­ных полей в зависимости от мощности радиопередающего объек­та и расстояния до антенны в диапазоне коротких волн (КВ) ко­леблется в пределах от 0,5 до 75 В/м, в диапазоне ультракоротких волн (УКВ) - от 0,1 до 8 В/м, а в диапазоне сверхвысоких частот (СВЧ) - от 0,5 до 50 мкВт/см 2 . На распространение электромаг­нитных волн существенное влияние оказывают характер рельефа,

покров поверхности земли, размещение на ней крупных объектов. В местах установки передающих КВ радиостанций на расстоянии 20-800 м от антенны напряженность поля колеблется в пределах 0,1-70,0 В/м, а вблизи средневолновых (СВ) радиостанций - от 5 до 40 В/м ->на расстоянии 100- 1000 м. В определенных услови­ях электрическая напряженность даже на удалений нескольких ки­лометров может достигать десятков В/м. В зависимости от режима работы того или иного радиотехнического объекта длительность воздействия электромагнитного поля на население может состав­лять 12 - 20 ч/сут и более.

Напряженность электромагнитного поля внутри помещения зависит также от ориентации соответствующего здания по отноше­нию к источнику излучения, материала строительных конструк­ций и т.д. Так, в кирпичном доме напряженность в 5 раз ниже, чем на открытом пространстве, а в доме из железобетонных панелей - ь 20 раз. Наибольшая напряженность поля в УКВ (телевизионном) диапазоне (0,2 - 6,0 В/м) наблюдается в радиусе 100-1500 м от передающих антенных систем, причем максимум отмечается на расстоянии 300 м.

Наряду с радиотехническими объектами значимыми источни­ками электромагнитных полей являются высоковольтные воздуш­ные линии электропередач, излучающие электромагнитные вол­ны низкой (промышленной) частоты - 50 Гц. Фактическая на­пряженность электрического поля под линиями электропередач может колебаться в широких пределах, достигая в некоторых случаях 10- 14 кВ/м. Заземленные металлические опоры дают вы­раженный экранирующий эффект, в связи с чем в непосредствен­ной близости от них напряженность поля снижается в 3 - 5 раз. Зона распространения электромагнитных полей от линий электропередач не превышает нескольких десятков метров, однако при большой протяженности линий вдоль них у поверхности земли создаются огромные площади с высокой напряженностью поля.

Нормативом, регламентирующим уровень напряженности элек­тростатического поля для населения, является «Санитарно-гиги­енический контроль полимерных строительных материалов, пред­назначенных для применения в строительстве жилых и обществен­ных зданий» № 2158-80, согласно которому предельно допусти­мая частота электростатических полей составляет 15 кВ/м. Анало­гичные уровни напряженности электростатических полей установ­лены стандартами США и западноевропейских стран.

Влияние на здоровье населения. Действие электромагнитных полей проявляется многообразно и характер его определяется ча­стотой поля. Почти каждый человек в мире подвергается влиянию электромагнитных полей различной частоты в диапазоне от 0 до 300 ГГц. Электромагнитные поля являются факторами риска раз­вития сердечно-сосудистых, нервно-психических, онкологических и некоторых других заболеваний. Экспериментальные исследова­ния по определению воздействия электромагнитных полей промышленной частоты позволили выявить широкий спектр нарушений здоровья у животных. Более 20 лет тому назад было установлено их влияние на поведение, память, функции гемато-энцефалического барьера, условно-рефлекторную и иные виды деятельности животных. Их воздействие сказывалось на развитии эмбрионов животных, при этомфиксировалось учащение пороков развития. Исследовали также и канцерогенное действие полей.

Влияние электромагнитных полей промышленной частоты генерируемых вблизи линий электропередач, подстанций, трансформаторов, под контактной сетью железных дорог, на здоровье людей пока изучено недостаточно. Согласно некоторым существующим гипотезам они являются факторами риска развития злокачественных новообразованийболезней Альцгеймера и Паркинсона, нарушений памяти и других изменений, однако результаты эпидемиологических исследований неоднозначны.

В России эпидемиологические исследования поопенке влияния электромагнитных полей на здоровье населения единичны. Ретроспективный когортый метод, суть которого заключается длительном прослеживании а когортой лиц, проживающих вблизи I энергетических объектов, ! выявил статистически достоверного повышения стандартизованного относительного риска.

Пребывание в зоне влияния электромагнитных полей может вызвать определенные изменения состояния здоровья детей. В зависимости от времени пребывания в зоне излучения у них наблюдались отклонения в массе росте и окружности грудной клетки. Развитие костной систем вначале несколько задерживалось, а затем за счет ускорения процессов окостенения даже опережало соответствующие пронесет у детей контрольной группы. Сроки полового созревания оказались меньше, чем в контрольной группе, несколько понижении было и содержание гормона роста. Были выявлены тенденции угнетению кислотообразующей функции желудка, снижению функции коры надпочечников. По мнению М.В.Захарченко, В.1шкитиной и В.Лютого (1998) обнаруженные отклонения нельзя рассматривать только как проявление адаптивных реакций, они могут быть свидетельством достаточно глубоких изменений в организме под влиянием полей СВЧ.

Электромагнитные поля промышленной частоты могут оказы­вать определенное влияние развитие новообразований молочной железы, нейродегеративных болезней и нервно-психических расстройств.

