Сообщение про прямолинейное и криволинейное движение. Прямолинейное и криволинейное движение

Движение – это изменение положения
тела в пространстве относительно других
тел с течением времени. Движение и
направление движения характеризуются в
том числе и скоростью. Изменение
скорости и сам вид движения связаны с
действием силы. Если на тело действует
сила, то тело изменяет свою скорость.

Если сила направлена параллельно
движению тела, в одну сторону, то такое
движение будет прямолинейным.

Криволинейным будет такое движение,
когда скорость тела и сила, приложенная к
этому телу, направлены друг относительно
друга под некоторым углом. В этом случае
скорость будет изменять свое
направление.

Итак, при прямолинейном
движении вектор скорости направлен в ту
же сторону, что и сила, приложенная к
телу. А криволинейным
движением является такое движение,
когда вектор скорости и сила,
приложенная к телу, расположены под
некоторым углом друг к другу.

Центростремительное ускорение

ЦЕНТРОСТРЕМИТЕЛЬНОЕ
УСКОРЕНИЕ
Рассмотрим частный случай
криволинейного движения, когда тело
движется по окружности с постоянной по
модулю скоростью. Когда тело движется
по окружности с постоянной скоростью, то
меняется только направление скорости. По
модулю она остается постоянной, а
направление скорости изменяется. Такое
изменение скорости приводит к наличию у
тела ускорения, которое
называется центростремительным.

Если траектория движения тела является
кривой, то ее можно представить как
совокупность движений по дугам
окружностей, как это представлено на рис.
3.

На рис. 4 показано, как изменяется направление
вектора скорости. Скорость при таком движении
направлена по касательной к окружности, по дуге
которой движется тело. Таким образом, ее
направление непрерывно меняется. Даже если
скорость по модулю остается величиной постоянной,
изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет
направлено к центру окружности. Поэтому
оно называется центростремительным.
Рассчитать его можно по следующей
формуле:

Угловая скорость. связь угловой и линейной скоростей

УГЛОВАЯ СКОРОСТЬ. СВЯЗЬ
УГЛОВОЙ И ЛИНЕЙНОЙ
СКОРОСТЕЙ
Некоторые характеристики движения по
окружности
Угловая скорость обозначается греческой
буквой омега (w), она говорит о том, на какой
угол поворачивается тело за единицу времени.
Это величина дуги в градусной мере,
пройденной телом за некоторое время.
Заметьте, если твердое тело вращается, то
угловая скорость для любых точек на этом теле
будет величиной постоянной. Ближе точка
располагается к центру вращения или дальше –
это не важно, т.е. от радиуса не зависит.

Единицей измерения в этом случае будет
либо градус в секунду, либо радиан в
секунду. Часто слово «радиан» не пишут, а
пишут просто с-1. Для примера найдем,
чему равна угловая скорость Земли. Земля
делает полный поворот на 360° за 24 ч, и в
этом случае можно говорить о том, что
угловая скорость равна.

Также обратите внимание на взаимосвязь угловой
скорости и линейной скорости:
V = w . R.
Необходимо отметить, что движение по
окружности с постоянной скоростью – это частный
случай движения. Однако движение по окружности
может быть и неравномерным. Скорость может
изменяться не только по направлению и оставаться
одинаковой по модулю, но и меняться по своему
значению, т.е., кроме изменения направления,
существует еще и изменение модуля скорости. В
этом случае мы говорим о так называемом
ускоренном движении по окружности.

Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Если ускорение материальной точки во все моменты времени равно нулю, то скорость ее движения постоянна по величине и по направлению. Траектория в этом случае представляет собой прямую линию. Движение материальной точки в сформулированных условиях называют равномерным прямолинейным. При прямолинейном движении центростремительная составляющая ускорения отсутствует, а поскольку движение равномерное, то и касательная составляющая ускорения равна нулю.

Если ускорение остается постоянным во времени (), то движение называют равнопеременным или неравномерным. Равнопеременное движение может быть равноускоренным, если а > 0, и равнозамедленным, если а < 0. В этом случае мгновенное ускорение оказывается равным среднему ускорению за любой промежуток времени. Тогда из формулы (1.5) следует а = Dv/Dt = (v-v o)/t, откуда

(1.7)

где v o - начальная скорость движения при t=О, v - скорость в момент времени t.

