Как получают со2 в промышленности. "Получение углекислого газа и его свойства". Урок – практическая работа. CO2 как побочный продукт парового реформинга CH4 и других углеводородов в водород H2

Углекислый газ Углекислый газ

Углекислый газ (двуокись углерода, диоксид углерода) занимает важнейшее место среди технических газов, он широко используется практически во всех отраслях промышленности и агропромышленного комплекса. На долю СО 2 приходится 10% всего рынка технических газов, что ставит этот продукт в один ряд с основными продуктами разделения воздуха.

Направления использования углекислого газа в различных агрегатных состояниях многообразны – пищевая промышленность, сварочные газы и смеси, пожаротушение и т.д. Всё больше находит применение и его твердая фаза – сухой лёд, от заморозки, сухих брикетов до очистки поверхностей (бластинга).

Получение

Извне углекислоту получить нельзя по причине того, что в атмосфере ее почти не содержится. Животные и человек получают её при полном расщеплении пищи, поскольку белки, жиры, углеводы, построенные на углеродной основе, при сжигании с помощью кислорода в тканях образуют углекислый газ (СО 2).

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). В пищевых целях используется газ, образующийся при спиртовом брожении. Также углекислый газ получают на установках разделения воздуха, как побочный продукт получения чистого кислорода, азота и аргона. В лабораторных условиях небольшие количества СО 2 получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например, мрамора, мела или соды с соляной кислотой. Побочные источники производства СО 2 - продукты горения; брожение; производство жидкого аммиака; установки риформинга; производство этанола; природные источники.

При получении углекислого газа в промышленных масштабах используют три основные группы сырья.

Группа 1 - источники сырья, из которых можно производить чистый СО 2 без специального оборудования для повышения его концентрации:

  • газы химических и нефтехимических производств с содержанием 98-99% СО 2 ;
  • газы спиртового брожения на пивоваренных, спиртовых и гидролизных заводах с 98-99% СО 2 ;
  • газы из естественных источников с 92-99% СО 2 .

Группа 2 - источники сырья, использование которых обеспечивает получение чистого СО 2:

  • газы малораспространенных химических производств с содержанием 80-95% СО 2 .

Группа 3 - источники сырья, использование которых дает возможность производить чистый СО 2 только с помощью специального оборудования:

  • газовые смеси, состоящие в основном из азота и углекислого газа (продукты сгорания углеродсодержащих веществ с содержанием 8-20% СО 2 ;
  • отходящие газы известковых и цементных заводов с 30-40% СО 2 ;
  • колошниковые газы доменных печей с 21-23% СО 2 ;
  • состоящие в основном из метана и углекислого газа и содержащие значительные примеси других газов (биогаз и свалочный газ из биореакторов с 30-45% СО 2 ;
  • попутные газы при добыче природного газа и нефти с содержанием 20-40% СО 2 .

Применение

По ряду оценок, потребление СО2 на мировом рынке превышает 20 млн. метрических тонн в год. Столь высокий уровень потребления формируется под влиянием требований пищевой промышленности и нефтепромысловых предприятий, технологий газирования напитков и других промышленных нужд, например, снижения показателя Ph установок водоочистки, проблем металлургии (в том числе использования сварочного газа) и т.д.

Потребление углекислого газа неуклонно растет, поскольку расширяются сферы его применения, которые охватывают задачи от промышленного назначения до пищевого производства – консервация продуктов, в машиностроении от сварочного производства и приготовления защитных сварочных смесей до очистки поверхностей деталей гранулами «сухого льда», в сельском хозяйстве для подкормки растений, в газовой и нефтяной промышленности при пожаротушении.

Основные области применения СО 2:

  • в машиностроении и строительстве (для сварки и прочее);
  • для холодной посадки частей машин;
  • в процессах тонкой заточки;
  • для электросварки, основанной на принципе защиты расплавленного металла от вредного воздействия атмосферного воздуха;
  • в металлургии;
  • продувка углекислым газом литейных форм;
  • при производстве алюминия и других легкоокисляющихся металлов;
  • в сельском хозяйстве для создания искусственного дождя;
  • в экологии заменяет сильнодействующие минеральные кислоты для нейтрализации щелочной отбросной воды;
  • в изготовлении противопожарных средств;
  • применяется в углекислотных огнетушителях в качестве огнетушащего вещества, эффективно останавливает процесс горения;
  • в парфюмерии при изготовлении духов;
  • в горнодобывающей промышленности;
  • при методе беспламенного взрыва горных пород;
  • в пищевой промышленности;
  • используется как консервант и обозначается на упаковке кодом Е290;
  • в качестве разрыхлителя теста;
  • для производства газированных напитков;

Газирование напитков может происходить одним из двух путей:

  1. При производстве популярных сладких и минеральных вод используется механический способ газирования, который предполагает насыщение углекислым газом какой-либо жидкости. Для этого необходимо специальное оборудование (сифоны, акратофоры, сатураторы) и баллоны со сжатым углекислым газом.
  2. При химическом способе газирования углекислоту получают в процессе брожения. Таким образом получается шампанское вино, пиво, хлебный квас. Углекислота в содовых водах получается в результате реакции соды с кислотой, сопровождающейся бурным выделением углекислого газа.