Электромагнитные поля сотовой связи. В последние годы в России интенсивно развиваются системы сотовой телефонной радиосвязи, и более 1 млн. чел. пользуются ею. Электромагнитные поля, создаваемые средствами мобильной связи, представляютопределенную опасность для здоровья человека, так как источник излучения приближен к голове пользователя. При работе со­тового телефона головной мозг и периферические рецепторные юны вестибулярного и слухового анализаторов, а также сетчатка лаза подвергаются воздействию электромагнитных полей опре­деленной частоты и Модуляции при разлитом глубинном рас­пределении и величине поглощенной энергии с неопределенной периодичностью и общей длительностью воздействия. Количество поглощенной мозгом энергии при работе сотового телефона мо­жет колебаться в некотором диапазоне в зависимости от мощнос­ти аппаратуры, несущей частоты и других факторов. В различных странах мира с привлечением добровольцевпроводят исследова­ния по определению влияния электромагнитных полей сотовых телефонов на здоровье. Есть результаты, свидетельствующие о на­личии изменений биоэлектрической активности головного моз­га, некотором снижении познавательной деятельности (ухудше­ние памяти, концентрации внимания), нарушении зрения. Ста­тистически достоверные данные о развитии возможных отдален­ных последствий у пользователей сотовых телефонов в настоящее время отсутствуют. МАИР приступило к приведению многоцент­рового исследования по оценке возможного развития рака мозга и слюнной железы, а также лейкемии у пользователей сотового те­лефона в различных странах мира.

Российский национальной комитет по защите от неионизирующихизлучений придерживается предупредительной концепции, зак­лючающейся в ограничении телефонной связи. Детям до 16 лет не рекомендуется пользоваться мобильными телефонами. Беременные женщины и лица, страдающие эпилепсией неврастенией, психо­патией и психастенией, должны ограничивать продолжительность одного разговора до 3 мин.

В процессе эволюции и жизнедеятельности человек испытывает влияние естественного электромагнитного фона, характеристики которого используются как источник информации, обеспечивающий непрерывное взаимодействие с изменяющимися условиями внешней среды.

Однако вследствие научно-технического прогресса электромагнитный фон Земли в настоящее время не только увеличился, но и претерпел качественные изменения. Появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности (например, миллиметровый диапазон длин волн и др.).

Спектральная интенсивность некоторых техногенных источников электромагнитного поля (ЭМП) может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которому привыкли человек и другие живые организмы биосферы.

Источники электромагнитных полей

К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное технологическое оборудование, высоковольтные линии электропередач промышленной частоты, термические цехи, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы и т.п. Следует отметить техногенные источники электромагнитных и других физических полей специального назначения, применяемые в радиоэлектронном противодействии и размещаемые на стационарных и передвижных объектах на земле, воде, под водой, в воздухе.

Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником ЭМП, излучаемых во внешнее пространство. Особенностью облучения в городских условиях является воздействие на население как суммарного электромагнитного фона (интегральный параметр), так и сильных ЭМП от отдельных источников (дифференциальный параметр).

Основными источниками электромагнитных полей (ЭМП) радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки в зонах, примыкающих к предприятиям. Воздействие ЭМП промышленной частоты связано с высоковольтными линиями (ВЛ) электропередач, источниками постоянных магнитных полей, применяемыми на промышленных предприятиях. Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100...150 м. При этом внутри зданий, расположенных в этих зонах, плотность потока энергии, как правило, превышает допустимые значения.

Спектр электромагнитных излучений техносферы

Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электромагнитное поле в вакууме характеризуется векторами напряженности электрического поля Е и индукции магнитного поля В, которые определяют силы, действующие на неподвижные и движущиеся заряды. В системе единиц СИ размерность напряженности электрического поля [Е] = В/м - вольт на метр и размерность индукции магнитного поля [В] = Тл - тесла. Источниками электромагнитных полей являются заряды и токи, т.е. движущиеся заряды. Единица заряда в СИ называется кулон (Кл), а единица тока - ампер (А).

Силы взаимодействия электрического поля с зарядами и токами определяются следующими формулами:

F э = qЕ; F м = , (5.9)

где F э - сила, действующая на заряд со стороны электрического поля, Н; q - величина заряда, Кл; F M - сила, действующая на ток со стороны магнитного поля, Н; j - вектор плотности тока, указывающий направление тока и равный по абсолютной величине А/м 2 .

Прямые скобки во второй формуле (5.9) обозначают векторное произведение векторов j и В и образуют новый вектор, модуль которого равен произведению модулей векторов j и В, умноженному на синус угла между ними, а направление определяется по правилу правого "буравчика", т.е. при вращении вектора j к вектору В по кратчайшему расстоянию вектор . (5.10)

Первое слагаемое соответствует силе со стороны электрического поля напряженностью Е, а второе - магнитной силе в поле с индукцией В.

Электрическая сила действует в направлении напряженности электрического поля, а магнитная сила перпендикулярна как скорости заряда, так и вектору индукции магнитного поля, и ее направление определяется по правилу правого винта.

ЭМП от отдельных источников могут быть классифицированы по нескольким признакам, наиболее общий из которых - частота. Неионизирующие электромагнитные излучения занимают довольно широкий диапазон частот от ультранизкочастотного (УНЧ) интервала в 0...30 Гц до ультрафиолетовой (УФ) области, т.е. до частот 3 · 1015 Гц.

Спектр техногенных электромагнитных излучений простирается от сверхдлинных волн (несколько тысяч метров и более) до коротковолнового γ-излучения (с длиной волны менее 10-12 см).

Известно, что радиоволны, свет, инфракрасное и ультрафиолетовое излучения, рентгеновские лучи и γ-излучение - все это волны одной электромагнитной природы, отличающиеся длиной волны (табл. 5.4).

Поддиапазоны 1...4 относятся к промышленным частотам, поддиапазоны 5...11 - к радиоволнам. К СВЧ-диапазону отнесены волны с частотами 3...30 ГГц. Однако исторически сложилось так, что под СВЧ-диапазоном понимают колебания волны длиной от 1 м до 1 мм.