Согласно формуле (1.4) ds = vdt. Тогда

Поскольку для равнопеременного движения a=const, то

(1.8)

Формулы (1.7) и (1.8) справедливы не только для равнопеременного (неравномерного) прямолинейного движения, но также для свободного падения тела и для движения тела, брошенного вверх. В последних двух случаях а = g = 9,81 м/с 2 .

Для равномерного прямолинейного движения v = v o = const, а = 0, и формула (1.8) принимает вид s = vt.

Движение по окружности является простейшим случаем криволинейного движения. Скорость v движения материальной точки по окружности называют линейной. При постоянной по модулю линейной скорости движение по окружности является равномерным. Касательное ускорение материальной точки при равномерном движении по окружности отсутствует, а t = 0. Это значит, что отсутствует изменение скорости по модулю. Изменение вектора линейной скорости по направлению характеризуется нормальным ускорением, а n ¹ 0. В каждой точке круговой траектории вектор а n направлен по радиусу к центру окружности.

а n =v 2 /R, м/с 2 . (1.9)

Полученное ускорение действительно является центростремительным (нормальным), так как при Dt->0 Dj тоже стремится к нулю (Dj->0) и векторы и будут направлены вдоль радиуса окружности к ее центру.

Наряду с линейной скоростью v равномерное движение материальной точки по окружности характеризуется угловой скоростью. Угловая скорость представляет собой отношение угла поворота Dj радиуса-вектора к интервалу времени, за который этот поворот произошел,

Рад/с (1.10)

Для неравномерного движения используется понятие мгновенной угловой скорости

.

Интервал времени t, в течение которого материальная точка совершает один полный оборот по окружности, называют периодом вращения, а величину, обратную периоду, - частотой вращения: n = 1/T, с -1 .


За один период угол поворота радиус-вектора материальной точки равен 2π рад, поэтому , Dt = Т, откуда период вращения , а угловая скорость оказывается функцией периода или частоты вращения

Известно, что при равномерном движении материальной точки по окружности путь, ею пройденный, зависит от времени движения и линейной скорости: s = vt, м. Путь, который проходит материальная точка по окружности радиусом R, за период, равен 2πR. Время, необходимое для этого, равно периоду вращения, то есть t = Т. И, следовательно,

2πR = vT, м (1.11)

и v = 2nR/T = 2πnR, м/с. Поскольку угол поворота радиус-вектора материальной точки за период вращения Т равен 2π, то, исходя из (1.10), при Dt = Т, . Подставляя в (1.11), получим и отсюда находим связь между линейной и угловой скоростью

Угловая скорость - векторная величина. Вектор угловой скорости направлен из центра окружности, по которой движется материальная точка с линейной скоростью v, перпендикулярно плоскости окружности по правилу правого винта.

При неравномерном движении материальной точки по окружности изменяются линейная и угловая скорости. По аналогии с линейным ускорением в этом случае вводится понятие среднего углового ускорения и мгновенного: . Соотношение между касательным и угловым ускорениями имеет вид .

Механическое движение. Относительность механического движения. Система отсчета

Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей в пространстве: например, движение небесных тел, колебания земной коры, воздушные и морские течения, движение летательных аппаратов и транспортных средств, машин и механизмов, деформации элементов конструкций и сооружений, движение жидкостей и газов и др.

Относительность механического движения

С относительностью механического движения мы знакомы с детства. Так, сидя в поезде и наблюдая за трогающимся с места поездом, стоявшим до этого на параллельном пути, мы часто не можем определить, какой из поездов на самом деле начал двигаться. И здесь сразу следует уточнить: двигаться относительно чего? Относительно Земли, конечно. Потому что относительно соседнего поезда мы начали двигаться независимо от того, какой из поездов начал свое движение относительно Земли.

Относительность механического движения заключается в относительности скоростей перемещения тел: скорости тел относительно разных систем отсчета будут различны (скорость человека, перемещающегося в поезде, пароходе, самолете, будет отличаться как по величине, так и по направлению, в зависимости от того, в какой системе отсчета эти скорости определяются: в системе отсчета, связанной с движущимся транспортным средством, или с неподвижной Землей).

Различными будут и траектории движения тела в разных системах отсчета. Так, например, вертикально падающие на землю капли дождя оставят след в виде косых струй на окне вагона мчащегося поезда. Точно также любая точка на вращающемся пропеллере летящего самолета или спускающегося на землю вертолета описывает окружность относительно самолета и гораздо более сложную кривую - винтовую линию относительно Земли. Таким образом, при механическом движении относительной является также и траектория движения.

