Влияние витамина д на обмен веществ. Метаболизм витамина D и пути реализации его основных функций. Биологические функции витамина D

Витамин D - Кальциферол, эргостерол, виостерол

Мы приобретаем его посредством солнечного света или с пищей. Ультрафиолетовые лучи действуют на масла кожи, способствуя образованию этого витамина, который затем всасывается в тело. Витамин D образуется в коже под действием солнечных лучей из провитаминов. Провитамины, в свою очередь, частично поступают в организме в готовом виде из растений (эргостерин, стигмастерин и ситостерин), а частично образуются в тканях их холестерина (7-дегидрохолестерин (провитамин витамина D 3).

Кроме того, половые гормоны, пролактин, гормон роста и инсулиноподобный фактор роста 1 увеличивают почечную продукцию активного метаболита. Напротив, гиперкальциемия уменьшает синтез витамина. Кроме того, снижение фосфатемии увеличивается, и ее увеличение снижает производство активного витамина. Полученная величина указывает, достаточны ли достаточные количества или недостаточность ингаляции. По этой причине в настоящее время считается, что отложения этого витамина достаточны, если их концентрация в плазме выше этого значения4.

Потребности в питании определяются как количество каждого из питательных веществ, которое физическое лицо нуждается в оптимальном состоянии здоровья. Они варьируются в зависимости от возраста, пола и физиологических характеристик, таких как беременность и лактация.

При приеме внутрь, витамин D всасывается с жирами через стенки желудка.

Измеряется в Международных Единицах (МЕ). Дневная доза для взрослых составляет 400 МЕ или 5-10 мкг. После получения загара, выработка витамина D через кожу прекращается.

Польза: Должным образом утилизирует кальций и фосфор, необходимые для укрепления костей и зубов. При совместном приеме с витаминами А и С помогает в профилактике простудных заболеваний. Помогает в лечении конъюнктивитов.

Хотя рекомендуемое потребление относится к среднесуточному потреблению, которое должен достичь человек, количество принимаемого внутрь может меняться со дня на день. Как правило, потребление оценивается в течение 7-15 дней, таким образом, что с течением времени количество потребляемого вещества совпадает с рекомендациями.

Когда возрастает потребность в витамине D?

Кроме того, для некоторых питательных веществ было установлено максимальное безопасное потребление или максимально допустимое потребление. Это относится к уровню потребления, выше которого может быть риск для здоровья. Длительное или обширное воздействие на организм не показало избыточного производства холекальциферола на уровнях, способных вызвать интоксикацию.

Заболевания, вызываемые дефицитом витамина D: рахит, сильное разрушение зубов, остеомаляция*, старческий остеопороз.

Витамин D относится к группе жирорастворимых витаминов, обладающих антирахитическим действием (D 1 , D 2 , D 3 , D 4 , D 5)

К витаминам группы D относятся:

витамин D 2 - эргокальциферол; выделен из дрожжей, его провитамином является эргостерин; витамин D 3 - холекальциферол; выделен из тканей животных, его провитамин - 7-дегидрохолестерин; витамин D 4 - 22, 23-дигидро-эргокальциферол; витамин D 5 - 24-этилхолекальциферол (ситокальциферол); выделен из масел пшеницы; итамин D 6 - 22-дигидроэтилкальциферол (стигма-кальциферол).

Во-первых, это зависит от количества 7-дегидрохолестерина в эпидермисе. У пожилых людей более низкое количество 7-дегидрохолестерина в коже. Во-вторых, это зависит от количества меланина. Люди с более высоким содержанием меланина требуют более длительного воздействия солнца на синтез того же количества холекальциферола. Это связано с тем, что меланин поглощает солнечные фотоны. Аналогично, кремы с солнечной защитой поглощают излучение, прежде чем проникать в кожу. Кремы с коэффициентом защиты 15 уменьшают их емкость более чем на 98%.

Зимой солнечные лучи проникают в землю под углом более наклонный. В этой ситуации больше фотонов поглощается озоновым слоем. Точно так же, в первые часы утра и последний день, угол, с которым солнечные лучи проникают в землю, более наклонный. В широтах более 37 ° севернее и южнее экватора, особенно в зимние месяцы, число фотонов, достигающих земной поверхности, ниже. Однако известно, что если воздействие солнца вызывает небольшую эритему, и сразу после применения солнцезащитного крема, риск для кожи минимален.

Сегодня витамином D называют два витамина - D 2 и D 3 - эргокальциферол и холекальциферол - это кристаллы без цвета и запаха, устойчивые в воздействию высоких температур. Эти витамины являются жирорастворимыми, т.е. растворяются в жирах и органических соединениях и нерастворимы в воде.

Регулируют обмен кальция и фосфора: участвуют в процессе всасывания кальция в кишечнике, взаимодействуют с паратиреоидным гормоном, отвечают за кальцификацию костей.В детском возрасте при авитаминозе D вследствие уменьшения содержания в костях солей кальция и фосфора нарушается процесс костеобразования (рост и окостенение), развивается рахит. У взрослых происходит декальцификация костей (остеомаляция).

Жирные кислоты морских рыб представляют собой богатейший источник колекальциферола, причем основным источником является лосось, поскольку он наиболее часто потребляется. Яйца, масло, печень и другие внутренние органы также являются продуктами, которые содержат витамин, но его потребление низкое из-за его высокого содержания холестерина. В таблице 3 показано содержание холекальциферола в пищевых группах.

Соки, молоко и другие молочные продукты обогащены кальцием. Пищевая промышленность использует как эргокальциферол, так и колекальциферол для обогащения пищевых продуктов, хотя использование последних чаще. Содержание витамина не выражается в микрограммах или международных единицах, а в процентах от адекватного потребления для взрослых людей 11.

Немецкий химик А. Виндаус, более 30 лет изучавший стерины, в 1928 году обнаружил эргостерол - провитамин D, превращавшийся под действием ультрафиолетовых лучей в эргокальциферол Было выяснено, что под влиянием ультрафиолетовых лучей некоторое количество витамина D может образовываться в коже, причем облучение может быть как солнечным, так и с помощью кварцевой лампы. . Подсчитано, что 10-минутное облучение животных оказывает на организм такое же действие, как введение в рацион 21 % рыбьего жира. В облученных продуктах витамин D образуется из особых жироподобных веществ (стеринов). В последнее время в животноводстве широко используют ультрафиолетовое облучение животных, особенно молодняка, а также кормов.

Некоторые молочные продукты, особенно обезжиренное и полумешенное молоко, некоторые соки и злаки обогащены разным количеством витамина. Хотя обогащение пищи показало свою полезность в увеличении потребления этого витамина в популяции, как это делается в настоящее время, оно имеет некоторые недостатки. С одной стороны, молоко обогащается главным образом. Тем не менее, молоко не является пищей, равномерно потребляемой всем населением, особенно потребление людей с высоким уровнем риска, таких как афроамериканская раса и вегетарианцы.

Кроме того, в последние годы наблюдается тенденция к снижению потребления молока у населения. Этот недостаток можно преодолеть за счет укрепления всех молочных продуктов, включая йогурты, сыры и другие молочные продукты. Остальные презентации, содержащие витамин, связанный с другими витаминами и минералами, не указаны, поскольку существует много препаратов. Следует помнить, что у лиц с хроническим заболеванием печени происходит значительное изменение активности 25-гидроксилазы печени, поэтому лучше вводить кальцифедиол вместо холекальциферола.

Основные источники: рыбий жир, икра, печень и мясо, яичный желток, животные жиры и масла, сардины, сельдь, лосось, тунец, молоко. сенной муке, Витамин D содержится в большом количестве и в яичном желтке, дрожжах, хорошем сене, растительном масле, травяной муке и других продуктах. В растениях витамина, как правило, нет, но в них содержится его провитамин эргостерол, который в организме животных превращается в витамин D.

Неблагоприятные последствия этих препаратов недостаточны. При длительном лечении и при высоких дозах возможно появление гиперкальциемии, чего избегают путем корректировки дозы в соответствии с рекомендациями приема внутрь для населения и корректируется путем приостановки введения препарата. Потребление зависит не только от возраста, но и от пола, расы и факта специальных диет.

По возрасту население с наибольшим риском дефицита - это пожилые люди. С возрастом уровни 7-дегидрохолестерина в коже снижаются, воздействие на солнце ниже, а способность кожного синтеза колекальциферола на 25% ниже. Однако в этом возрасте потребление витаминных и минеральных добавок выше, по крайней мере, у американского населения14. Однако женщины старше 50 лет чаще потребляют питательные вещества, обогащенные витамином15. Причина двоякая: с одной стороны, большее количество меланина в коже частично поглощает ультрафиолетовые лучи, уменьшая кожный синтез витамина, а с другой стороны, непереносимость лактозы чаще встречается у этой группы индивидуумов, поэтому что потребление молока ниже.

Суточная потребность 2,5 мкг, для детей и беременных - 10 мкг. Отрицательно влияют на усвоение витамина D расстройства кишечника и печени, дисфункция желчного пузыря.

У беременных и кормящих животных потребность в витамине D повышается, т.к. необходимо дополнительное количество его для предупреждения рахита у детей.

Действие

Витамин D содержится в продуктах

Наконец, строгие вегетарианские индивидуумы, как правило, имеют низкие гормональные отложения. Эти проценты ниже, чем другие национальности17. Это значение обнаружено у примерно 50% пациентов, которые госпитализированы с острым переломом шейки бедра. Однако его присутствие было обнаружено почти во всех клетках организма, включая мозг, сердце, кожу, бета-клетки поджелудочной железы, гонады, предстательную железу, молочную железу, ободочную кишку и клетки иммунной системы. В результате увеличивается производство и созревание остеокластов и высвобождение соляной кислоты и коллагеназ.

Основная функция витамина D - обеспечение нормального роста и развития костей, предупреждение рахита и остеопороза. Он регулирует минеральный обмен и способствует отложению кальция в костной ткани и дентине, таким образом, препятствуя остеомаляции (размягчению) костей.

Поступая в организм, витамин D всасывается в проксимальном отделе тонкого кишечника, причем обязательно в присутствии желчи. Часть его абсорбируется в средних отделах тонкой кишки, незначительная часть - в подвздошной. После всасывания кальциферол обнаруживается в составе хиломикронов в свободном виде и лишь частично в форме эфира. Биодоступность составляет 60-90%.

Все это приводит к мобилизации кальция из костных отложений, поэтому концентрация кальция в плазме в норме. Кроме того, вторичный гиперпаратиреоз индуцирует потерю фосфора в моче, уменьшая уровни электролита в плазме. Результатом является неадекватный продукт кальция-фосфор, который способствует дефекту минерализации костной матрицы. Появляется замедление роста, деформация кости, особенно длинных костей, и повышенный риск перелома23. У взрослого человека с наибольшим присутствием минерализованной кости деформации кости не происходят.

Витамин D влияет на общий обмен веществ при метаболизме Ca2+ и фосфата (НРО2-4). Прежде всего, он стимулирует всасывание из кишечника кальция, фосфатов и магния. Важным эффектом витамина при этом процессе является повышение проницаемости эпителия кишечника для Ca2+ и Р.

Витамин D является уникальным - это единственный витамин, действующий и как витамин, и как гормон. Как витамин он поддерживает уровень неорганического Р и Са в плазме крови выше порогового значения и повышает всасывание Са в тонкой кишке.

Однако остеоид не минерализуется должным образом, что приводит к остеомаляции. Как и при остеопорозе, у пациентов с остеомалязией низкая минеральная плотность костной ткани, измеренная рентгеновской денситометрией с двойной энергией, и повышенный риск перелома. В отличие от остеопороза, остеомаляция вызывает генерализованную боль в костях и проксимальную мышечную слабость. Иногда из-за присутствия боли болезнь путается с миозитом, фибромиалгией или синдромом хронической усталости24.