Таблица 5.4. Шкала электромагнитных волн

Длина вол­ны λ

Поддиапазоны волн

Частота коле­баний v

Диапазон

№ 1...4. Сверхдлинные волны

№ 5. Километровые волны (НЧ - низ­кие частоты)

№ 6. Гектометровые волны (СЧ - сред­ние частоты)

Радиоволны

№ 8. Метровые волны (ОВЧ - очень высокие частоты)

№ 9. Дециметровые волны (УВЧ - ультравысокие частоты)

№ 10. Сантиметровые волны (СВЧ - сверхвысокие частоты)

№ 11. Миллиметровые волны (милли­метровый диапазон)

0,1 мм (100 мкм)

Субмиллиметровые волны

Инфракрасное излучение (ИК-диапазон)

4,3 · 10 14 Гц

Оптический

диапазон

Видимый диапазон

7,5 · 10 14 Гц

Ультрафиолетовое излучение (УФ-диа- пазон)

Рентгеновский диапазон

γ-Излучение

Космические лучи

Под оптическим диапазоном в радиофизике, оптике, квантовой электронике понимается диапазон длин волн примерно от субмиллиметрового до дальнего ультрафиолетового излучений. К видимому диапазону относятся колебания волн длинами от 0,76 до 0,38 мкм.

Видимый диапазон составляет небольшую часть оптического диапазона. Границы переходов УФ-излучения, рентгеновского, γ-излучений точно не фиксированы, но примерно соответствуют указанным в табл. 5.4 значениям λ и v. Гамма-излучение, обладающее значительной проникающей способностью, переходит в излучение очень больших энергий, называемое космическими лучами.

В табл. 5.5 приведены некоторые техногенные источники ЭМП, работающие в различных диапазонах электромагнитного спектра.

Таблица 5.5. Техногенные источники ЭМП

Название

Диапазон частот (длин волн)

Радиотехнические объекты

30 кГц...30 МГц

Радиопередающие станции

30 кГц...300 МГц

Радиолокационные и радионави­гационные станции

СВЧ-диапазон (300 МГц- 300 ГГц)

Телевизионные станции

30 МГц...З ГГц

Плазменные установки

Видимый, ИК-, УФ-диапазоны

Термические установки

Видимый, ИК-диапазон

Высоковольтные линии электро­передач

Промышленные частоты, статическое элек­тричество

Рентгеновские установки

Жесткий УФ-, рентгеновский диапазон, ви­димое свечение

Оптический диапазон

СВЧ-диапазон

Технологические установки

ВЧ-, СВЧ-, ИК-, УФ-, видимый, рентгенов­ский диапазоны

Ядерные реакторы

Рентгеновское иγ-излучение, ИК-, видимое и т. п.

Источники ЭМП специального назначения (наземные, водные, подводные, воздушные), применяе­мые в радиоэлектронном противо­действии

Радиоволны, оптический диапазон, акусти­ческие волны (комби нированность действия)

Что такое ЭМП, его виды и классификация

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны, обозначение - l (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой, обозначение - f.

Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны. В "ближней" зоне, или зоне индукции, на расстоянии от источника r < l ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение. "Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3l . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.

В "дальней" зоне излучения есть связь между Е и Н: Е = 377Н, где 377 - волновое сопротивление вакуума, Ом. Поэтому измеряется, как правило, только Е. В России на частотах выше 300 МГц обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.

Международная классификация электромагнитных волн по частотам

Наименование частотного диапазона

Границы диапазона

Наименование волнового диапазона

Границы диапазона

Крайние низкие, КНЧ

Декамегаметровые

Сверхнизкие, СНЧ

30 – 300 Гц

Мегаметровые

Инфранизкие, ИНЧ

Гектокилометровые

1000 - 100 км

Очень низкие, ОНЧ

Мириаметровые

Низкие частоты, НЧ

30 - 300 кГц

Километровые

Средние, СЧ

Гектометровые

Высокие частоты, ВЧ

Декаметровые

Очень высокие, ОВЧ

30 - 300 МГц

Метровые

Ультравысокие,УВЧ

Дециметровые

Сверхвысокие, СВЧ

Сантиметровые

Крайне высокие, КВЧ

30 - 300 ГГц

Миллиметровые

Гипервысокие, ГВЧ

300 – 3000 ГГц

Децимиллиметровые

2. Основные источники эмп

Среди основных источников ЭМИ можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда,…)

    Линии электропередач (городского освещения, высоковольтные,…)

    Электропроводка (внутри зданий, телекоммуникации,…)

    Бытовые электроприборы

    Теле- и радиостанции (транслирующие антенны)

    Спутниковая и сотовая связь (транслирующие антенны)

  • Персональные компьютеры

2.1 Электротранспорт

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. По данным (Stenzel et al.,1996), максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл. Типичный результат долговременных измерений уровней магнитного поля, генерируемого железнодорожным транспортом на удалении 12 м от полотна, приведен на рисунке.

2.2 Линии электропередач

Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии достигает десятков метров. Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.

Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

Биологическое действие

Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.

У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической. При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

Санитарные нормы

Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.

Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.

На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.

Принципы обеспечения безопасности населения

Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.

Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.

Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84

Напряжение ЛЭП

Размер санитарно-защитной (охранной) зоны

Границы санитарно-защитных зон для ЛЭП в г. Москве

Напряжение ЛЭП

Размер санитарно-защитной зоны

К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.

Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно:

330 кВ - 2 провода, 500 кВ - 3 провода, 750 кВ - 4 провода. Ниже 330 кВ по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ 10 -15 шт., 110 кВ 6-8 шт., 35 кВ 3-5 шт., 10 кВ и ниже - 1 шт.

Допустимые уровни воздействия электрического поля ЛЭП

ПДУ, кВ/м

Условия облучения

внутри жилых зданий

на территории зоны жилой застройки

в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;

на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 – IV категорий;

в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);

в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.

В пределах санитарно-защитной зоны ВЛ запрещается:

    размещать жилые и общественные здания и сооружения;

    устраивать площадки для стоянки и остановки всех видов транспорта;

    размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;

    производить операции с горючим, выполнять ремонт машин и механизмов.

Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.

В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.


Санкт-Петербургский государственный политехнический университет

Кафедра Управления в социально-экономических системах

Курсовая работа

Источники и характеристики электромагнитных полей. Их воздействие на организм человека. Нормирование электромагнитных полей.

Санкт-Петербург

Введение 3

Общая характеристика электромагнитного поля 3

Характеристики электромагнитных полей 3

Источники электромагнитных полей 4

Воздействие электромагнитных полей на организм человека 5

Нормирование электромагнитных полей 5

Нормирование ЭМП для населения 10

Контроль облучения 14

Способы и средства защиты от ЭМ облучений 14

Экранирование 14

Экранирование высокочастотных термических установок 14

Рабочий элемент-индуктор 15

Защита от СВЧ энергии 16

Защита от облучения при настройке и испытаниях СВЧ установок 17

Способы защиты от утечек сквозь отверстия 18

Защита рабочего места и помещений 18

Воздействие лазерного излучения на человека 19

Нормирование лазерного излучения 19

Измерение лазерного излучения 20

Расчёт энергетической освещённости на рабочем месте 20

Меры защиты от лазерного излучения 21

Первая помощь 22

Список источников 23

Введение

В современных условиях научно-технического прогресса в результате развития различных видов энергетики и промышленности электромагнитные излучения занимают одно из ведущих мест по своей экологической и производственной значимости среди других факторов окружающей среды.

Общая характеристика электромагнитного поля

Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязанные переменные электрическое поле и магнитное поле. Взаимная связь электрического и магнитного полей заключается в том, что всякое изменение одного из них приводит к появлению другого: переменное электрическое поле, порождаемое ускоренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран-ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источника и не исчезает с устранением источника (например, радиоволны не исчезают с прекращением тока в излучившей их антенне).

Характеристики электромагнитных полей

Известно, что около проводника, по которому протекает ток, возникают одновременно электрическое и магнитное поля. Если ток не меняется во времени, эти поля не зависят друг от друга. При переменном токе магнитное и электрическое поля связаны между собой, представляя единое электромагнитное поле.

Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Частота электромагнитного поля - это число колебаний поля в секунду. Единицей измерения частоты является герц (Гц) - частота, при которой совершается одно колебание в секунду.

Длина волны - это расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

Поляризация - это явление направленного колебания векторов напряженности электрического поля или напряженности магнитного поля.

Электромагнитное поле обладает определённой энергией и характеризуется электрической и магнитной напряжённостью, что необходимо учитывать при оценке условий труда.

Источники электромагнитных полей

В целом общий электромагнитный фон состоит из источников естественного (электрические и магнитные поля Земли, радиоизлучения Солнца и галактик) и искусственного (антропогенного) происхождения (телевизионные и радиостанции, линии электропередачи, электробытовая техника). Источниками электромагнитных излучений также служат радиотехнические и электронные устройства, индукторы, конденсаторы термических установок, трансформаторы, антенны, фланцевые соединения волноводных трактов, генераторы сверхвысоких частот и др.

Современные геодезические, астрономические, гравиметрические, аэрофотосъёмочные, морские геодезические, инженерно-геодезические, геофизические работы выполняются с использованием приборов, работающих в диапазоне электромагнитных волн, ультравысокой и сверхвысокой частот, подвергая работающих опасности с интенсивностью облучения до 10 мкВт/см 2 .

Воздействие электромагнитных полей на организм человека

Электромагнитные поля человек не видит и не чувствует и именно поэтому не всегда предостерегается от опасного воздействия этих полей. Электромагнитные излучения оказывают вредное воздействие на организм человека. В крови, являющейся электролитом, под влиянием электромагнитных излучений возникают ионные токи, вызывающие нагрев тканей. При определённой интенсивности излучения, называемой тепловым порогом, организм может не справиться с образующимся теплом.

Нагрев особенно опасен для органов со слаборазвитой сосудистой системой с неинтенсивным кровообращением (глаза, мозг, желудок и др.). При облучении глаз в течение нескольких дней возможно помутнение хрусталика, что может вызвать катаракту.

Кроме теплового воздействия электромагнитные излучения оказывают неблагоприятное влияние на нервную систему, вызывают нарушение функций сердечно-сосудистой системы, обмена веществ.

Длительное воздействие электромагнитного поля на человека вызывает повышенную утомляемость, приводит к снижению качества выполнения рабочих операций, сильным болям в области сердца, изменению кровяного давления и пульса.

Оценка опасности воздействия электромагнитного поля на человека производится по величине электромагнитной энергии, поглощённой телом человека.

Нормирование электромагнитных полей

ЭМП любой частоты имеет 3 условные зоны в зависимости от расстояния X до источника:

    Зону индукции (пространство с радиусом Х 2);

    Промежуточную зону (зону дифракции);

    Волновую зону, Х2

Рабочие места вблизи источников ВЧ полей попадают в зону индукции. Для таких источников уровни облучений нормированы величиной напряжённости электрического Е(Вм) и магнитного Н(А/м) полей.