Путь, пройденный телом, также зависит от системы отсчета. Возвращаясь все к тому же пассажиру, сидящему в поезде, мы понимаем, что путь, проделанный им относительно поезда за время поездки, равен нулю (если он не передвигался по вагону) или, во всяком случае, намного меньше того пути, который он преодолел вместе с поездом относительно Земли. Таким образом, при механическом движении относительным является также и путь.

Осознание относительности механического движения (т. е. того, что движение тела можно рассматривать в разных системах отсчета) привело к переходу от геоцентрической системы мира Птолемея к гелиоцентрической системе Коперника. Птолемей, следуя наблюдаемому издревле движению Солнца и звезд на небосклоне, в центре Вселенной расположил неподвижную Землю с вращающимися вокруг нее остальными небесными телами. Коперник же считал, что Земля и другие планеты вращаются вокруг Солнца и одновременно вокруг своих осей.

Таким образом, изменение системы отсчета (Земля - в геоцентрической системе мира и Солнце - в гелиоцентрической) привело к гораздо более прогрессивной гелиоцентрической системе, позволяющей решить многие научные и прикладные задачи астрономии и изменить взгляды человечества на Вселенную.

Система координат $X, У, Z$, тело отсчета, с которым она связана, и прибор для измерения времени (часы) образуют систему отсчета, относительно которой рассматривается движение тела.

Телом отсчета называется тело, относительно которого рассматривается изменение положения других тел в пространстве.

Систему отсчета можно выбрать произвольно. При кинематических исследованиях все системы отсчета равноправны. В задачах динамики также можно использовать любые произвольно движущиеся системы отсчета, но удобнее всего инерциальные системы отсчета, так как в них характеристики движения имеют более простой вид.

Материальная точка

Материальная точка - объект пренебрежимо малых размеров, имеющий массу.

Понятие «материальная точка» вводится для описания (с помощью математических формул) механического движения тел. Делается это потому, что описывать движение точки проще, чем реального тела, частицы которого к тому же могут двигаться с разными скоростями (например, при вращении тела или деформациях).

Если реальное тело заменяют материальной точкой, то этой точке приписывают массу этого тела, но пренебрегают его размерами, а заодно пренебрегают различием характеристик движения его точек (скоростей, ускорений и т. д.), если таковое имеется. В каких случаях это можно делать?

Практически любое тело можно рассматривать как материальную точку, если расстояния, проходимые точками тела, очень велики по сравнению с его размерами.

Например, материальными точками считают Землю и другие планеты при изучении их движения вокруг Солнца. В данном случае различия в движении различных точек любой планеты, вызванные ее суточным вращением, не влияют на величины, описывающие годовое движение.

Следовательно, если в изучаемом движении тела можно пренебречь его вращением вокруг оси, такое тело можно представить как материальную точку.

Однако при решении задач, связанных с суточным вращением планет (например, при определении восхода Солнца в разных местах поверхности земного шара), считать планету материальной точкой бессмысленно, так как результат задачи зависит от размеров этой планеты и скорости движения точек ее поверхности.

Материальной точкой правомерно считать самолет, если требуется, например, определить среднюю скорость его движения на пути из Москвы в Новосибирск. Но при вычислении силы сопротивления воздуха, действующей на летящий самолет, считать его материальной точкой нельзя, поскольку сила сопротивления зависит от размеров и формы самолета.

Если тело движется поступательно, даже если его размеры сопоставимы с расстояниями, которые оно проходит, это тело можно рассматривать как материальную точку (поскольку все точки тела движутся одинаково).

В заключение можно сказать: тело, размерами которого в условиях рассматриваемой задачи можно пренебречь, можно считать материальной точкой.

Траектория

Траектория - это линия (или, как принято говорить, кривая), которую описывает тело при движении относительно выбранного тела отсчета.

Говорить о траектории имеет смысл лишь в том случае, когда тело можно представить в виде материальной точки.

Траектории могут иметь разную форму. О форме траектории иногда удается судить по-видимому следу, который оставляет движущееся тело, например, летящий самолет или проносящийся в ночном небе метеор.

Форма траектории зависит от выбора тела отсчета. Например, относительно Земли траектория движения Луны представляет собой окружность, относительно Солнца - линию более сложной формы.