Кроме того, существует исследование, в котором показано снижение риска падения у пожилых людей35. Сегодня мы знаем, что витамин оказывает множество функций не только на уровне костей, но и во многих местах организма. Однако обогащения молока, как это делается сегодня, недостаточно. Он образуется на коже с воздействием ультрафиолетовых лучей в достаточном количестве, чтобы покрыть повседневные потребности.

В качестве гормона действует активный метаболит витамина D - 1,25-диоксихолекациферол, образующийся в почках. Он оказывает влияние на клетки кишечника, почек и мышц: в кишечнике стимулирует выработку белка-носителя, необходимого для транспорта кальция, а в почках и мышцах усиливает реабсорбцию Ca++.

Витамин D 3 влияет на ядра клеток-мишеней и стимулирует транскрипцию ДНК и РНК, что сопровождается усилением синтеза специфических протеидов.

Если мы берем солнце время от времени, нам не нужно искать его в рационе. Он действует вместе с гормональным параторидом и кальцитонином при абсорбции кальция и фосфора. Фармакологические основы терапии. Некоторые исследователи полагали, что болезнь вызвана нехваткой свежего воздуха и солнечного света; другие утверждали, что болезнь зависит от фактора в рационе.

Мелланби и Хулдщинский показали, что обе идеи были правильными; добавление масла трески в рацион или воздействие солнечного света предотвращало болезнь или вылечивало ее. Эти наблюдения привели к выяснению структур коллекальциферола и эргокальциферола и, в конечном счете, к открытию того, что эти соединения требуют дополнительной обработки в организме, чтобы стать активными. Основным провитамином, обнаруженным в тканях животных, является 7-дегидрохолестерин, который синтезируется в коже. Воздействие кожи на солнечный свет превращает 7-дегидрохолестерин в холекальциферол.

Однако роль витамина D не ограничивается защитой костей, от него зависит восприимчивость организма к кожным заболеваниям, болезням сердца и раку. В географических областях, где пища бедна витамином D, повышена заболеваемость атеросклерозом, артритами, диабетом, особенно юношеским.

Он предупреждает слабость мускулов, повышает иммунитет (уровень витамина D в крови служит одним из критериев оценки ожидаемой продолжительной жизни больных СПИДом), необходим для функционирования щитовидной железы и нормальной свертываемости крови.

Конечная активация кальцитриола происходит главным образом в почках, но также имеет место в плаценте и почках. децидуас, а также в макрофагах. Почвы являются преобладающим источником кальцитриола в кровообращении. Ферментная система, ответственная за 1-гидроксилирование 25-гидроксихолекальциферола, связана с митохондриями в проксимальных канальцах. Регулирование является как хроническим, так и острым. Имеются данные о том, что гипокальцемия может непосредственно активировать гидроксилазу, а также косвенно влиять на нее, вызывая секрецию паратиреоидного гормона.

Так, при наружном применении витамина D 3 уменьшается характерная для псориаза чешуйчатость кожи.

Есть данные, что, улучшая усвоение кальция и магния, витамин D помогает организму восстанавливать защитные оболочки, окружающие нервы, поэтому он включается в комплексную терапию рассеянного склероза.

Витамин D 3 участвует в регуляции артериального давления (в частности, при гипертонии у беременных) и сердцебиения.

Гипофосфатемия значительно увеличивает активность гидроксилазы. Кальцитриол оказывает контроль отрицательной обратной связью фермента, что отражает прямое действие на почки, а также ингибирование производства паратиреоидного гормона. Характер регуляторных механизмов эстрогена и пролактина на 1а-гидроксилазе неизвестен. Витамин влияет на метаболизм фосфата параллельно методу Са 2. Механизм действия кальцитриола похож на механизм действия стероидных и тиреоидных гормонов. Структурный анализ рецептора кальцитриола указывает на то, что он относится к тому же семейству супергенов, что и рецепторы стероидов и тиреоидных гормонов.

Витамин D препятствует росту раковых и клеток, что делает его эффективным в профилактике и лечении рака груди, яичников, предстательной железы, головного мозга, а также лейкимии.

Гиповитаминоз. Недостаток витамина Д у детей приводит к заболеванию рахитам. Основные проявления этого заболевания сводятся к симптоматике недостаточности кальция. Прежде всего страдает остеогенез: отмечается деформация скелета конечностей (искривление их в результате размягчения - остеомаляции), черепа (позднее заращение родничков), грудной клетки (появление своеобразных «четок» на костно-хрящевой границе ребер), задерживается прорезывание зубов. Развивается гипотония мышц (увеличенный живот), возрастает нервно-мышечная возбудимость (у младенца выявляется симптом облысения затылочка из-за частого вращения головкой), возможно появление судорог, У взрослого недостаточность кальция в организме приводит к кариесу и остеомаляции; у пожилых - к развитию остеопороза (снижение плотности костной ткани вследствие нарушения остеосинтеза), Разрушение неорганического матрикса объясняется усиленным «вымыванием» кальция из костной ткани и нарушением реабсорбции кальция в почечных канальцах при дефиците витамина Д.

Кальцитриол также, по-видимому, оказывает влияние, которое происходит настолько быстро, что их интерпретируют как слишком быстрые явления, что объясняется геномными действиями. Рисунок 17: Структуры 7-дегидрохолестерина, эргостерина, холекальциферола и эргокальциферола.

Его дефицит вызывает рахит, остеопороз и остеомаляцию, с декальцификацией кости, которая деформируется даже при сохранении той же массы. Отсутствие роста у детей и деформации скелета у взрослых может возникать во время беременности и лактации, с симптомами боли в пояснице, спазма и мышечной слабости, деформации позвоночника и таза.

На схеме ниже показано угнетение (пунктирная стрелка) всасывания, снижение поступления кальция в кость и уменьшение экскреции кальция при недостатке витамина Д. Одновременно в ответ на гипокальциемию секретируется паратирин и увеличивается (сплошная стрелка) поступление кальция из кости в кровяное русло (вторичный гиперпаратиреоидизм).

Симптомы гиповитаминоза

Основным признаком недостаточности витамина D является рахит и размягчение костей (остеомаляция).

Более легкие формы дефицита витамина D проявляются такими симптомами как:

потеря аппетита, снижение веса,

ощущение жжения во рту и в горле,

бессонница,

ухудшение зрения.

Рахит - одна из самых распространенных детских болезней - известен с незапамятных времен. Картины фламандских художников с изображением детей с искривленными позвоночниками, руками и ногами ясно указывают на распространение рахита в 15 веке. Широкое распространение рахит получил в Великобритании - его еще стали называть «английская болезнь». Как стало известно позднее, для активации антирахитического витамина необходим ультрафиолет, поэтому очагами рахита стали крупные города с тесной застройкой и задымлением. При рахите наиболее резко выражены нарушения в костях ног, грудной клетке, позвоночнике и черепе. Хрящевая и костная ткани становятся ненормально мягкими, что приводит к их деформации и искривлению. Заболевание рахитом возможно и при достаточном содержании витамина в пище, но при нарушении его всасывания в пищеварительном тракте (расстройства пищеварения в раннем возрасте).

При недостатке витамина D у животных снижается содержание кальция и фосфора в крови, пропадает аппетит, нарушается работа органов дыхания, задерживается рост, появляется размягчение конечностей, ломкость костей. Иногда возникают судороги мышц головы, шеи и конечностей. Наиболее выраженным рахит бывает у молодых животных. Давно известно, что рахит хорошо лечить рыбьим жиром.

Гипервитаминоз Д. Достаточно опасен гипервитаминоз D (возникает при дозах, превышающих лечебные во много раз), т. к. при этом возникает гиперкальцемия организма и обызвествление внутренних органов: почек, желудка, легких, крупных кровеносных сосудов. Избыток витамина D откладывается в печени и может вызвать отравление.

Избыточный прием витамина Д приводит к интоксикации и сопровождается выраженной деминерализацией костей - вплоть до их переломов. Содержание кальция в крови повышается. Это приводит к кальцификации мягких тканей, особенно склонны к этому процессу почки (образуются камни и развивается почечная недостаточность), Повышение уровня кальция (и фосфора) в крови объясняется следующим: 1) резорбцией костной ткани (сплошная стрелка); 2) увеличением интенсивности всасывания кальция и фосфора в кишечнике 3) увеличением их рсабсорбции в почках (т. е. угнетением экскреции с мочой - пунктир).


В нормальных условиях повышение содержания кальция в крови будет приводить к образованию неактивного 24,25(0 Н)2-Д3, который не выбывает резорбцию («рассасывание») кости, однако при гипервитаминозе Д этот механизм становится неэффективным/ Интересно, что пигментация кожи (загар) является защитным фактором, предохраняющим от избыточного образования витамина Д при УФ-облучении кожи. Однако у светлокожих жителей северных стран, испытывающих недостаток солнечной инсоляции, витамин-Д-дефицитные состояния, как правило, не развиваются, так как их диета включает рыбий жир.

Метаболизм. Витамины группы Д всасываются подобно витамину А. В печени витамины подвергаются гидроксилированию микросомной системой оксигеназ по С-25 (из витамина Д. образуется 25(ОН)-Д3, т. е. 25-гидроксихолекальциферол), и затем переносятся током крови с помощью специфического транспортного белка в почки. В почках осуществляется вторая реакция гидроксилирования по С-1 с помощью митохондриальных оксигеназ (образуется 1,25(ОН)2-Д3, т. е. 1,25-дигидроксихолекальциферол, или кальцитриол). Эта реакция активируется паратиреоидным гормоном, секретируемым паращитовидной железой, когда уровень кальция в крови снижается. Если уровень кальция адекватен физиологической потребности организма, вторичное гидроксилирование происходит по С-24 (вместо С-1), при этом образуется неактивный метаболит 1,24(ОН)2-Д3 В реакциях гидроксилирования принимает участие витамин С.


Витамин Д3, накапливается в жировой ткани. Выводится главным образом с калом в неизмененном или окисленном виде, а также в виде конъюгатов.

Витамин Н - Биотин, коэнзим R

Витамин Н водорастворим, сравнительно новый член семействавитаминов группы В .

Биотин нужен для синтеза аскорбиновой кислоты. Необходим для нормального метаболизма жиров и белка.

РНП для взрослых 150 – 300 мкг. Может синтезироваться кишечными бактериями. Сырые яйца препятствуют его усвоению организмом. Синергичен с витаминами В2, В6, ниацином, А и сохраняет кожу здоровой.

Польза: Помогает предохранить волосы от седины. Облегчает боли в мышцах. Уменьшает проявления экземы и дерматита.

Заболевания, вызываемые дефицитом биотина: нарушение метаболизма жиров.

Лучшие натуральные источники: орехи, фрукты, пивные дрожжи, говяжья печень, молоко, почки и нешлифованный рис, желток яйца.

В 1935-1936 гг. Kogi и Tonnies впервые выделили кристаллический биотин из желтка яиц. Для этой цели они использовали 250 кг желтков яиц и получили 100 мг биотина с температурой плавления 148°.

Известны аминокислотные производные биотина, среди которых наиболее

изучен биоцитин, обладающий высокой активностью для многих микроорганизмов.

Он представляет собой пептид биотина и лизина. В настоящее время выяснена причина патологических изменений, возникающих при кормлении животных сырым яичным белком. В нем содержится авидин-белок, который специфически соединяется с биотином (введенным внутрь с пищевыми продуктами или синтезированным кишечными микроорганизмами) в неактивный комплекс и тем самым препятствует его всасыванию.

Рекордное количество (6,81 мкг/г) найдено в печени акулы.