ГОСТом 12.1.006-84 установлены ПДУ на рабочем месте в течении всего рабочего дня:

Е
.,В/м

Работающие с генератором СВЧ попадают в волновую зону. В этих случаях нормируется энергетическая нагрузка на организм человека W (мкВт*ч/см.кв.) W = 200 мкВт*ч/см.кв. – для всех случаев облучения, исключая облучение от врвщающихся и сканирующих антенн – для них W = 2000 мкВт*ч/см.кв. Предельно допустимую плотность потока энергии (ПДУ) σ доп (мкВт/см.кв) вычисляются по формуле σ доп = W / Т, где Т – время работы в часах в течении рабочего дня. Во всех случаях σ доп ≤ 1000 мкВт/см.кв.

Национальные системы стандартов являются основой для реализации принципов электромагнитной безопасности. Как правило, системы стандартов включают в себя нормативы ограничивающие уровни электрических полей (ЭП), магнитных полей (МП) и электромагнитных полей (ЭМП) различных частотных диапазонов путем введения предельно допустимых уровней воздействия (ПДУ) для различных условий облучения и различных контингентов.

В России система стандартов по электромагнитной безопасности складывается из Государственных стандартов (ГОСТ) и Санитарных правил и норм (СанПиН). Это взаимосвязанные документы, являющиеся обязательными для исполнения на всей территории России.

Государственные стандарты по нормированию допустимых уровней воздействия электромагнитных полей входят в группу Системы стандартов безопасности труда - комплекс стандартов, содержащих требования, нормы и правила, направленных на обеспечение безопасности, сохранение здоровья и работоспособности человека в процессе труда. Они являются наиболее общими документами и содержат:

    требования по видам соответствующих опасных и вредных факторов;

    предельно допустимые значения параметров и характеристик;

    общие подходы к методам контроля нормируемых параметров и методы защиты работающих.

Государственные стандарты России в области электромагнитной безопасности приведены в таблице 1.

Таблица 1.

Государственные стандарты РФ в области электромагнитной безопасности

Обозначение

Наименование

ГОСТ 12.1.002-84

Система стандартов безопасности труда. Электрические поля промышленной частоты. Допустимые уровни напряжённости и требования к проведению контроля

ГОСТ 12.1.006-84

Система стандартов безопасности труда. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля

ГОСТ 12.1.045-84

Система стандартов безопасности труда. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля

Санитарные правила и нормы регламентируют гигиенические требования более подробно и в более конкретных ситуациях облучения, а также к отдельным видам продукции. По своей структуре включают те же основные пункты, что и Государственные стандарты, однако излагают их более подробно. Как правило, санитарные нормы сопровождаются Методическими указаниями по проведению контроля электромагнитной обстановки и проведению защитных мероприятий.

В зависимости от отношения подвергающегося воздействию ЭМП человека к источнику излучения в условиях производства в стандартах России различаются два вида воздействия: профессиональное и непрофессиональное. Для условий профессионального воздействия характерно многообразие режимов генерации и вариантов воздействия. В частности, для облучения в ближней зоне обычно характерно сочетание общего и местного облучения. Для непрофессионального облучения типичным является общее облучение. ПДУ для профессионального и непрофессионального воздействия различны.воздействие на организм человека . Знание природы воздействия электромагнитных волн на организм человека , ... через физические характеристики поля излучения в...

  • Радиационное воздействие на здоровье человека

    Реферат >> Экология

    ... воздействия на наше тело. Ионизирующие излучения состоят из частиц (заряженных и незаряженных) и квантов электромагнитной ... воздействия ионизирующих излучений основаны на знании свойств каждого вида излучения, характеристики их ... воздействии на организм человека ...

  • Действие на организм человека электрического тока и первая помощь пострадавшим от него

    Лабораторная работа >>

    ... воздействие на организм человека ... их ... на открытых территориях. Наименьшая освещенность на полу ... источников ; - определить эффективность средств поглощения звука и звукоизоляции; - изучить характеристики ... электромагнитные , возникающие при работе электромагнитных ...

  • Воздействие токсичесиких веществ на организм человека

    Реферат >> Безопасность жизнедеятельности

    ... на здоровье потомства. Раздел I: КЛАССИФИКАЦИЯ ВРЕДНЫХ ВЕЩЕСТВ И ПУТИ ИХ ПОСТУПЛЕНИЯ В ОРГАНИЗМ ЧЕЛОВЕКА ... степени воздействия на организм вредные вещества подразделяются на четыре... характеристик окружающей среды. Следствием действия вредных веществ на организм ...

  • Основные источники электромагнитного поля

    Среди основных источников ЭМП можно перечислить:

    Электротранспорт (трамваи, троллейбусы, поезда, …);

    Линии электропередач (городского освещения, высоковольтные, …);

    Электропроводка (внутри зданий, телекоммуникации, …);

    Бытовые электроприборы;

    Теле- и радиостанции (транслирующие антенны);

    Спутниковая и сотовая связь (транслирующие антенны);

    Персональные компьютеры.

    Электротранспорт . Транспорт на электрической тяге – электропоезда, троллейбусы, трамваи и т.п. – является относительно мощным источником магнитного поля в диапазоне частот 0 ÷ 1000 Гц. Максимальные значения плотности потока магнитной индукции В в пригородных электричках достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение В на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл.

    Линии электропередач (ЛЭП). Провода работающей ЛЭП создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров. Дальность распространения электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП – например ЛЭП 220 кВ), чем выше напряжение – тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течение времени работы ЛЭП. Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течение суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.

    Биологическое действие . Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия. Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля. У растений распространены аномалии развития – меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки. Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакции только у гиперчувствительных людей или у больных некоторыми видами аллергии.