При изучении механического движения в качестве тела отсчета, как правило, рассматривается Земля.

Способы задания положения точки и описание ее движения

Положение точки в пространстве задается двумя способами: 1) с помощью координат; 2) с помощью радиус-вектора.

Положение точки с помощью координат задается тремя проекциями точки $х, у, z$ на оси декартовой системы координат $ОХ, ОУ, OZ$, связанные с телом отсчета. Для этого из точки А необходимо опустить перпендикуляры на плоскости $YZ$ (координата $х$), $ХZ$ (координата $у$), $ХУ$ (координата $z$) соответственно. Записывается это так: $А(х, у, z)$. Для конкретного случая, $(х=6, у=10.2, z= 4.5$), точка $А$ обозначается $А(6; 10; 4.5)$.

Наоборот, если заданы конкретные значения координат точки в данной системе координат, то для изображения самой точки необходимо отложить значения координат на соответствующие оси ($х$ на ось $ОХ$ и т. д.) и на этих трех взаимно перпендикулярных отрезках построить параллелепипед. Вершина его, противоположная началу координат $О$ и лежащая на диагонали параллелепипеда, и будет искомой точкой $А$.

Если точка движется в пределах некоторой плоскости, то через выбранные на теле отсчета точки достаточно провести две координатные оси: $ОХ$ и $ОУ$. Тогда положение точки на плоскости определяют двумя координатами $х$ и $у$.

Если точка движется вдоль прямой, достаточно задать одну координатную ось ОХ и направить ее вдоль линии движения.

Задание положения точки $А$ с помощью радиус-вектора осуществляется соединением точки $А$ с началом координат $О$. Направленный отрезок $ОА = r↖{→}$ называется радиус-вектором.

Радиус-вектор - это вектор, соединяющий начало отсчета с положением точки в произвольный момент времени.

Точка задана радиус-вектором, если известны его длина (модуль) и направление в пространстве, т. е. значения его проекций $r_x, r_у, r_z$ на оси координат $ОХ, ОY, OZ$, либо углы между радиус-вектором и осями координат. Для случая движения на плоскости имеем:

Здесь $r=|r↖{→}|$ - модуль радиус-вектора $r↖{→}, r_x$ и $r_y$ - его проекции на оси координат, все три величины - скаляры; хжу - координаты точки А.

Последние уравнения демонстрируют связь между координатным и векторным способами задания положения точки.

Вектор $r↖{→}$ можно также разложить на составляющие по осям $Х$ и $Y$, т. е. представить в виде суммы двух векторов:

$r↖{→}=r↖{→}_x+r↖{→}_y$

Таким образом, положение точки в пространстве задается либо ее координатами, либо радиус-вектором.

Способы описания движения точки

В соответствии со способами задания координат движение точки можно описать: 1) координатным способом; 2) векторным способом.

При координатном способе описания (или задания) движения изменение координат точки со временем записывается в виде функций всех трех ее координат от времени:

Уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме. Зная кинематические уравнения движения и начальные условия (т. е. положение точки в начальный момент времени), можно определить положение точки в любой момент времени.

При векторном способе описания движения точки изменение ее положения со временем задается зависимостью радиус-вектора от времени:

$r↖{→}=r↖{→}(t)$

Уравнение представляет собой уравнение движения точки, записанное в векторной форме. Если оно известно, то для любого момента времени можно рассчитать радиус-вектор точки, т. е. определить ее положение (как и в случае координатного способа). Таким образом, задание трех скалярных уравнений равносильно заданию одного векторного уравнения.

Для каждого случая движения вид уравнений будет вполне определенным. Если траекторией движения точки является прямая линия, движение называется прямолинейным, а если кривая - криволинейным.

Перемещение и путь

Перемещение в механике - это вектор, соединяющий положения движущейся точки в начале и в конце некоторого промежутка времени.

Понятие вектора перемещения вводится для решения задачи кинематики - определить положение тела (точки) в пространстве в данный момент времени, если известно его начальное положение.

На рис. вектор ${М_1М_2}↖{-}$ соединяет два положения движущейся точки - $М_1$ и $М_2$ в моменты времени $t_1$ и $t_2$ соответственно и, согласно определению, является вектором перемещения. Если точка $М_1$ задана радиус-вектором $r↖{→}_1$, а точка $М_2$ - радиус-вектором $r↖{→}_2$, то, как видно из рисунка, вектор перемещения равен разности этих двух векторов, т. е. изменению радиус-вектора за время $∆t=t_2-t_1$:

$∆r↖{→}=r↖{→}_2-r↖{→}_1$.