Наиболее богаты витамином печень, почки, надпочечники; сердце и желудок содержат среднее, а мозговая ткань, легкие и скелетные мышцы-минимальное количество биотина.

Наиболее богаты витаминами свиная и говяжья печень, почки, сердце быка, яичный желток, а из продуктов растительного происхождения-бобы, рисовые отруби, пшеничная мука и цветная капуста. В животных тканях и дрожжах биотин находится преимущественно в связанном с белками виде, в овощах и фруктах-в свободном состоянии.

Биосинтез биотина .

Биосинтез биотина осуществляют все зеленые растения, некоторые бактерии

и грибы. Изучение путей биосинтеза биотина началось после выяснения строения его молекулы. Химическое расщепление биотина проходит через образование дестиобиотина, диаминопеларгоновой кислоты и, наконец, пимелиновой кислоты.

Взаимодействие с другими витаминами.

Установлена связь биотина с другими витаминами, в частности с фолиевой кислотой, витамином B12 - аскорбиновой кислотой, тиамином и пантотеновой кислотой. 0собенно тесные взаимоотношения существуют между биотином и фолиевой кислотой. Биотин благоприятно влияет на общее состояние организма и сохранение аскорбиновой кислоты в тканях цинготных морских свинок. В свою очередь аскорбиновая кислота замедляет, хотя и не предотвращает развитие авитаминоза биотина у крыс.

При недостаточности биотина снижается содержание тиамина в печени, селезенке,. почках и мозге животных. У крыс, содержавшихся на рационе, лишенном биотина, содержание витамина B12 было выше, чем у контрольных животных, получавших биотин. Эти два витамина тесно связаны между собой в обмене пропионовой кислоты у микроорганизмов и животных. Существует тесная связь между биосинтезом биотина и пантотеновой кислоты у микроорганизмов и зеленых растений (В. В. Филиппов, 1962). Биотин облегчает симптомы пантотеновой недостаточности и, наоборот, пантотеновая кислота смягчает проявление авитаминоза биотина.

Биотиновый авитаминоз у животных характеризуется прекращением роста и падением веса тела (до 40%), покраснением и шелушением кожи, выпадением шерсти или перьев, образованием красного отечного ободка вокруг глаз в виде «очков», атактической походкой, отеком лапок и типичной позой животного с согбенной (кенгу-руподобной) спиной. Дерматит, который развивается у животных при недостаточности биотина, может быть охарактеризован как себорея десквамационного типа, сходная с той, которая наблюдается у детей.

У крыс авитаминоз биотина развивается через 4-5 недель скармливания опытного рациона, а у цыплят первые признаки авитаминоза появляются через 3 недели.

Помимо внешних признаков, биотиновый авитаминоз вызывает глубокие морфологические изменения в тканях и органах, а также нарушения в обмене веществ. Известны изменения в зобной железе, коже и мышцах крыс. Характерны обильный гиперкератоз, акантез и отеки. Разрушенные волосяные стволы перемешаны с гиперкератозными пластинками. Установлено расширение волосяных сумок, отверстия которых закупорены гиперкератозным материалом. В последней фазе развития авитаминоза наблюдается атрофия жира в гиперкератозных пластинках. Недостаток биотина в рационе крыс приводит к уменьшению его содержания в тканях. В печени и мышцах количество витамина снижается в 5 раз, а в мозговой ткани-на 15%. В крови авитаминозных крыс накапливается пировиноградная кислота, развивается ацидоз и снижается концентрация сахара. При этом глюкозурия не наблюдается, но уменьшается содержание редуцирующих Сахаров в печени при нормальном содержании их в мышцах; у животных развивается креа-тинурия.

Человек полностью удовлетворяет свою потребность в биотине за счет синтеза его микрофлорой кишечника, поэтому гиповитаминоз можно получить только в эксперименте.

Гиповитаминоз может развиться в основном при дисбактериозе кишечника, возникающего, например, в результате приема антибиотиков.

Симптомы гиповитаминоза

Возможные последствия дефицита биотина: себорейный дерматит, анемия, депрессия, потеря волос, высокий уровень сахара в крови, воспаление или бледность кожи и слизистых оболочек, бессонница, потеря аппетита, мышечные боли, тошнота, воспаление языка, сухая кожа, высокий уровень холестерина в крови.

Взаимодействие

* Сырой яичный белок содержит вещество, которое называется авидин - антивитамин биотина. Это вещество связывает биотин и препятствует его всасыванию в кровь. При нагревании происходит денатурация (необратимое нарушение структуры) авидина в яичном белке, и поэтому приготовленные яйца не мешают усваивать биотин.

* Алкоголь ослабляет способность к усвоению биотина, и поэтому хроническое злоупотребление алкоголем может привести к дефициту биотина.

* Жиры масла, подвергшиеся тепловой обработке или воздействию воздуха в течение длительного времени, замедляют усвоение биотина.

* Антибиотики, лекарства с содержанием серы и сахарин также влияют на усвоение биотина.

Если вам нужно длительное лечение антибиотиками - это относится и к детям, и к взрослым, - синтез биотина может резко сократиться из-за гибели полезных кишечных бактерий, что делает дополнительный прием необходимым.

Витамин Н показан при выпадении волос и псориазе, в косметике его применяют в составе средств для ухода за волосами и в масках.

Метаболизм Биотин, связанный с белками, поступает с пищей, при помощи протеиназ переходит в свободное состояние и всасывается в тонком кишечнике. При поступлении в кровь он вновь соединяется с белками (альбуминами) и поступает в ткани. Задерживается биотин главным образом в печени и почках. Выводится в неизменённом виде с мочой и калом. Коферментной формой витамина Н является N5-карбоксибиотин.

Структура и свойства.

В основе строения биотина лежит тиофеновое кольцо, к которому присоединена мочевина, а боковая цепь пердставлена валериановой кислотой:

Биотин представляет собой кристаллическое вещество, хорошо растворимое в воде и спирте. Это устойчивое соединение, биологическая активность которого не меняется после кипячения растворов и при доступе кислорода.

Эмпирическая формула : С 10 Н 16 О 3 N 2 S.

проф. Круглов Сергей Владимирович (слева), Кутенко Владимир Сергеевич (справа)

Редактор страницы: Кутенко Владимир Сергеевич

Кудинов Владимир Иванович

Кудинов Владимир Иванович , Кандидат медицинских наук, Доцент Ростовского Государственного медицинского университета, Председатель ассоциации эндокринологов Ростовской области, Врач – эндокринолог высшей категории

Джериева Ирина Саркисовна

Джериева Ирина Саркисовна Доктор медицинских наук, доцент, врач-эндокринолог

ГЛАВА 4 МЕТАБОЛИЗМ ВИТАМИНА D И ПОЧКИ

ДЖ. ЛЕМАН, Р. У. ГРЕИ

(J. LEMMANN, R. W. GRAY)

Давно известно, что тяжелые почечные заболевания часто со­провождаются поражениями костной ткани, включая рахит или остеомаляцию, а также замедлением всасывания кальция в ки­шечнике. Рахит или остеомаляция в Сочетании с замедлением всасывания кальция в кишечнике являются и признаками недостаточности витамина D. За последние 15 лет в результате появления множества новых сведений об эндокринной природе витамина D выяснилась роль почек в его метаболизме. Кроме того, необходимость лечения все большего числа больных с хро­нической почечной недостаточностью до и в процессе поддержи­вающего их жизнь диализа заставила клинически оценить эти новые сведения и широко использовать их в практической ме­дицине. Ниже обобщены современные представления о метабо­лизме и действии витамина D, причем специальное внимание уделяется роли почек в этих процессах и анализу нарушений метаболизма витамина D в условиях патологии.

ИСТОРИЧЕСКИЙ ОЧЕРК

История витамина D началась с выяснения возможных попу­ляционных особенностей в строении скелета и изучения патоге­неза рахита как костного заболевания. Согласно описанию Ге­родота (484-425 гг. до н. э.), у убитых египетских солдат, ко­торые по обычаю с детства не закрывали голов от солнца, чере­па были твердыми, тогда как у персидских солдат, всегда носив­ших тюрбаны, черепа оказывались мягкими. Такие наблюдения расценивались как указания на то, что солнечное освещение мо­жет обеспечивать толщину и твердость костей. Медицинской проблемой рахит становится только в XVII в., когда в Англии и Северной Европе образуются города. Вскоре появились и случайные наблюдения об излечивающем рахит действии рыбь­его жира. К сожалению, широкое применение этого народного лечебного средства задержалось более чем на столетие, пока не сформировалось представление о важности веществ, присутст­вующих в пище в следовых количествах (в частности, витами­нов).

К концу XIX в. географические исследования вновь указа­ли на распространенность рахита в городах, население которых испытывало недостаток солнечного света. Изучение скелета умерших больных рахитом позволило установить сниженную минерализацию костей и меньшее содержание кальция и фос­фора в них, тогда как исследования обмена веществ обнаружи­ли низкую скорость всасывания кальция и фосфора в кишечни­ке таких больных.

К концу I мировой войны на пути к пониманию природы ра­хита было сделано два главных шага. Mellanby разработал метод воспроизведения рахита у щенков, показав, что это забо­левание в эксперименте излечивается жиром печени трески. Та­кие наблюдения отчетливо указывали на присутствие в диете антирахитного фактора. Примерно в то же время Huldchinsky, удалось вылечить детей с помощью облучения их под ртутной лампой. Более того, у 1 ребенка облучение только од­ной руки обусловило появление рентгенографических признаков улучшения состояния костей всего скелета. Это наблюдение яви­лось первым четким доказательством возможности образования в организме циркулирующего и имеющего, по-видимому, гормо­нальную природу антирахитного фактора. Впоследствии опыты на крысах с экспериментальным рахитом показали, что к изле­чению приводит облучение не только самих крыс, но и их пищи. Присутствующий в диете антирахитный фактор оказался жирорастворимым веществом, отличающимся от витамина А. В 1932 г. было установлено строение витамина D-секостерина, образующегося при облучении пищевых продуктов, а в 1936 г. была определена и структура природного витамина D. Взятые вместе, эти наблюдения сформировали основу современного представления, согласно которому витамин D одновре­менно является гормоном и (в условиях ограниченного солнеч­ного освещения) витамином.


Структура витамина D

ХИМИЧЕСКОЕ СТРОЕНИЕ ВИТАМИНА D

На рис. 39 представлена структура витамина D 3 - холекальциферола, а также система нумерации положений углеродных атомов в его молекуле. Витамин D 2 - эргокальдиферол - отли­чается лишь присутствием двойной связи между 22-м и 23-м углеродным атомом и дополнительной метильной группы в по­ложении 24. Молекулярная масса витамина D 3 равна 384. Он нерастворим в воде, но легко растворяется в органических растворителях и жирах. Витамин весьма чувствителен к окислению на воздухе или перекисями в растворе и разрушается в кислой среде. Недавно был опубликован обзор, посвященный строению и конфигурации молекул витамина D и аналогичных секостероидов.

МЕТАБОЛИЗМ ВИТАМИНА D

Подробное выяснение путей метаболизма витамина D 3 ста­ло возможным лишь после его химического синтеза с изотопной меткой, разработки хроматографических методов разделения его метаболитов и создания способов биологической оценки эффектов как самого витамина D 3 , так и его метаболитов. 7-Дегидрохолестерин образуется в коже под действием фермента и в ус­ловиях ультрафиолетового облучения (в основном при длине волн 300-310 нм) превращается в превитамин D 3 . Послед­ний спонтанно подвергается температурной изомеризации в ви­тамин D 3 , который затем соединяется с сывороточным витамин D-связывающим глобулином (ДСГ). Комплекс витамина D 3 с белком переносится кровью в печень, где витамин D 3 гидроксилируется по 25-му углеродному атому, образуя основную фор­му витамина в плазме - 25-OH-D 3 . Это вещество в свою очередь транспортируется ДСГ в почки, где оно может подвер­гаться дальнейшему гидроксилированию в гормональную фор­му витамина D 3 -l,25-(OH) 2 -D 3 .