    В последние годы в числе отдаленных последствий часто называются онкологические заболевания.

    Санитарные нормы, несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения не нормируется. Большая часть ЛЭП строилась без учета этой опасности. На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или «нормальный» уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 ÷ 0,3 мкТл. Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов, границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля – 1 кВ/м (таблицы 1.2 ÷ 1.4).

    Таблица 1.2. Границы санитарно-защитных зон для ЛЭП

    Таблица 1.4. Предельно допустимые уровни воздействия электрического поля ЛЭП

    Продолжение таблицы 1.4

    К размещению высоковольтных линий (ВЛ) ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м, соответственно. Как определить класс напряжения ЛЭП? Лучше всего обратиться в местное энергетическое предприятие, но можно попробовать визуально, хотя не специалисту это сложно: 330 кВ – два провода, 500 кВ – три провода, 750 кВ – четыре провода; ниже 330 кВ – по одному проводу на фазу, определить можно только приблизительно по числу изоляторов в гирлянде: 220 кВ – 10 ÷ 15 шт., 110 кВ – 6 ÷ 8 шт., 35 кВ – 3 ÷ 5 шт., 10 кВ и ниже – 1 шт.

    Предельно допустимые уровни (ПДУ) . В пределах санитарно-защитной зоны ВЛ запрещается:

    Размещать жилые и общественные здания и сооружения;

    Устраивать площадки для стоянки и остановки всех видов транспорта;

    Размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;



    Производить операции с горючим, выполнять ремонт машин и механизмов.

    Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда. В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках. В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках. На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее двух метров.

    Электропроводка. Наибольший вклад в электромагнитную обстановку жилых помещений в диапазоне промышленной частоты 50 Гц вносит электротехническое оборудование здания, а именно кабельные линии, подводящие электричество ко всем квартирам и другим потребителям системы жизнеобеспечения здания, а также распределительные щиты и трансформаторы. В помещениях, смежных с этими источниками, обычно повышен уровень магнитного поля промышленной частоты, вызываемый протекающим электротоком. Уровень электрического поля промышленной частоты при этом не высокий и не превышает ПДУ для населения 500 В/м.

    В настоящее время многие специалисты считают предельно допустимой величину магнитной индукции равной 0,2 ÷ 0,3 мкТл. При этом считается, что развитие заболеваний – прежде всего лейкемии – очень вероятно при продолжительном облучении человека полями более высоких уровней (несколько часов в день, особенно в ночные часы, в течение периода более года).

    Основная мера защиты – предупредительная:

    Необходимо исключить продолжительное пребывание (регулярно по несколько часов в день) в местах повышенного уровня магнитного поля промышленной частоты;

    Кровать для ночного отдыха максимально удалять от источников облучения, расстояние до распределительных шкафов, силовых электрокабелей должно быть 2,5 ÷ 3 метра;

    Если в помещении или в смежном есть какие-то неизвестные кабели, распределительные шкафы, трансформаторные подстанции – удаление должно быть максимально возможным, оптимально – промерить уровень ЭМП до того, как жить в таком помещении;

    При необходимости установить полы с электроподогревом выбирать системы с пониженным уровнем магнитного поля.

    Бытовая электротехника . Все бытовые приборы, работающие с использованием электрического тока, являются источниками ЭМП. Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой «без инея», кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа. Значения магнитного поля тесно связаны с мощностью прибора – чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м. (таблица 1.5 ÷ 1.6).

    При размещении в квартире бытовой техники руководствуйтесь следующими принципами: размещайте бытовые электроприборы по возможности дальше от мест отдыха, не располагайте бытовые электроприборы поблизости и не ставьте их друг на друга.

    Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи ЭМП, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и опасаются многие люди. Однако, современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает ЭМП вырываться за пределы рабочего объема. Однако, нельзя говорить, что поле совершенно не проникает вне микроволновой печи.

    Таблица 1.5. Уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м

    По разным причинам часть ЭМП, предназначенного для приготовления продукта, проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы. Для обеспечения безопасности при использовании печей в быту действуют санитарные нормы, ограничивающие предельную величину утечки СВЧ-излучения микроволновой печи. Называются они «Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами» и имеют обозначение СН № 2666-83. Согласно этим санитарным нормам, величина плотности потока энергии ЭМП не должна превышать 10 мкВт/см 2 на расстоянии 50 см от любой точки корпуса печи при нагреве одного литра воды. На практике практически все новые современные микроволновые печи выдерживают это требование с большим запасом. Тем не менее, при покупке новой печи надо убедиться, что в сертификате соответствия зафиксировано соответствие вашей печи требованиям этих санитарных норм. Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода.

    Срок гарантированной стойкости защиты от утечек ЭМП при нормальной эксплуатации – несколько лет.

    Через пять – шесть лет эксплуатации целесообразно проверить качество защиты, для чего пригласить специалиста из специально аккредитованной лаборатории по контролю ЭМП. Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц, протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире.