Сложение перемещений (например, на двух соседних участках траектории) $∆r↖{→}_1$ и $∆r↖{→}_2$ осуществляется по правилу сложения векторов:

$∆r=∆r↖{→}_2+∆r↖{→}_1$

Путь - это длина участка траектории, пройденного материальной точкой за данный промежуток времени. Модуль вектора перемещения в общем случае не равен длине пути, пройденного точкой за время $∆t$ (траектория может быть криволинейной, и, кроме того, точка может менять направление движения).

Модуль вектора перемещения равен пути только при прямолинейном движении в одном направлении. Если направление прямолинейного движения меняется, модуль вектора перемещения меньше пути.

При криволинейном движении модуль вектора перемещения также меньше пути, т. к. хорда всегда меньше длины дуги, которую она стягивает.

Скорость материальной точки

Скорость характеризует быстроту, с которой происходят любые изменения в окружающем нас мире (движение материи в пространстве и времени). Движение пешехода по тротуару, полет птицы, распространение звука, радиоволн или света в воздухе, вытекание воды из трубы, движение облаков, испарение воды, нагрев утюга - все эти явления характеризуются определенной скоростью.

При механическом движении тел скорость характеризует не только быстроту, но и направление движения, т. е. является векторной величиной.

Скоростью $υ↖{→}$ точки называется предел отношения перемещения $∆r↖{→}$ к промежутку времени $∆t$, в течение которого это перемещение произошло, при стремлении $∆t$ к нулю (т. е. производной $∆r↖{→}$ по $t$):

$υ↖{→}={lim}↙{∆t→0}{∆r↖{→}}/{∆t}=r↖{→}_1"$

Составляющие вектора скорости по осям $X, Y, Z$ определяются аналогично:

$υ↖{→}_x={lim}↙{∆t→0}{∆x}/{∆t}=x"; υ_y=y"; υ_z=z"$

Определенное таким образом понятие скорости называют также мгновенной скоростью. Это определение скорости справедливо для любых видов движения - от криволинейного неравномерного до прямолинейного равномерного . Когда говорят о скорости при неравномерном движении, под ней понимают именно мгновенную скорость. Из этого определения непосредственно вытекает векторный характер скорости, поскольку перемещение - векторная величина. Вектор мгновенной скорости $υ↖{→}$ всегда направлен по касательной к траектории движения. Он указывает направление, по которому происходило бы движение тела, если бы с момента времени $t$ на него прекратилось действие любых других тел.

Средняя скорость

Средняя скорость точки вводится для характеристики неравномерного движения (т.е. движения с переменной скоростью) и определяется двояко.

1. Средняя скорость точки $υ_{ср}$ равна отношению всего пройденного телом пути $∆s$ ко всему времени движения $∆t$:

$υ↖{→}_{ср}={∆s}/{∆t}$

При таком определении средняя скорость - скаляр, т. к. пройденный путь (расстояние) и время - величины скалярные.

Такой способ определения дает представление о средней скорости движения на участке траектории (средней путевой скорости).

2. Средняя скорость точки равна отношению перемещения точки к промежутку времени, в течение которого это перемещение произошло:

$υ↖{→}_{ср}={∆r↖{→}}/{∆t}$

Средняя скорость перемещения - величина векторная.

Для неравномерного криволинейного движения такое определение средней скорости не всегда позволяет определить даже приблизительно реальные скорости на пути движения точки. Например, если точка двигалась по замкнутой траектории в течение некоторого времени, то перемещение ее равно нулю (но скорость явно отличалась от нуля). В этом случае лучше пользоваться первым определением средней скорости.

В любом случае следует различать эти два определения средней скорости и знать, о какой из них идет речь.

Закон сложения скоростей

Закон сложения скоростей устанавливает связь между значениями скорости материальной точки относительно различных систем отсчета, движущихся друг относительно друга. В нерелятивистской (классической) физике, когда рассматриваемые скорости малы по сравнению со скоростью света, справедлив закон сложения скоростей Галилея, который выражается формулой:

$υ↖{→}_2=υ↖{→}_1+υ↖{→}$

где $υ↖{→}_2$ и $υ↖{→}_1$ - скорости тела (точки) относительно двух инерциальных систем отсчета - неподвижной системы отсчета $K_2$ и системы отсчета $K_1$ движущейся со скоростью $υ↖{→}$ относительно $K_2$.