Синтез витамина D 3 в коже


Синтез витамина D

Современные представления о синтезе витамина D 3 в коже схематизированы на рис. 41. Как уже отмечалось, превитамин D 3 образуется в коже из 7-дегидрохолестерина. Кожа содержит большие количества этого предшественника, благодаря чему не лимитируется скорость образования превитамина. Holick и соавт. облучали кожу человека in vitro и нашли, что воз­действие света, имитирующее солнечное облучение близ эквато­ра, уже за несколько часов может обеспечить максимальное образование превитамйна D 3 в базально-клеточных слоях кожи. Некоторое время назад уже было высказано предположение, что темная пигментация кожи может полностью исключать син­тез в ней витамина D. Более поздние исследования Holick и соавт. показали, что с увеличением пигментации кожи удлиняется срок воздействия света, необходимый для максимального образования превитамина D 3 . Такое замедление образования превитамина D 3 могло бы, следовательно, снижать синтез вита­мина D 3 в сильно пигментированной коже в условиях ограничен­ности солнечного освещения. Превитамин D 3 затем подвергается в коже температурно-зависимому неферментативному превра­щению и витамин D 3 . Для превращения 50% имеющегося в ко­же провитамина Da в витамин D 3 требуется примерно 1 сут. После этого витамин D 3 связывается с ДСГ и попадает в кровь. Подробности механизма образования комплекса ДСГ - D 3 и его проникновения в кровь остаются неизвестными.

Транспорт витамина D и eго метаболитов: витамин D-связывающий глобулин

Витамин D-связывающий глобули­н синтезируется в печени и идентичен групповому специфическому белку человека (Gc), давно известному генети­кам. Генетические варианты этого белка, по-видимому, не различаются по способности связывать стерины группы витами­на D. Поскольку суммарная концентрация всех метаболитов витамина D в сыворотке в норме не достигает 10 -7 М (см. ни­же), а молярная концентрация ДСГ примерно на два порядка выше, то очевидно, что такой избыток связываю­щего белка способствует сохранению витамина D и его метабо­литов в условиях ограниченного их поступления в организм предотвращает токсичность витамина D при увеличении его потребления или синтеза в коже. ДСГ не только участвует в транспорте метаболитов витамина D в крови, но и присутствует в форме комплекса с цитозольным белком в клетках многих тканей. Недавно этот белок был индентифицирован как ак­тин. Предполагается, таким образом, что ДСГ может уча­ствовать в переносе секостероидов из внеклеточной жидкости внутрь клеток. С другой стороны, основной детерминантой транспорта стероидов в клетки может быть концентрация сво­бодных (не связанных с ДСГ) метаболитов витамина D.

Синтез 25-OH-D 3 в печени

Циркулирующий в крови витамин D быстро захватывается печенью, где он подвергается гидроксилированию по 25-му углеродному атому с образованием 25-OH-D 3 . Гидроксилирование осуществляется в основном микросомной монооксигеназой со смешанной функцией и требует присутствия молекуляр­ного кислорода, флавопротеина и цитохрома Р-450. Км этого фермента составляет примерно 10 -8 М. Активность микросомной гидроксилазы при введении витамина D 3 снижается. Кроме того, печень содержит и митохондриальную 25-гидроксилазу, требующую в качестве кофакторов железосеросодержащий бе­лок и цитохром Р-450, но обладающую гораздо большей Км (примерно 10 -6 М). Это свидетельствует о значении данно­го фермента в продукции 25-OH-D 3 только при наличии необыч­но высоких концентраций витамина D 3 . 25-Гидроксилирование обнаружено также в кишечнцке и почках птиц, но с точки зре­ния количества эти органы играют, вероятно, лишь незначитель­ную роль в общей продукции 25-OH-D 3 .

В печени может происходить и дальнейший метаболизм 25-OH-D 3 с образованием более полярных и биологически неак­тивных продуктов, что наблюдается в основном в условиях ускоренного микросомного гидроксилирования, вызванного раз­личными фармакологическими средствами.

Синтез 1,25-(OH ) 2 — D 3 и 24,25-(ОН) 2 D 3 в почках

Дальнейший метаболизм 25-OH-D 3 происходит в основном в почках. Главными метаболитами являются l,25-(OH) 2 -D 3 и 24,25-(ОН) 2 -D 3 . l,25-(OH) 2 -D 3 синтезируется 25-OН-D 3 -1 α -гидроксилазой - митохондриальной монооксигеназой со смешанной функцией, которая у млекопитающих присутствует, по-видимо­му, лишь в проксимальных канальцах, но у птиц она содер­жится не только в проксимальных канальцах, но и в клубочках. Этот фермент состбит из нескольких компонентов, включая железосеросодержащий белок, связанный с НАД, флавопротеин и цитохром Р-450, специфичный для 25-OH-D 3 . Специфич­ный компонент системы (цитохром Р-450) вводит один атом кислорода в положение 1 α . Вся эта ферментная система изуче­на почти исключительно в почках цыпленка или в первичной культуре клеток его почек. Ее К м колеблется от 1,2 до 3,6х10 -7 М, а V макс составляет примерно 5,5 моль/мг мито­хондриального белка в 1 мин. В почках млекопитающих этот фермент труднее поддается исследованию, вероятно, из-за присутствия больших количеств 25-ОН-D 3 -связывающих белков, что ограничивает доступность субстрата. Недавние исследования обнаружили, однако, 1 α -гидрокси,лазную активность в ми­тохондриях, выделенных из коркового вещества почек крыс с D-авитаминозом. К м фермента (8,9х10 -7 М) несколько выше, чем для митохондриального фермента у цыплят, хотя пос­ледние данные нуждаются в подтверждении. Фермент найден также в почечных срезах крыс, в изолированных клетках крысиной почки и в культуре клеток почки мыши. В большинстве этих исследований ферментативную активность определяли по превращению меченого 25-OH-D 3 в радиоактивные продукты, мигрирующие при высокоэффективной жидкост­ной хроматографии вместе с аутентичным l,25-(OH) 2 -D 3 . Хими­чески этот продукт был идентифицирован как 1,25-(ОН) 2 -D 3 только в гомогенах почки крысы.

В почке из 25-OH-D 3 образуется и 24,25-(ОН) 2 -D 3 . Это происходит под действием фермента, который также является мито­хондриальной оксидазой со смешанной функцией и локализует­ся у крыс, по-видимому, в проксимальных извитых и прямых почечных канальцах. Км 24-гидроксилазы митохондриальных препаратов почки цыпленка составляет примерно 1х10 -6 М, а почки крысы - около 3,8х10 -7 М.

Внепочечный синтез l ,25-(OH ) 2 — D 3 и 24,25-(OH ) 2 — D 3

После того как было показано, что в организме беременных и нефрэктомированных крыс с авитаминозом D меченый 25-OH-D 3 может превращаться в более полярный метаболит, мигрирующий вместе с l,25-(OH) 2 -D 3 , удалось выяснить роль плаценты в метаболизме 25-OH-D 3 с образованием продукта, химически идентифицированного как l,25-(OH)2-D 3 . Недавно были также опубликованы данные, показывающие, что клетки крыши черепа плода крысы в культуре способны синте­зировать вещество, мигрирующее вместе с l,25-(OH) 2 -D 3 . В противовес всем этим наблюдениям многократно сообщалось об отсутствии определимых количеств l,25-(OH) 2 -D 3 в сыворот­ке крови лишенных почек людей, жизнь которых поддержива­лась диализом, а также у нефрэктомированных неберемен­ных животных. Совсем недавно, однако, удалось определить низкую концентрацию l,25-(OH) 2 -D 3 в сыворотке крови лишен­ных почек больных. Больше того, введение таким больным витамина D2 приводило к повышению уровня l,25-(OH) 2 -D 3 в сыворотке (но не до нормы). Хотя эти наблюдения свиде­тельствуют о том, что у человека в условиях доступности боль­шие количеств предшественника (25-OH-D) немного l,25-(OH) 2 -D может образовываться и вне почек, однако в норме уровень l,25-(OH) 2 -D в сыворотке не зависит от концентрации 25-OH-D. Тем не менее современные исследования дают основания считать, что в определенных условиях (у детей и лиц с авитами­нозом D, подвергающихся ультрафиолетовому облучению) уро­вень l,25-(OH) 2 -D все же может зависеть от концентрации предшественника (25-OH-D).

Почки, по-видимому, служат основным органом, где у чело­века синтезируется 24,25-(ОН) 2 -D, так как его уровень в сы­воротке крови снижается по мере прогрессирования почечной недостаточности, становясь очень низким и часто неопредели­мым у больных, лишенных почек. Однако на животных получены данные, показывающие, что и другие ткани, в том,числе кишечник и хрящ, могут образовывать из 3 H-25-OH-D 3 меченый метаболит, обладающий теми же хрома­тографическими свойствами и чувствительностью к разрушаю­щему действию перйодата, что и подлинный 24,25-(ОН) 2 -D 3 . Кроме того, 24,25-(ОН) 2 -D 3 химически идентифицирован в плаз­ме нефрэктомированных свиней, получавших большие дозы ви­тамина D. Подобно этому, уровень 24,25-(ОН) 2 -D в сыво­ротке крови лишенных почек людей возрастает, когда они полу­чают большие дозы витамина D 2 . Таким образом, при чрез­мерно высокой концентрации 25-OH-D в сыворотке крови у че­ловека 24,25-(ОН) 2 -D может синтезироваться и вне почек.

Энтеропеченочная циркуляция метаболитов витамина D

Витамин D и его метаболиты экскретируются в основном с калом. Витамин D 3 , 25-OH-D 3 и l,25-(OH) 2 -D 3 в печени под­вергаются конъюгированию и секретируются в желчь. Имеются также данные о том, что эти метаболиты могут реабсорбироваться и реутилизироваться, формируя таким образом «запас­ной» механизм метаболизма витамина D.

Другие метаболиты витамина D

25-OH-D 3 может превращаться не только в l,25-(OH) 2 -D 3 и 24,25-(ОН) 2 -D 3 , но и в другие соединения. К ним относятся 25,26-(ОН) 2 -D 3 и 25-ОН-D 3 -26,23-лактон. Эти метаболиты, как и 24,25-(ОН) 2 -D 3 , могут подвергаться 1-гидроксилированию, об­разуя 1,24,25-(ОН) 3 -D 3 , 1,25,26-(OH) 3 -D 3 и l,25-(OH) 2 -D 3 -26,23-лактон. Кроме того, может подвергнуться окислению боковая цепь 1,25-(OH)2-D 3 , в результате чего образуется 23-кислота (кальцитроевая кислота); при окислении же боковой цепи 25-OH-D 3 образуется 24-кислота (холакальциевая кислота). Позднее были выделены 23,25-(ОН) 2 -D 3 , 25-OH-24-оксо-D 3 , 25-ОН-транс-D 3 и 19-нор-10-оксо-25-OH-D 3 . Эти метаболиты в свою очередь могут подвергаться дальнейшей трансформации. Современные данные свидетельствует о том, что биологические эффекты этих метаболитов не соответствуют таковым 1,25-(OH) 2 -D 3 , так что их физиологическая роль остается неясной. Отдельные из них (если не все) наверняка представляют собой продукты деградации.

БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ ВИТАМИНА D

Транспортные процессы в кишечнике

Кальций

Всасывание кальция в кишечнике осуществляется за счет активного транспорта против электрохимического градиента, а также (когда содержание кальция в пище и, следовательно, его концентрация в просвете кишки чрезмерно возрастают) за счет пассивного перемещения. У животных и человека с авитамино­зом D всасывание кальция в кишечнике в условиях нормально­го его поступления с пищей снижается. Введение витамина D 3 животным с авитаминозом D восстанавливает нормальную ско­рость всасывания кальция в кишечнике не ранее чем через 16 ч. Существование этого лаг-периода позволило предположить, а затем и доказать, что витамин D должен подвергнуться ка­ким-то превращениям, а в кишечнике должны произойти некото­рые изменения, прежде чем нормализуется транспорт кальция. Уже давно было показано, что 25-OH-D 3 нормализует транспорт кальция быстрее, чем это делает витамин D 3 . Затем был иден­тифицирован l,25-(OH) 2 -D 3 и установлено, что он является бо­лее эффективным и быстродействующим метаболитом витами­на D в отношении стимуляции всасывания кальция в кишечнике. В период максимальной стимуляции активного транспорта, вызванной введением меченого витамина D 3 животным с авита­минозом D, в кишечнике удается определить только меченый 1,25-(OH) 2 -D 3 . Данное соединение связывается, по-видимо­му, со специфическим рецепторным белком цитозоля клеток ки­шечника, который переносит стероид в ядро, где он комплексируется с хроматином и индуцирует синтез белка, подобно тому, как это происходит в отношении других стероидных гормонов. В ответ на действие 1,25-(ОН) 2 -О 3 образуется специфическая мРНК, кодирующая синтез специфического кальцийсвязывающего белка (СаСБ). Содержание последнего в кишечнике коррелирует с транспортом кальция в этом органе, увеличи­ваясь, когда животным с авитаминозом D вводят витамин D 3 или по мере возрастания активного транспорта кальция при ог­раничении кальция в диете, и снижаясь по мере замедления всасывания кальция в кишечнике, происходящего с возрастом. Эти данные позволяют считать, что СаСБ принимает уча­стие в активном транспорте кальция в кишечнике в качестве переносчика. С другой стороны, СаСБ появляется в кишечнике несколько позднее, чем возникает стимуляция транспорта каль­ция, вызванная введением 1,25-(ОН) 2 -D 3 животным с авитами­нозом D. Кроме того, увеличение всасывания кальция в кишеч­нике в таких условиях протекает, по-видимому, двухфазно: после начальной транзиторной стимуляции процесса регистрируется повторное и длительное его ускорение. Таким образом, СаСБ может не столько «запускать» транспорт кальция, сколь­ко поддерживать его на повышенном уровне. Предварительное введение животным с авитаминозом D ингибиторов синтеза бел­ка предотвращает действие 1,25-(ОН) 2 -О 3 на синтез СаСБ в кишечнике, но не блокирует восстановления всасывания кальция. Позднее было выдвинуто предположение, что l,25-(OH) 2 -D «запускает» транспорт кальция за счет изменения фосфолипидного состава обращенной в просвет кишечника мембраны кле­ток. Витамин D может ускорять и пассивное перемещение Са в кишечнике, так как поступление Са при введении витами­на D животным с D-авитаминозом возрастает и в том случае; когда кишечник исследуется при низкой температуре или в анаэробных условиях.

У человека в условиях насыщения витамином D всасывание кальция в кишечнике, определяемое либо как истин­ное (с помощью изотопных методик), либо как результирующее (с помощью балансовых экспериментов), прямо коррелирует с концентрациями l,25-(OH) 2 -D в интервале от нуля до верхней границы нормы. Эта зависимость необычайно чувствитель­на: у лиц, находящихся на нормальной диете, обеспечивающей поступление 10-25 ммоль кальция в день, при повышении кон­центрации l,25-(OH) 2 -D в сыворотке крови на 1 пМ всасывание кальция в кишечнике увеличивается на 0,23%, или, на 0,06 ммоль. Таким образом, при нормальном содержании каль­ция в диете всасывание его в кишечнике определяется доступ­ностью l,25-(OH) 2 -D.

Фосфат

При дефиците витамина D снижается и транспорт фосфата в кишечнике. Введение в таких условиях витамина D или 1,25-(OH) 2 -D 3 усиливает кишечное всасывание фосфата. Этот эффект обусловливается, по-видимому, присутствием имен­но l,25(OH) 2 -D 3 , так как 25-ОН-D 3 не стимулирует транспорта фосфата при введении его нефрэктомированным животным с авитаминозом D. Наибольшая стимуляция всасывания фосфата после введения l,25-(OH) 2 -D наблюдается в тощей кишке; затем - в двенадцатиперстной и подвздошной. Но хотя по этому вопросу еще имеются противоречия, по-видимому, для проявления стимуляции всасывания фосфата витамином D не­обходим кальций. Введение l,25-(OH) 2 -D 3 может усиливать ки­шечное всасывание фосфата и у человека. Однако у лишенных почек и находящихся на гемодиализе больных, у которых кон­центрацию l,25-(OH) 2 -D в сыворотке крови определить невоз­можно, всасывается значительная доля фосфата, содержащегося в пище. Это указывает на независимость кишечного всасы­вания фосфата от l,25-(OH) 2 -D 3 . У людей в условиях насыщения витамином D всасывание фосфата в кишечнике, выраженное в процентах от его поступления с пищей (при нормальных колебаниях последнего), на 1 пМ прироста концентрации l,25-(OH) 2 -D увеличивается на 0,05%.

Хотя наиболее эффективным и быстродействующим в отно­шении кишечного всасывания кальция и фосфата метаболитом витамина D является именно 1,25-(ОН) 2 -D 3 , в фармакологиче­ских дозах определенной активностью могут обладать и другие метаболиты этого витамина. В настоящее время, однако, считают, что l,25-(OH) 2 -D - единственная физиологически значи­мая форма витамина D для процессов кишечного всасывания этих минеральных веществ.

Кость

Поражение костей (рахит в период роста и остеомаляции у взрослых) - патогномоничный признак D-авитаминоза. Костная патология включает нарушение кальцификации и рассасывание эпифизарных хрящей, а также утрату способности эпифизар­ного новообразования кости наряду с метафизарным разраста­нием неминерализованного остеоидного или костного матрикса. При лечении животных и людей с D-авитаминозом соответст­вующим витамином наблюдается нормализация эпифизирной кальцификации хряща и происходит нормальный рост кости в сочетании с минерализацией остеоида, что приводит к исчезновению костной патологии. Что касается механизмов перечислен­ных влияний витамина D на кость, то здесь пока сохраняются противоречивые мнения. С одной стороны, предполагается, что нормальная минерализация костей обусловливается повыше­нием концентраций кальция и фосфата в сыворотке и внеклеточ­ной жидкости, которое в свою очередь является следствием сти­мулирующего влияния витамина D на всасывание кальция и фосфата в кишечнике. С другой стороны, витамин D или один из его метаболитов мог бы непосредственно действовать на хрящевую и костную ткани, нормализуя их минерализацию. Хо­тя известно, что передозировка витамина D вызывает деминера­лизацию скелета, a l,25-(OH) 2 -D in vitro усиливает резорбцию кости, имеются данные, свидетельствующие о способности витамина D стимулировать минерализацию кости. Например, у больных с остеомаляцией, обусловленной хронической почечной недостаточностью, искусственное повышение уровней кальция и фосфата в сыворотке крови не нормализует минерализации костей, тогда как при введении витамина D такая нормализа­ция происходит. Механизм прямого влияния витамина D на кость остается неизвестным. Однако в костных клетках присут­ствуют специфические рецепторы l,25-(OH) 2 -D, которые теоре­тически могли бы опосредовать такой эффект.

Кроме того, существуют противоречия относительно природы метаболита витамина D, необходимого для нормальной минера­лизации костей. В некоторых клинических исследованиях было показано, что при введении одного l,25(OH) 2 -D 3 больным с авитаминозом D исчезают только дефекты минерализации, но избыточные количества остеоида сохраняются. Для полной ликвидации костной патологии в этих исследованиях вводили витамин D 3 , или 25-OH-D 3 , или сочетание l,25-(OH) 2 -D 3 с 24,25-(ОН) 2 -D 3 . Отсюда следует, что для нормального образова­ния кости мог бы требоваться 24,25-(ОН) 2 -D. Позднее, однако, появились сообщения о том, что введение одного l,25-(OH) 2 -D 3 может приводить к полному излечению остеомаляции, несмотря на сохранение низких уровней 25-ОH-D и 24,25-(ОН) 2 -D в сы­воротке крови. Больше того, недавние исследования по экс­периментальному рахиту у животных показали, что ликвидации костной патологии можно добиться введением аналога витамина D-24,24-дифтор-25-ОН-D 3 , который не подвергается гидроксилированию в 24-м положении, но способен гидроксилироваться в 1-м положении. Приведенные данные свидетельствуют против роли недостаточности 24,25-(OH) 2 -D 3 в патогенезе рахи­та и остеомаляции. Для окончательного решения этого вопроса необходимы, очевидно, дальнейшие исследования.

Почки

В почках идентифицированы специфические цитозольные ре­цепторы l,25-(OH) 2 -D 3 , обладающие высоким сродством к это­му соединению. Однако влияние витамина D и его метаболитов на почки остается областью противоречий. При исследовании почечного клиренса уже давно было показано, что 25-OH-D 3 и 1,25-(OH) 2 -D 3 усиливают канальцевую реабсорбцию кальция и фосфата у собак, что должно было бы способствовать сохране­нию запасов этих веществ в организме. Однако последую­щие исследования по клиренсу у тиреопаратйреоидэктомированных крыс, получавших физиологические дозы l,25-(OH) 2 -D (что восстанавливало всасывание кальция в кишечнике до нормы), не выявили изменений экскреции кальция в расчете на единицу скорости клубочковой фильтрации по мере прогрессивного уве­личения концентрации кальция в сыворотке до нормы и выше. В отличие от этого паратиреоидный гормон (ПТГ), как и ожидалось, снижал экскрецию кальция с мочой. Такие наблю­дения должны были бы указывать на то, что l,25-(OH) 2 -D не оказывает видимого влияния на транспорт кальция в почечных канальцах. Однако дальнейшее изучение данного вопроса от­четливо продемонстрировало значение l,25-(OH) 2 -D для транс­порта кальция в других тканях, где присутствуют l,25-(OH) 2 -D и СаСБ, а также наличие рецепторов l,25-(OH) 2 -D и СаСБ в почках. В аналогичных экспериментах с определением динамики фосфата в почках тиреопаратиреоидэктомированных крыс, получавших 1,25-(ОН) 2 -D 3 , было показано торможение канальцевой реабсорбции фосфата. Этот эффект, по-види­мому, опосредуется усилением секреции фосфата более прокси­мальными сегментами канальца и, возможно, сегментом, рас­полагающимся вне дистальной извитой его части. Больше того, введение l,25-(OH) 2 -D больным с гипопаратиреозом со­провождается снижением уровня фосфата в сыворотке крови. Приведенные данные в совокупности указывают, таким об­разом, на способность витамина D увеличивать экскрецию фос­фата с мочой, причем этот эффект не связан с хорошо извест­ным фосфатурическим действием ПТГ.

У человека повышение концентрации l,25-(OH) 2 -D в сыво­ротке сопровождается возрастанием экскреции кальция с мочой. В условиях нормального потребления кальция этот эффект является, по-видимому, следствием усиления его кишечного вса­сывания и повышения концентрации в сыворотке крови, что приводит к увеличению клубочковой фильтрации кальция и (в результате снижения уровня иммунореактивного ПТГ в сыво­ротке) к торможению канальцевой реабсорбции. При низ­ком содержании кальция в диете повышение уровня 1,25-(ОН) 2 -D в сыворотке крови также сопровождается усилением экскреции кальция с мочой вследствие более эффективного его всасывания в кишечнике и резорбции костной ткани, но кальцийурическая реакция выражена все же слабее, чем в условиях нормаль­ного потребления кальция.