    Таблица 1.6. Предельно допустимые уровни ЭМП для потребительской продукции, являющейся источником ЭМП

    Источник Диапазон Значение ПДУ Условия измерения
    Индукцион-ные печи 20 ÷ 22 кГц 500 В/м 4 А/м Расстояние 0,3 м от корпуса
    СВЧ печи 2,45 ГГц 10 мкВт/см 2 Расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 л воды
    Видеодис-плейный терминал ПЭВМ 5 Гц ÷ 2 кГц Е ПДУ = 25 В/м В ПДУ = 250 нТл Расстояние 0,5 м вокруг монитора ПЭВМ
    2 ÷ 400 кГц Е ПДУ = 2,5 В/мВ ПДУ = 25 нТл
    поверхностный электростатиче- ский потенциал V = 500 В Расстояние 0,1 м от экрана монитора ПЭВМ
    Прочая продукция 50 Гц Е = 500 В/м Расстояние 0,5 м от корпуса изделия
    0,3 ÷ 300 кГц Е = 25 В/м
    0,3 ÷ 3 МГц Е = 15 В/м
    3 ÷ 30 МГц Е = 10 В/м
    30 ÷ 300 МГц Е = 3 В/м
    0,3 ÷ 30 ГГц ППЭ = 10 мкВт/см 2

    Теле- и радиостанции. Передающие радиоцентры (ПРЦ) размещаются в специально отведенных для них зонах и могут занимать довольно большие территории (до 1000 га). По своей структуре они включают в себя одно или несколько технических зданий, где находятся радиопередатчики и антенные поля, на которых располагаются до нескольких десятков антенно-фидерных систем (АФС). АФС включает в себя антенну, служащую для измерения радиоволн, и фидерную линию, подводящую к ней высокочастотную энергию, генерируемую передатчиком. Зону возможного неблагоприятного действия ЭМП, создаваемых ПРЦ, можно условно разделить на две части. Первая часть зоны – это собственно территория ПРЦ, где размещены все службы, обеспечивающие работу радиопередатчиков и АФС. Это территория охраняется и на нее допускаются только лица, профессионально связанные с обслуживанием передатчиков, коммутаторов и АФС. Вторая часть зоны – это прилегающие к ПРЦ территории, доступ на которые не ограничен и где могут размещаться различные жилые постройки, в этом случае возникает угроза облучения населения, находящегося в этой части зоны. Расположение ПРЦ может быть различным, например, в Москве и московском регионе характерно размещение в непосредственной близости или среди жилой застройки. Высокие уровни ЭМП наблюдаются на территориях, а нередко и за пределами размещения передающих радиоцентров низкой, средней и высокой частоты (ПРЦ НЧ, СЧ и ВЧ). Детальный анализ электромагнитной обстановки на территориях ПРЦ свидетельствует о ее крайней сложности, связанной с индивидуальным характером интенсивности и распределения ЭМП для каждого радиоцентра. В связи с этим специальные исследования такого рода проводятся для каждого отдельного ПРЦ. Широко распространенными источниками ЭМП в населенных местах в настоящее время являются радиотехнические передающие центры (РТПЦ), излучающие в окружающую среду ультракороткие волны ОВЧ и УВЧ-диапазонов.

    Сравнительный анализ санитарно-защитных зон (СЗЗ) и зон ограничения застройки в зоне действия таких объектов показал, что наибольшие уровни облучения людей и окружающей среды наблюдаются в районе размещения РТПЦ «старой постройки» с высотой антенной опоры не более 180 м. Наибольший вклад в суммарную интенсивность воздействия вносят «уголковые» трех- и шестиэтажные антенны ОВЧ ЧМ-вещания.

    Радиостанции ДВ (частоты 30 ÷ 300 кГц). В этом диапазоне длина волн относительно большая (например, 2000 м для частоты 150 кГц). На расстоянии одной длины волны (и меньше) от антенны поле может быть достаточно большим, например, на расстоянии 30 м от антенны передатчика мощностью 500 кВт, работающего на частоте 145 кГц, электрическое поле может быть выше 630 В/м, а магнитное – выше 1,2 А/м.

    Радиостанции СВ (частоты 300 кГц ÷ 3 МГц). Данные для радиостанций этого типа говорят, что напряженность электрического поля на расстоянии 200 м может достигать 10 В/м, на расстоянии 100 м – 25 В/м, на расстоянии 30 м – 275 В/м (приведены данные для передатчика мощностью 50 кВт).

    Радиостанции КВ (частоты 3 ÷ 30 МГц). Передатчики радиостанций КВ имеют обычно меньшую мощность. Однако они чаще размещаются в городах, могут быть размещены даже на крышах жилых зданий на высоте 10 ÷ 100 м. Передатчик мощностью 100 кВт на расстоянии 100 м может создавать напряженность электрического поля 44 В/м и магнитного поля 0,12 Ф/м.

    Телевизионные передатчики располагаются, как правило, в городах. Передающие антенны размещаются обычно на высоте выше 110 м. С точки зрения оценки влияния на здоровье интерес представляют уровни поля на расстоянии от нескольких десятков метров до нескольких километров. Типичные значения напряженности электрического поля могут достигать 15 В/м на расстоянии 1 км от передатчика мощностью 1 МВт. Проблема оценки уровня ЭМП телевизионных передатчиков актуальна в связи с резким ростом числа телевизионных каналов и передающих станций.

    Основной принцип обеспечения безопасности – соблюдение установленных Санитарными нормами и правилами предельно допустимых уровней электромагнитного поля. Каждый радиопередающий объект имеет Санитарный паспорт, в котором определены границы санитарно-защитной зоны. Только при наличии этого документа территориальные органы Госсанэпиднадзора разрешают эксплуатировать радиопередающие объекты. Периодически они производят контроль электромагнитной обстановки на предмет ее соответствия установленным ПДУ.

    Спутниковая связь. Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженный узконаправленный основной луч – главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м 2 вблизи антенны, создавая также значительные уровни поля на большом удалении.

    Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м 2 . Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.