Формула может быть получена путем сложения векторов перемещений.

Для наглядности рассмотрим движение лодки со скоростью $υ↖{→}_1$ относительно реки (система отсчета $K_1$), воды которой движутся со скоростью $υ↖{→}$ относительно берега (система отсчета $K_2$).

Векторы перемещений лодки относительно воды $∆r↖{→}_1$, реки относительно берега $∆r↖{→}$ и суммарный вектор перемещения лодки относительно берега $∆r↖{→}_2$ изображены на рис..

Математически:

$∆r↖{→}_2=∆r↖{→}_1+∆r↖{→}$

Поделив обе части уравнения на интервал времени $∆t$, получим:

${∆r↖{→}_2}/{∆t}={∆r↖{→}_1}/{∆t}+{∆r↖{→}}/{∆t}$

В проекциях вектора скорости на оси координат уравнение имеет вид:

$υ_{2x}=υ_{1x}+υ_x,$

$υ_{2y}=υ_{1y}+υ_y.$

Проекции скоростей складываются алгебраически.

Относительная скорость

Из закона сложения скоростей следует, что если два тела движутся в одной и той же системе отсчета со скоростями $υ↖{→}_1$ и $υ↖{→}_2$, то скорость первого тела относительно второго $υ↖{→}_{12}$ равна разности скоростей этих тел:

$υ↖{→}_{12}=υ↖{→}_1-υ↖{→}_2$

Так, при движении тел в одном направлении (обгон) модуль относительной скорости равен разности скоростей, а при встречном движении - сумме скоростей.

Ускорение материальной точки

Ускорение - величина, характеризующая быстроту изменения скорости. Как правило, движение является неравномерным, т. е. происходит с переменной скоростью. На одних участках траектории тела могут иметь большую скорость, на других - меньшую. Например, поезд, отходящий от станции, со временем двигается все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Ускорение (или мгновенное ускорение) - векторная физическая величина, равная пределу отношения изменения скорости к промежутку времени, за который это изменение произошло, при стремлении $∆t$ к нулю, (т. е. производной $υ↖{→}$ по $t$):

$a↖{→}=lim↙{∆t→0}{∆υ↖{→}}/{∆t}=υ↖{→}_t"$

Составляющие $a↖{→} (а_х, а_у, а_z)$ равны соответственно:

$a_x=υ_x";a_y=υ_y";a_z=υ_z"$

Ускорение, как и изменение скорости, направлено в сторону вогнутости траектории и может быть разложено на две составляющие - тангенциальную - по касательной к траектории движения - и нормальную - перпендикулярно к траектории.

В соответствии с этим проекцию ускорения $а_х$ на касательную к траектории называют касательным , или тангенциальным ускорением, проекцию $a_n$ на нормаль - нормальным , или центростремительным ускорением .

Касательное ускорение определяет величину изменения численного значения скорости:

$a_t=lim↙{∆t→0}{∆υ}/{∆t}$

Нормальное, или центростремительное ускорение характеризует изменение направления скорости и определяется по формуле:

где R - радиус кривизны траектории в соответствующей ее точке.

Модуль ускорения определяется по формуле:

$a=√{a_t^2+a_n^2}$

При прямолинейном движении полное ускорение $а$ равно тангенциальному $a=a_t$, т. к. центростремительное $a_n=0$.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с. Эту единицу обозначают 1 м/с 2 и называют «метр на секунду в квадрате».

Равномерное прямолинейное движение

Движение точки называется равномерным, если за любые равные промежутки времени она проходит равные пути.

Например, если автомобиль за каждую четверть часа (15 мин) проходит 20 км, за каждые полчаса (30 мин) - 40 км, за каждый час (60 мин) - 80 км и т. д., то такое движение считается равномерным. При равномерном движении численная величина (модуль) скорости точки $υ$ - величина постоянная:

$υ=|υ↖{→}|=const$

Равномерное движение может происходить как по криволинейной, так и по прямолинейной траектории.

Закон равномерного движения точки описывается уравнением:

где $s$ - расстояние, измеренное вдоль дуги траектории, от некоторой точки на траектории, принятой за начало отсчета; $t$ - время точки в пути; $s_0$ - значение $s$ в начальный момент времени $t=0$.