Прочие ткани

Обладаю­щие высоким сродством к l,25-(OH) 2 -D рецепторы и (или) за­висимый от витамина D СаСБ обнаружены не только в кишеч­нике, костях и почках, но и в молочных железах, коже, околощитовидных железах, гипофизе и поджелудочной железе. Кроме того, рецепторы были найдены в культивируемых фибробластах человека и некоторых линиях злокачественных клеток.

Рецепторы l,25-(OH) 2 -D 3 имеют константу седиментации, равную примерно 3,3S, и обладают высоким сродством к гормону: К д около 10 -10 М. Присутствие рецепторов 1,25-(ОН) 2 -D и СаСБ в молочных железах согласуется, очевидно, с наличием транспорта Са в молоко. Что касается других тканей, то они не являются общепризнанными мишенями витамина D и его метаболитов, так что роль последних в регуляции их функции оста­ется неизвестной. Можно было бы предположить, что в коже 1,25-(OH) 2 -D регулирует продукцию витамина D. 1,25-(ОН) 2 -D мог бы также облегчить поступление кальция в околощитовидные железы, усиливая тем самым его известное ингибиторное действие на секрецию ПТГ. Подобно этому, облегчая проникно­вение кальция в β-клетки поджелудочной железы, l,25-(OH) 2 -D мог бы повышать секрецию инсулина.

Возможная роль 24,25-(OH ) 2 — D

После открытия химического синтеза 24,25-(ОН) 2 -D 3 возник интерес к его возможной биологической роли, поскольку он яв­ляется основным метаболитом витамина D не только у живот­ных, но и у человека. Первые опыты на животных с D-авитаминозом показали, что биологическая активность 24,25-(ОН) 2 -D 3 сравнима с таковой его предшественника - 25-OH-D 3 . Однако эта активность, по-видимому, связана в основном с lα-гидроксилированием метаболита и образованием 1,24,25-(ОН) 2 -D 3 . Исследования, проведенные у здоровых лиц и лишенных почек больных, показали, что введение 24,25-(ОН) 2 -D могло бы стимулировать всасывание кальция в кишечнике, но в последующих наблюдениях этого подтвердить не уда­лось. Позднее было высказано предположение, что 24,25-(ОН) 2 -D 3 необходим для нормального вылупления цыплят из яиц и участвует в процессе формирования костей. Эту гипотезу подтверждают данные о том, что 24,25-(OH) 2 -D увели­чивает синтез протеогликанов в культуре хондроцитов из зон роста и что ядра этих клеток содержат специфические связы­вающие места для 24,25-(ОН) 2 -D. Однако, как отмечалось выше, введение l,25-(OH) 2 -D людям с D-авитаминозом мо­жет приводить к полному излечению остеомаляции, как это наблюдается и при костной патологии у крыс с дефицитом ви­тамина D.

Сообщалось также, что 24,25-(OH) 2 -D тормозит секрецию ПТГ у собак, а также снижает массу гипертрофированных околощитовидных желез у цыплят с дефицитом витамина D. Кроме того, имеются сообщения о присутствии специфиче­ских рецепторов 24,25-(OH) 2 -D в околощитовидных железах цыплят с рахитом. Однако скетчардовский анализ не про­водился, поэтому указанные рецепторы еще не охарактеризованы с достаточной определенностью. Таким образом, хотя важ­ная роль 24,25-(ОН) 2 -D в гомеостазе кальция вполне возможна эта гипотеза остается умозрительной и требует дополнительных подтверждений.

РЕГУЛЯЦИЯ МЕТАБОЛИЗМА ВИТАМИНА D

Концентрации витамина D и его метаболитов в плазме отражают суммарное количество ме­таболитов витаминов D 3 и D 2 , поскольку в опытах по связыва­нию, на которых основаны приведенные данные, обычно не де­лалось различия между этими формами. Основной формой ви­тамина D, присутствующей в плазме, является 25-OH-D; его средняя концентрация составляет около 60 нМ, или 25 нг/мл. Концентрации самого витамина D и 24,25-(ОН) 2 -D примерно в 10 раз ниже. Концентрация l,25-(OH) 2 -D приблизительно в 1000 раз ниже, чем 25-OH-D. Период полужизни витамина D в плазме - около 1 дня, так как он быстро превращается в 25-OH-D (что установлено для витамина D 3). Период полужиз­ни в плазме 25-OH-D, судя по результатам определения скоро­сти исчезновения введенного 3 Н-25-ОН-D 3 и наклону кривой, спада уровня 25-OH-D 3 после введения его фармакологических; доз, составляет приблизительно 3 нед. Поэтому содержание в плазме 25-OH-D позволяет, по-видимому, точнее оценивать за­пасы витамина D в организме. Период полужизни в плазме 1,25-(ОН) 2 -D 3 очень мал. Введенный в кровь 3 H-l,25-(OH) 2 -D 3 исчезает из плазмы с полупериодом менее 10 мин, хотя полупериод исчезновения из плазмы l,25-(OH) 2 -D после его приема как у здоровых взрослых людей, так и у лишенных почек боль­ных составляет примерно 6 ч (R. W. Gray, J. Lemann, неопубли­кованные данные). Поэтому уровень l,25-(OH) 2 -D в плазме прежде всего отражает продукцию этого стероидного гормона.

25-OH-D 3

Синтез 25-OH-D 3 в печени, по-видимому, не является объектом жесткого контроля. Концентрация данного вещества в сыворот­ке, служащая наилучшим показателем запасов витамина D в ор­ганизме, зависит главным образом от потребления этого вита­мина и синтеза его в коже под действием солнечного света. В Англии, где в молоко не добавляют витамин D 2 , концентра­ция в сыворотке 25-OH-D у здоровых лиц колеблется примерно от 30 нМ в конце зимы до 60 нМ в конце лета, что связано с интенсивностью солнечного облучения. Аналогичные, хотя и слабее выраженные сезонные колебания уровня 25-OH-D в сы­воротке крови отмечены в США, где его минимальная кон­центрация зимой выше, вероятно, вследствие повсеместного добавления витамина D 2 в молоко и что важнее, более высокого уровня 25-OH-D 3 в летнее время. Последнее может отчасти объясняться сохранением превитамина D 3 в коже, так как ДСГ обладает гораздо большим сродством к витамину D 3 , чем к превитамину D 3 . Искусственное облучение 600 см 2 кожи в тече­ние примерно 15 мин за 2 нед. увеличивает содержание 25-OH-D в сыворотке на 4-11 нМ. Расчеты показывают, что каж­дый квадратный сантиметр облученной кожи мог бы продуци­ровать до 0,024 нмоль 25-OH-D 3 . Отсюда следует, что солнечное облучение даже ограниченных участков кожи могло бы быть наиболее важной детерминантой содержания 25-OH-D в сыво­ротке и общих запасов витамина D в организме. Последние, та­ким образом, зависят в основном от географической широты проживания, сезона года и образа жизни.

Метаболизм и экскреция 25-OH-D 3 исследованы у здоровых взрослых людей после инъекций 3 H-25-OH-D 3 . За 1 нед. с мочой выделяется примерно 10% вещества (почти исключительно в виде водорастворимых конъюгатов его метаболитов); еще 15% экскретируется с калом также в основном в виде конъюгатов и метаболитов. Предполагают, что 25-OH-D 3 метаболизируется и путем окисления боковой цепи.

l,25-(OH) 2 -D 3

Поскольку почечный 25-ОН-Бз-1а-гидроксилазный комплекс локализован в митохондриях, регуляция синтеза 1,25-(ОН) 2 -Оз этой ферментной системой предполагает существование последо­вательности сигналов. Гормональные или нервные регуляторные стимулы должны были бы действовать на клеточную мембрану, генерируя «вторые мессенджеры», такие как циклический АМФ, или изменяя внутриклеточную концентрацию ионов или субстра­тов и кофакторов, необходимых для продукции энергии в мито­хондриях.

Дефицит витамина D у человека, естественно, сопровожда­ется резким снижением сывороточных концентраций 25-OH-D, 24,25-(ОН) 2 -D и l,25-(OH) 2 -D. У таких больных отмечаются также гипокальциемия разной степени выраженности, вторич­ный гиперпаратиреоз и гипофосфатемия. При назначении им физиологических доз витамина D концентрация l,25-(OH) 2 -D в сыворотке быстро возрастает, превышая нормальный уровень, что свидетельствует о стимуляции почечной 25-OH-D 3 -lα-гидроксилазы и субстратной регуляции продукции гормона. По мере того как у больных с исходным дефицитом витамина D его запасы в организме восстанавливаются, уровень l,25-(OH) 2 -D снижается до нормы. Подобно этому, у животных с D-авитаминозом синтез 1,25-(OH) 2 -D 3 оказывается повышенным по сравнению с таковым у животных с достаточными запасами ви­тамина D в организме, что регистрируется по превращению 3 H-25-OH-D 3 в 3 H-l,25-(OH) 2 -D 3 как in vivo, так и на изоли­рованных почечных канальцах. Больше того, введение ви­тамина D или l,25-(OH) 2 -D 3 животным с D-авитаминозом быст­ро снижает активность 1α-гидроксилазы in vivo и in vitro. В ме­ханизме подавления активности 25-ОН-D-1α-гидроксилазы гор­моном (l,25-(OH) 2 -D) может играть роль ингибирование транс­крипции генов.

Кальций

В ранних исследованиях на крысах было показано, что умень­шение содержания кальция в диете увеличивает превращение 3 H-25-OH-D 3 в 3 H-l,25-(OH) 2 -D 3 . Затем было установлено, что дефицит кальция повышает и концентрацию l,25-(OH) 2 -D в плазме, причем этот эффект практически исчезал у паратиреоидэктомированных животных. Искусственная гипокальцие­мия или сокращение количества кальция в пище увеличивает содержание в плазме l,25-(OH) 2 -D и у человека, что связано с возрастанием концентрации паратиреоидного гормона в сыво­ротке. Кроме того, уровень l,25-(OH) 2 -D в плазме часто оказы­вается повышенным у больных с первичным гипертиреозом; он также возрастает после инфузий ПТГ. Все эти наблюдения свидетельствуют о том, что дефицит кальция либо непосредственно, либо через стимуляцию секреции ПТГ увели­чивает синтез l,25-(OH) 2 -D в почках. При ограничении кальция в диете уровень l,25-(OH) 2 -D в сыворотке несколько повышает­ся даже у паратиреоидэктомированных животных, но сни­женная концентрация кальция в среде не стимулирует активно­сти фермента, образующего l,25-(OH) 2 -D, в культуре почечных клеток цыпленка. В то же время добавление ПТГ к среде куль­тивируемых почечных клеток усиливает синтез l,25-(OH) 2 -D, что доказывает непосредственность действия паратиреоидного гормона. Повышение или снижение содержания l,25-(OH) 2 -D в сыворотке крови человека в усло­виях дефицита или избытка кальция тесно коррелирует с не­большими изменениями уровня ПТГ в сыворотке. Эти резуль­таты указывают на важную роль системы Са - ПТГ в регуля­ции содержания l,25-(OH) 2 -D в плазме человека.