    Сотовая связь. Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем. Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ диапазоне. Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или «соты», радиусом обычно 0,5 ÷ 10 км. Базовые станции (БС) поддерживают связь с находящимися в их зоне действия мобильными радиотелефонами и работают в режиме приема и передачи сигнала. В зависимости от стандарта (таблица 17) БС излучают электромагнитную энергию в диапазоне частот 463 ÷ 1880 МГц. Антенны БС устанавливаются на высоте 15 ÷ 100 м от поверхности земли на уже существующих постройках (общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т.д.) или на специально сооруженных мачтах. Среди установленных в одном месте антенн БС имеются как передающие (или приемопередающие), так и приемные антенны, которые не являются источниками ЭМП. Исходя из технологических требований построения системы сотовой связи, диаграмма направленности антенн в вертикальной плоскости рассчитана таким образом, что основная энергия излучения (более 90 %) сосредоточена в довольно узком «луче». Он всегда направлен в сторону от сооружений, на которых находятся антенны БС, и выше прилегающих построек, что является необходимым условием для нормального функционирования системы.

    БС являются видом передающих радиотехнических объектов, мощность излучения которых (загрузка) не является постоянной 24 часа в сутки. Загрузка определяется наличием владельцев сотовых телефонов в зоне обслуживания конкретной базовой станции и их желанием воспользоваться телефоном для разговора, что, в свою очередь, коренным образом зависит от времени суток, места расположения БС, дня недели и др. В ночные часы загрузка БС практически равна нулю, т.е. станции в основном «молчат».

    Таблица 1.7. Краткие технические характеристики стандартов системы сотовой радиосвязи

    Наименование стандарта Диапазон рабочих частот БС, МГц Диапазон рабочих частот МРТ, МГц Максимальная излучаемая мощность БС, Вт Максимальная излучаемая мощность
    МРТ Радиус «соты» NMT-450. Аналоговый 463 ÷ 467,5 453 ÷ 457,5 1 Вт; 1 ÷ 40 м
    AMPS. Аналоговый 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 20 км
    D-AMPS (IS-136). Цифровой 869 ÷ 894 824 ÷ 849 0,2 Вт; 0,5 ÷ 20 км
    CDMA. Цифровой 869 ÷ 894 824 ÷ 849 0,6 Вт; 2 ÷ 40 км
    GSM-900. Цифровой 925 ÷ 965 890 ÷ 915 0,25 Вт; 0,5 ÷ 35 км
    GSM-1800 (DCS). Цифровой 1805 ÷ 1880 1710 ÷ 1785 0,125 Вт; 0,5 ÷ 35 км

    Мобильный радиотелефон (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 ÷ 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи «мобильный радиотелефон – базовая станция», т.е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125 ÷ 1 Вт, однако в реальной обстановке она обычно не превышает 0,05 ÷ 0,2 Вт. Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим, результатам. Неоспоримым остается тот факт, что организм человека «откликается» на наличие излучения сотового телефона.

    При работе мобильного телефона электромагнитное излучение воспринимается не только приемником базовой станции, но и телом пользователя, и, в первую очередь, его головой. Что при этом происходит в организме человека, насколько это воздействие опасно для здоровья? Однозначного ответа на этот вопрос до сих пор не существует. Однако эксперимент ученых показал, что мозг человека не только ощущает излучение сотового телефона, но и различает стандарты сотовой связи.

    Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси. Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин – излучение, 30 мин – пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд. Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м 2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м 2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м 2 . Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия - в жилых районах городов, в черте которых размещаются аэропорты.

    Персональные компьютеры . Основным источником неблагоприятного воздействия на здоровье пользователя компьютера является средство визуального отображения информации на электронно-лучевой трубке. Ниже перечислены основные факторы его неблагоприятного воздействия.

    Эргономические параметры экрана монитора:

    Снижение контраста изображения в условиях интенсивной внешней засветки;

    Зеркальные блики от передней поверхности экранов мониторов;

    Наличие мерцания изображения на экране монитора.

    Излучательные характеристики монитора:

    Электромагнитное поле монитора в диапазоне частот 20 Гц ÷ 1000 МГц;

    Статический электрический заряд на экране монитора;

    Ультрафиолетовое излучение в диапазоне 200 ÷ 400 нм;

    Инфракрасное излучение в диапазоне 1 050 нм ÷ 1 мм;

    Рентгеновское излучение > 1,2 кэВ.

    Компьютер как источник переменного электромагнитного поля. Основными составляющими частями персонального компьютера (ПК) являются: системный блок (процессор) и разнообразные устройства ввода/вывода информации: клавиатура, дисковые накопители, принтер, сканер и т.п. Каждый персональный компьютер включает средство визуального отображения информации, называемое по-разному – монитор, дисплей. Как правило, в его основе – устройство на основе электронно-лучевой трубки. ПК часто оснащают сетевыми фильтрами (например, типа «Pilot»), источниками бесперебойного питания и другим вспомогательным электрооборудованием. Все эти элементы при работе ПК формируют сложную электромагнитную обстановку на рабочем месте пользователя.

    Таблица 1.8. Диапазон частот элементов ПК

    Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот 0 ÷ 1000 МГц (таблица 1.9). Электромагнитное поле имеет электрическую (Е ) и магнитную (Н ) составляющие, причем взаимосвязь их достаточно сложна, поэтому оценка Е и Н производится раздельно.

    Таблица 1.9. Максимальные зафиксированные на рабочем месте значения ЭМП

    В части электромагнитных полей стандарту MPR II соответствуют российские санитарные нормы СанПиН 2.2.2.542-96. «Гигиенические требования к видеодисплейным терминалам, персональным ЭВМ и организации работ».

    Средства защиты пользователей от ЭМП. В основном из средств защиты предлагаются защитные фильтры для экранов мониторов. Они используются для ограничения действия на пользователя вредных факторов со стороны экрана монитора.