Путь, пройденный точкой за время $t$, определяется слагаемым $υt$.

Равномерное прямолинейное движение - это движение, при котором тело перемещается с постоянной по модулю и направлению скоростью:

$υ↖{→}=const$

Скорость равномерного прямолинейного движения - величина постоянная и может быть определена как отношение перемещения точки к промежутку времени, в течение которого это перемещение произошло:

$υ↖{→}={∆r↖{→}}/{∆t}$

Модуль этой скорости

$υ={|∆r↖{→}|}/{∆t}$

по смыслу есть расстояние $s=|∆r↖{→}|$, пройденное точкой за время $∆t$.

Скорость тела при равномерном прямолинейном движении - это величина, равная отношению пути $s$ ко времени, за которое этот путь пройден:

Перемещение при прямолинейном равномерном движении (по оси X) можно рассчитать по формуле:

где $υ_x$ - проекция скорости на ось X. Отсюда закон прямолинейного равномерного движения имеет вид:

Если в начальный момент времени $x_0=0$, то

График зависимости скорости от времени - прямая, параллельная оси абсцисс, а пройденный путь - это площадь под этой прямой.

График зависимости пути от времени - прямая линия, угол наклона которой к оси времени $Ot$ тем больше, чем больше скорость равномерного движения. Тангенс этого угла равен скорости.

Вопросы.

1. Рассмотрите рисунок 33 а) и ответьте на вопросы: под действием какой силы шарик приобретает скорость и движется от точки В к точке А? В результате чего эта сила возникла? Как направлены ускорение, скорость шарика и действующая на него сила? По какой траектории движется шарик?

Шарик преобретает скорость и движется от точки В к точке А под действием силы упругости F упр, возникающей из-за растяжения шнура. Ускорение а, скорость шарика v, и действующая на него сила упругости F упр, направлены от точки В к точке А, и поэтому шарик движется по прямой.

2. Рассмотрите рисунок 33 б) и ответьте на вопросы: почему в шнуре возникла сила упругости и как она направлена по отношению к самому шнуру? Что можно сказать о направлении скорости шарика и действующей на него силы упругости шнура? Как движется шарик: прямолинейно или криволинейно?

Сила упругости F упр в шнуре возникает из-за его растяжения, она направлена вдоль шнура по направлению к точке О. Вектор скорости v и сила упругости F упр лежат на пересекающихся прямых, скорость направлена по касательной к траектории, а сила упругости к точке О, поэтому шарик движется криволинейно.

3. При каком условии тело под действием силы движется прямолинейно, а при каком - криволинейно?

Тело под действием силы движется прямолинейно если его скорость v и сила F, действующая на него, направлены вдоль одной прямой, и, криволинейно если они направлены вдоль пересекающихся прямых.

Упражнения.

1. Шарик катился по горизонтальной поверхности стола от точки А к точке В (рис.35). В точке В на шарик подействовали силой F. В результате он стал двигаться к точке С. В каком из направлений, обозначенных стрелками 1, 2, 3 и 4, могла действовать сила F?

Сила F подействовала в направлении 3, т.к. у шарика появилась составляющая скорости перпендикулярная к начальному направлению скорости.

2. На рисунке 36 изображена траектория движения шарика. На ней кружочками отмечены положения шарика через каждую секунду после начала движения. Действовала ли на шарик сила на участке 0-3, 4-6, 7-9, 10-12, 13-15, 16-19? Если сила действовала, то как она была направлена по отношению к вектору скорости? Почему на участке 7-9 шарик повернул налево, а на участке 10-12 - направо по отношению к направлению движения перед поворотом? Сопротивление движению не учитывайте.

На участках 0-3, 7-9, 10-12, 16-19 на шарик действовала внешняя сила изменяющая направление его движения. На участках 7-9 и 10-12 на шарик действовала сила, которая с одной стороны изменяла его направление, а с другой - тормозила его движение в направлении по которому он двигался.

3. На рисунке 37 линией ABCDE изображена траектория движения некоторого тела. На каких участках на тело наверняка действовала сила? Могла ли на тело действовать какая-нибудь сила при его движении на других участках этой траектории? Все ответы обоснуйте.

Сила действовала на участках АВ и CD, так как шарик изменил направление, однако и на других участках могла действовать сила, но не изменяющая направление, а изменяющая скорость его движения, что не отразилось бы на его траектории.