Фосфат

Ограничение фосфатов в диете усиливает у животных пре­вращение 3 Н-25-ОН-D 3 в 3 H-l,25-(OH) 2 -D 3 . Дефицит фосфа­та повышает и концентрацию l,25-(OH) 2 -D в сыворотке крови животных и человека, причем данный эффект не зависит от функции околощитовидных желез. Механизм такого эффек­та неизвестен. Предполагают, что он опосредуется уменьше­нием содержания неорганического фосфора в почечных клетках P0J но снижение концентрации фосфата в среде не стимулиро­вало синтез l,25-(OH) 2 -D культурой почечных клеток цыплен­ка. У крыс повышение содержания l,25-(OH) 2 -D в плазме в от­вет на ограничение фосфора в диете (что отражает почечный синтез гормона) блокируется гипофизэктомией, несмот­ря на сохранение гипофосфатемии. Не исключено, таким обра­зом, гормональное опосредование стимуляции почечного синтеза 1,25-(OH) 2 -D при дефиците фосфора.

Другие факторы

Изучался и ряд других возможных факторов регуляции по­чечного синтеза l,25-(OH) 2 -D. У молодых растущих животных, у детей и подростков уровень l,25-(OH) 2 -D в плазме выше, чем после наступления половой зрелости. Содержание 1,25-(OH) 2 -D в плазме уменьшается и при старении. Пред­полагалось поэтому, что такие эффекты могут быть связаны с гормоном роста. Гипофизэктомия снижает уровень l,25-(OH) 2 -D в плазме крыс, причем это влияние нивелируется гормоном рос­та (СТГ). Больше того, введение СТГ инактным крысам увеличивает содержание l,25-(OH) 2 -D в плазме. С другой стороны, введение СТГ детям с недостаточностью гормона рос­та не повышает сывороточного уровня l,25-(OH) 2 -D, несмотря на стимуляцию роста; содержание l,25-(OH) 2 -D не всегда повышено и при активной акромегалии. Таким образом, роль СТГ в качестве стимул# синтеза l,25-(OH) 2 -D у человека остается невыясненной. С тем же основанием можно предпола­гать и участие других факторов, приводящих усиление всасыва­ния кальция в кишечнике под действием l,25-(OH) 2 -D в соот­ветствие с потребностями растущего скелета, для чего необхо­димы дальнейшие исследования.

К другим физиологическим состояниям, при которых возни­кает потребность организма в ускоренном всасывании кальция, относятся беременность, образование скорлупы яиц у птиц и лактация. У женщин уровень l,25-(OH) 2 -D в плазме по мере развития беременности повышается. Как уже отмечалось, 1,25-(OH) 2 -D может продуцироваться плацентой, что, веро­ятно, в какой-то степени и определяет такое повышение. Сопровождается ли беременность дополнительной независимой стимуляцией почечного синтеза l,25-(OH) 2 -D - не известно. Следует отметить, однако, что у птиц эстрогены стимулируют почечный синтез l,25-(OH) 2 -D, а, как известно, концентра­ция эстрогенов в сыворотке крови по мере развития беременно­сти возрастает. Повышение уровня l,25-(OH) 2 -D в плазме при беременности отчасти может быть связано с увеличением концентрации ДСГ в сыворотке, наблюдающимся в этот период. Во время лактации содержание 1,25-(ОH) 2 -D в сыворотке также повышено. В отношении механизма этого явления имеются противоречия. При кормлении грудью возрастает уро­вень пролактина, а на птицах показано, что пролактин стимули­рует синтез l,25-(OH) 2 -D в почках. Однако у женщин с гиперпролактинемическим синдромом галактореи - аменореи уровень l,25-(OH) 2 -D в плазме не повышен.

Хорошо известно, что метаболический ацидоз сопровождается гиперкальциурией, что требует оценки метаболизма витамина D при ацидозе. В условиях метаболического ацидоза синтез 1,25-(OH) 2 -D у животных с D-авитаминозом тормозится, но у человека в отсутствие дефицита витамина D легкий аци­доз, хотя он и сопровождается повышенной экскрецией кальция с мочой, не вызывает изменений уровня l,25-(OH) 2 -D в сыво­ротке. Кроме того, у человека метаболический ацидоз не вызывает видимых изменений всасывания кальция в кишечнике. Таким образом, в патогенезе характерной для метаболи­ческого ацидоза кальциурии у человека в условиях отсутствия дефицита витамина D изменения метаболизма последнего, по-видимому, не играют никакой роли.

У здорЬвого взрослого человека 3 H-l,25-(OH) 2 -D уже в тече­ние 4-6 ч превращается в более полярные соединения. Около 15-20% его выводится за 1 нед с мочой, главным обра­зом в виде конъюгатов этих более полярных метаболитов, тогда как с калом за то же время выводится примерно 50% (также в виде более полярных метаболитов и конъюгатов). Осталь­ная часть распадается, вероятно, при окислении боковой цепи. Можно полагать; что у здорового человека именно синтез 1,25-(OH) 2 -D, а не его быстрый метаболизм, является основной детерминантой концентрации гормона в плазме.

Регуляция уровня 24,25-(OH ) 2 — D

Содержание 24,25-(ОН) 2 -D в плазме при D-авитаминозе у человека, естественно, снижается до трудно определяемых значений; это вещество появляется в сыворотке только после восстановления в организме запасов его предшественни­ков - 25-OH-D. В отсутствие дефицита витамина D сывороточ­ная концентрация 24,25-(OH) 2 -D у человека прямо коррелирует с концентрацией предшественника (25-OH-D). Таким обра­зом, синтез 24,25-(OH) 2 -D зависит, по-видимому, в основном от доступности 25-OH-D. Нет данных, которые указывали бы на регуляцию синтеза 24,25-(OH) 2 -D (при отсутствии дефицита ви­тамина D) кальцием, фосфором или ПТГ. Как отмечалось выше, вопрос о том, является ли 24,25-(ОН) 2 -D просто начальным продуктом распада витамина D или он обладает физиологиче­ской гормональной активностью, до сих пор не решен.

ЗАБОЛЕВАНИЯ, СВЯЗАННЫЕ С ВИТАМИНОМ D

Выяснение метаболизма витамина D и процессов его физио­логической регуляции позволяет последовательно проанализиро­вать результаты нарушения продукции и действия этого витами­на, а также результаты избыточного его потребления или акти­вации отдельных этапов его метаболизма.

Недостаточность витамина D : рахит и остеомаляция

Патогномоничными признаками рахита и остеомаляции яв­ляются деформация скелета у детей, боли в костях, переломы, и слабость проксимальных мышц. Рахит характеризуется нару­шением созревания и кальцификации хрящей и костей, а остео­маляция, возникающая после завершения роста скелета, - на­рушением минерализации костей. В табл. 13 перечислены основ­ные нарушения метаболизма витамина D, приводящие к era недостаточности и, следовательно, к патологии минерального обмена.

Кожа

Так как синтез витамина D в коже осуществляется нефер­ментативным путем, какие-либо внутренние дефекты этого про­цесса неизвестны. Недостаточный кожный синтез витамина D обусловливается скорее всего недостатком солнечного облучения в силу различных обстоятельств. В соответствии с этим приоб­ретенная недостаточность витамина D наблюдалась при отсут­ствии солнечного облучения, особенно среди пожилых лиц или хронически больных, не выходящих из дома или больничной палаты. В США дефицит витамина D встречается редко, что связано, вероятно, с достаточным пребыванием на солнце. Не исключено также, что потребность в витамине D частично покрывается поливитаминными добавками, широко распростра­ненными в практике кормления детей, и, кроме того, добавле­нием витамина D к молоку (обычно около 400 ME, или 10 мкг витамина D 2 на 1 л). В Англии в отличие от США рахит у де­тей и подростков, принадлежащих к популяции иммигрантов из азиатских стран, остается важной проблемой. Механизмы воз­никновения D-авитаминоза в этой группе населения (они иссле­дованы недостаточно) могут быть связаны с ограниченностью» солнечного облучения. Предполагается, кроме того, роль по­требления с пищей больших количеств зерновых продуктов, со­держащих фитат, что могло бы увеличивать потерю витамина D с калом и затруднять всасывание кальция в кишечнике.

Печень

Генетическая недостаточность печеночной 25-гидроксилазьв не описана. Однако в печени синтезируется не только 25-ОН-D 3 , но и ДСГ. Кроме того, для всасывания витамина D в кишечни­ке и поддержания энтеропеченочной циркуляции может иметь важное значение и нормальное желчеобразование. Поэто­му при тяжелых заболеваниях печени и желчных путей иногда возникает остеомаляция. Возможной причиной остеомаляции, нередко встречающейся у больных, длительно получающих противосудорожные средства (фенобарбитал и фенитоин), считают ускорение распада витамина D и его метаболитов в печени за счет активации микросомной оксидазной системы. Не исклю­чено также, что эти лекарственные вещества способны непосред­ственно снижать всасывание кальция и фосфора в кишечнике. К остеомаляции могут приводить и заболевания кишечни­ка как вследствие разрыва энтеропеченочной циркуляции вита­мина D, так и в результате прямого нарушения всасывания кальция и фосфата.

Почки

Причиной рахита в некоторых редких случаях является ге­нетическая недостаточность синтеза l,25-(OH) 2 -D в почках. Су­ществование такого нарушения вначале было доказано чисто логическим путем: по отсутствию терапевтического эффекта фармакологических доз витамина D или 25-OH-D 3 у тех детей с заболеванием костей, у которых полное выздоровление насту­пало при введении физиологических доз l,25-(OH) 2 -D 3 (1,2-- 2,4 нмоль/сут, или 0,5-1,0 мкг/сут). Позднее у таких де­тей были отмечены нормальные уровни 25-OH-D и очень низкие концентрации l,25-(OH) 2 -D в сыворотке, что указывало на нарушение синтеза последнего. Этот дефект, наследуемый как аутосомно-рецессивный признак, получил название витамин D-зависимого рахита I типа.

Среди больных с нефротическим синдромом и нормальной скоростью клубочковой фильтрации симптомы костного заболе­вания встречаются редко, но гистологически выявляются приз­наки остеомаляции. Уровни 25-OH-D, l,25-(OH) 2 -D и 24,25-(OH) 2 -D в этих случаях снижены, что отражает возраста­ние потерь витамина D и его метаболитов с мочой, вероятно, в связи с аналогичными потерями ДСГ. Молекулярная мас­са и изоэлектрическая точка ДСГ сходны с таковыми альбумина, и это могло бы способствовать его фильтрации при увеличе­нии проницаемости клубочков. Хотя у больных нефрозом поте­ри 25-OH-D с мочой могут достигать 10 нмоль и более в сутки, они все же меньше, чем расчетная средняя величина нормаль­ного суточного кругооборота этого соединения у здоровых лю­дей. Поэтому потеря 25-OH-D с мочой может быть не единственной причиной его низкого уровня в сыворотке крови у таких больных. Больше того, нет каких-либо указаний на возникновение нефротического синдрома в ходе прогресси­рующего поражения клубочков, чрезвычайно часто сопровож­дающегося остеодистрофией при наступлении почечной недоста­точности. Можно полагать, таким образом, что потери с мочой метаболитов витамина D и ДСГ слабо влияют на сывороточную концентрацию несвязанного (свободного) 25-OH-D или 1,25-(OH) 2 -D, которая в основном и определяет биологические эф­фекты витамина D.

У некоторых больных с хронической почечной недостаточ­ностью, особенно у детей, рахит возникает на фоне как будто нормального потребления витамина D с пищей. В костных биоптатах взрослых больных с хроническим заболеванием почек и поражением костей, называемым почечной остеодистрофией, час­то обнаруживают не только изменения, обусловленные вторич­ным гиперпаратиреозом, но и различной степени остеомаляцию. Давно и хорошо известно также, что у больных с хрони­ческим заболеванием почек нарушено всасывание кальция в ки­шечнике. Почти 40 лет назад показано, что всасывание кальция в кишечнике у больных с почечной остеодистрофией и выра­женной почечной недостаточностью составляет в среднем лишь 1,8 ммоль/сут, или всего 7% от количества кальция, содер­жавшегося в диете, тогда как у здоровых людей, получавших ту же диету, обеспечивающую поступление примерно 27 ммоль кальция в сутки, всасывание достигает 8,1 ммоль/сут, или 28%. Чрезвычайно низкое всасывание кальция в кишечнике у боль­ных с почечной остеодистрофией не поддается терапии физио­логическими дозами витамина D, которые у больных с D-авитаминозом излечивают рахит. Как отмечалось выше, всасывание кальция в кишечнике зависит в основном от кон­центрации l,25-(OH) 2 -D в плазме, которая в свою очередь должна определяться способностью почек синтезировать этот гормон. Недавние наблюдения, проведенные среди взрослых больных с почечными заболеваниями, обнаружили нормальный или даже несколько повышенный уровень 1,25-(ОН) 2 -D в плаз­ме в период умеренного снижения скорости клубочковой филь­трации (примерно до 50 мм/мин); вероятно, это обусловлено развитием вторичного гиперпаратиреоза, характерного для ран­них стадий почечной недостаточности. Кроме того, у таких больных всасывание кальция в кишечнике оказывалось обычно в пределах нормы. С прогрессированием почечной недоста­точности содержание l,25-(OH) 2 -D в плазме снижается и достигает очень низкого или неопределимого уровня у лишенных почек больных, находящихся на диализе. При падении СКФ ниже 50 мл/мин наблюдалось и прогрессивное уменьше­ние всасывания кальция в кишечнике. Имеется сообщение о том, что у детей содержание l,25-(OH) 2 -D в плазме может снижаться уже на ранних стадиях почечной недостаточности. Хотя частое поражение канальцево-интерстициальной тка­ни у детей могло бы за счет избирательного повреждения ка­нальцев ограничивать синтез l,25-(OH) 2 -D оставшейся почечной тканью, все же снижение уровня этого соединения в плазме вы­является в таких случаях не всегда.

Пероральное введение l,25-(OH) 2 -D больным с хронически­ми заболеваниями почек усиливает всасывание кальция в ки­шечнике и прямо зависит от дозы. Примерно 1,6 нмоль, или 0,68 мкг 1,25-(ОН) 2 -D 3 в сутки (т. к. количество, близкое к величине расчетной скорости кругооборота в норме, повышает всасывание кальция в кишечнике до уров­ня, наблюдаемого у здорового человека. Таким образом, почеч­ная недостаточность, по-видимому, не сопровождается значи­тельным нарушением реакции на 1,25-(ОН) 2 -D 3 . Длительное его введение при хронической почечной недостаточности может, сле­довательно, повышать концентрацию кальция в сыворотке, сни­жать сывороточный уровень ПТГ и щелочной фосфатазы и спо­собствовать ликвидации почечной остеомаляции. Однако у некоторых больных с почечной недостаточностью и изолиро­ванной остеомаляцией (без биохимических или гистологических признаков гиперпаратиреоза) введение 1,25-(OH) 2 -D быстро приводит к гиперкальциемии, но не излечивает заболевания кос­тей. Хотя эти данные позволяют предполагать дефицит не только l,25-(OH) 2 -D, но и какого-то другого метаболита вита­мина D у соответствующих больных, результаты недавних ис­следований указывают на то, что остеомаляция в таких случаях могла бы быть связанной с отравлением алюминием. По­ка не известно, могут ли введение 1,25-(ОН) 2 -D 3 и, следователь­но, поддержание его нормальной концентрации в сыворотке на­ряду с коррекцией уровня фосфата в ней на ранних стадиях по­чечной недостаточности предупреждать развитие почечной остеодистрофии» по мере прогрессирования этой недостаточно­сти. Поскольку l,25-(OH) 2 -D усиливает всасывание кальция и фосфора в кишечнике, возникающее в результате этого повыше­ние их содержания в сыворотке могло бы вызвать кальцифика­цию мягких тканей и тем самым ускорять развитие почечной недостаточности.

Концентрация l,25-(OH) 2 -D в сыворотке снижена или неаде­кватно возрастает при некоторых расстройствах, сопровождаю­щихся нарушением регуляции синтеза этого соединения в поч­ках. Низкий уровень l,25-(OH) 2 -D в сыворотке отмечается у больных с послеоперационным или идиопатическим гипопаратиреозом. Введение таким больным экстракта околощитовидных желез нормализует содержание этого соединения в сы­воротке, что может объясняться как непосредственным дейст­вием ПТГ, так и сопутствующей фосфатурией и уменьшением концентрации фосфата в сыворотке. У больных с псевдогипопаратиреозом уровень l,25-(OH) 2 -D в сыворотке также снижен, но он не повышается после введения экстракта околощитовид­ных желез. Однако, введение дибутирил-цАМФ больным с псевдогипопаратиреозом I типа увеличивает сывороточную концентрацию l,25-(OH) 2 -D. Дибутирил-цАМФ действует, но всей вероятности, за счет «обхода» имеющегося у таких вольных дефекта белка, сопрягающего взаимодействие рецеп­тора ПТГ с аденилатциклазой, Снижение уровня 1,25-(OH) 2 -D в сыворотке крови у больных с гипопаратиреозом и псевдогипопаратиреозом, по-видимому, играет роль в патогенезе возникающей при этом гипокальциемии, так как его введение может в таких случаях поддерживать нормальную концентра­цию кальция в сыворотке.

Возможность нарушения метаболизма витамина D изучали также при состояниях, связанных с гипофосфатемией, сопровож­дающейся рахитом или остеомаляцией. У больных с Х-сцепленным гипофосфатемическим рахитом концентрация l,25-(OH) 2 -D в сыворотке может быть ниже, чем у здоровых людей соответствующего возраста, что свидетельствует о нарушении син­теза этого вещества в дополнение к известному основному де­фекту в транспорте фосфата. Существует экспериментальная модель Х-сцепленного гипофосфатемического рахита у мышей, у которых также обнаруживают несколько пониженную концентрацию l,25-(OH) 2 -D в плазме. Больше того, при огра­ничении фосфата в их пище эта концентрация резко снижа­ется, тогда как при ограничении Са она повышается. Эти данные свидетельствуют в пользу точки зрения, согласно кото­рой при Х-сцепленном гипофосфатемическом рахите нарушается регуляция активности 1α-гидроксилазы фосфатом. Состояние скелета у таких больных улучшается при введении им (наряду с добавками фосфата) физиологических доз l,25-(OH) 2 -D. Ана­логичное нарушение регуляции почечного синтеза l,25-(OH) 2 -D фосфатом может происходить у больных с приобретенной гипофосфатемической остеомаляцией, наблюдаемой при мезенхи­мальных опухолях.

Ткани-мишени

За последние несколько лет появились описания случаев ра­хита на фоне повышенного уровня l,25-(OH) 2 -D в сыворотке у детей. У некоторых больных, помимо поражения костей, отмеча­ются алопеция и (или) аномалии зубов. Недавно проведенные исследования на культуре фибробластов кожи от таких боль­ных выявили отсутствие или нарушение рецепторов l,25-(OH) 2 -D, которые определяются в культивируемых фибробластах у здоровых лиц. Эти примеры, таким образом, доказывают суще­ствование болезни, которая может быть следствием аномалии рецепторов, опосредующих действие метаболитов витамина D.

ИЗБЫТОК ВИТАМИНА D

Интоксикация витамином D

Избыточное потребление витамина D - 100 000 ЕД/сут или более (свыше 6,5 мкмоль, или 2,5 мг/сут) сопровождается гиперкальциемией и метастазирующей кальцификацией многих органов. Эта патология является, по-видимому, результатом не­посредственного действия витамина D или, что более вероятно, 25-ОН-D 3 на ткани-мишени, так как содержание l,25-(OH) 2 -D в плазме остается нормальным. Гиперкальциемия часто сохраняется даже после отмены витамина D, что объясняется, очевидно, длительностью периода полужизни 25-OH-D, равно как и накоплением витамина D в жировой ткани, мышцах и пе­чени. При терапевтическом использовании 25-OH-D 3 или l,25-(OH) 2 -D 3 также имеется опасность возникновения гипергкальциемии и кальцификации мягких тканей, но при отмене 1,25-(OH) 2 -D 3 она вскоре исчезает вследствие быстрого клирен­са этого метаболита.

Первичный гиперпаратиреоз

Гиперпаратиреоз иногда сопровождается повышением уровня l,25-(OH) 2 -D в плазме, что отражает стимулирующее влияние ПТГ на почечный синтез этого соединения. С увеличением его концентрации в плазме у таких больных усиливается всасывание кальция в кишечнике и экскреция кальция с мочой. Имеются данные, что у больных первичным гиперпаратиреозом с повышенным уровнем l,25-(OH) 2 -D в плазме частота нефролитиаза как осложнения основного заболевания возрас­тает вследствие более выраженной гиперкальциурии. Одна­ко по этому вопросу еще сохраняются противоречия.

Идиопатическая гиперкальциурия

У ряда больных с нефролитиазом гиперкальциурия регистри­руется при отсутствии гиперкальциемии. В таких случаях гово­рят об идиопатической гиперкальциурии. Известно, что у этих больных всасывание кальция в кишечнике ускорено, а в недавних исследованиях у них отмечается также повышение уровря. l,25-(OH) 2 -D в плазме, что, вероятно, и обусловливает усиление всасывания кальция. По поводу действия меха­низма активации почечного синтеза l,25-(OH) 2 -D у таких боль­ных сохраняются противоречивые мнения. У некоторых из них, возможно, имеется первичный дефект, заключающийся в потер0 кальция через почки, а также легкий вторичный гиперпаратиреоз; у других - наличие гипофосфатемии и, следовательно, ка­кое-то нарушение метаболизма фосфата, приводящее к актива­ции синтеза l,25-(OH) 2 -D. Возможность существования иных, механизмов активации его синтеза у больных этой группы оста­ется неизвестной.

Саркоидоз

Саркоидоз может сопровождаться гиперкальциурией, гиперкальциемией и реже нефролитиазом или нефрокальцинозом. По­казано, что гиперкальциурия и гиперкальциемия при саркоидозе сопровождают усиление всасывания в кишечнике и повышение чувствительности этого процесса к витамину D. Уровень 1,25-(OH) 2 -D в сыворотке у таких больных может быть исходно повышенным или чрезмерно возрастать при введении витами­на D 2 . Так как у здоровых людей введение витамина D 2 не увеличивает содержания l,25-(OH) 2 -D в сыворотке, данные на­блюдения указывают на нарушение регуляции синтеза послед­него при саркоидозе, при котором он оказывается зависимым от доступности предшественников. Недавнее сообщение о лишен­ном почек и находящемся на диализе больном с саркоидозом и гиперкальциемией, у которого содержание l,25-(OH) 2 -D в сы­воротке было повышенным, свидетельствует о возможности внепочечной продукции l,25-(OH) 2 -D при саркоидозе (предпо­ложительно - при саркоидной гранулеме).

Запись на прием к эндокринологу

Уважаемые пациенты, Мы предоставляем возможность записаться напрямую на прием к доктору, к которому вы хотите попасть на консультацию. Позвоните по номеру,указанному вверху сайта, вы получите ответы на все вопросы. Предварительно, рекомендуем Вам изучить раздел .

Как записаться на консультацию врача?

1) Позвонить по номеру 8-863-322-03-16 .

1.1) Или воспользуйтесь звонком с сайта:

Заказать звонок

Позвонить врачу

1.2) Или воспользуйтесь контактной формой.