СО 2 как сварочный газ

Начиная с 1960 года широкое распространение получила сварка легированных и углеродистых сталей в среде углекислого газа (СО 2), отвечающего требованиям ГОСТ 8050. В последнее время все большее распространение в сварочных технологиях машиностроительных предприятий находит применение сварочных газовых смесей аргона и гелия, при этом многие наиболее востребованные газовые смеси включают в себя небольшое количество активных газов (СО 2 или О 2), необходимых для стабилизации сварочной дуги. Однако при сварке углеродистых и низколегированных сталей основных структурных классов на российских предприятиях основным защитным газом по-прежнему продолжает оставаться углекислый газ СО 2 , что объясняется физическими свойствами этого защитного газа и его доступностью.

В промышленности, основными способами производства двуокиси углерода CO2 являются ее получение как побочного продукта реакции конвертации метана CH4 в водород H2, реакций сжигания (окисления) углеводородов, реакции разложения известняка CaCO3 на известь CaO и воду H20.

CO2 как побочный продукт парового реформинга CH4 и других углеводородов в водород H2

Водород H2 требуется промышленности, прежде всего, для его использования в процессе производства аммиака NH3 (процесс Хабера, каталитическая реакция водорода и азота); аммиак же нужен для производства минеральных удобрений и азотной кислоты. Водород можно производить разными способами, в том числе и любимым экологами электролизом воды - однако, к сожалению, на данное время все способы производства водорода, кроме реформинга углеводородов, являются в масштабах крупных производств абсолютно экономически неоправданными - если только на производстве нет избытка «бесплатной» электроэнергии. Поэтому, основным способом производства водорода, в процессе которого выделяется и углекислый газ, является паровой реформинг метана: при температуре порядка 700...1100°C и давлении 3...25 бар, в присутствии катализатора, водяной пар H2O реагирует с метаном CH4 с выделением синтез-газа (процесс эндотермический, то есть идет с поглощением тепла):
CH4 + H2O (+ тепло) → CO + 3H2

Аналогичным образом паровому реформингу можно подвергать пропан:
С3H8 + 3H2O (+ тепло) → 2CO + 7H2

А также этанол (этиловый спирт):
C2H5OH + H2O (+ тепло) → 2CO + 4H2

Паровому реформингу можно подвергать даже бензин. В бензине содержится более 100 разных химических соединений, ниже показаны реакции парового реформинга изооктана и толуола:
C8H18 + 8H2O (+ тепло) → 8CO + 17H2
C7H8 + 7H2O (+ тепло) → 7CO + 11H2

Итак, в процессе парового реформинга того или иного углеводородного топлива получен водород и монооксид углерода CO (угарный газ). На следующем этапе процесса производства водорода, угарный газ в присутствии катализатора подвергается реакции перемещения атома кислорода O из воды в газ = CO окисляется в CO2, а водород H2 выделяется в свободной форме. Реакция экзотермическая, при ней выделяется порядка 40,4 кДж/моль тепла:
CO + H2O → CO2 + H2 (+ тепло)

В условиях промышлененых предприятий, выделяющийся при паровом реформинге углеводородов диоксид углерода CO2 легко изолировать и собрать. Однако, CO2 в этом случае является нежелательным побочным продуктом, простой свободный выпуск его в атмосферу, хотя и является сейчас превалирующим путем избавления от CO2, нежелателен с экологической точки зрения, и некоторыми предприятиями практикуются более «продвинутые» методы, такие как, например, закачивание CO2 в нефтяные месторождения со снижающимся дебетом или закачивание его в океан.

Получение CO2 при полном сжигании углеводородного топлива

При сжигании, то есть окислении достаточным количеством кислорода углеводородов, таких как метан, пропан, бензин, керосин, дизельное топливо и др., образуются углекислый газ и, обычно, вода. Например, реакция сгорания метана CH4 выглядит так:
CH 4 + 2O 2 → CO 2 + 2H 2 O

CO2 как побочный продукт получения H2 методом частичного окисления топлива

Порядка 95% промышленно производимого в мире водорода производится вышеописанным способом парового реформинга углеводородного топлива, прежде всего метана CH4, содержащегося в природном газе. Кроме парового реформинга, из углеводородного топлива с довольно высокой эффективностью можно получать водород и способом частичного окисления, когда метан и другие углеводороды реагируют с недостаточным для полного сжигания топлива количеством кислорода (напомним, что в процессе полного сжигания топлива, кратко описанным чуть выше, получается углекислый газ CO2 и вода H20). При подаче же меньшего, чем стехиометрическое, количества кислорода, продуктами реакции преимущественно являются водород H2 и монооксид углерода, он же угарный газ CO; в небольших количествах получаются и углексилый газ CO2, и некоторые другие вещества. Так как обычно, на практике, этот процесс проводят не с очищенным кислородом, а с воздухом, то как на входе, так и на выходе процесса имеется азот, который в реакции не участвует.

Частичное окисление является экзотермическим процессом, то есть в результате реакции выделяется тепло. Частичное окисление, как правило, протекает значительно быстрее, чем паровой реформинг, и требует меньшего по объему реактора. Как видно на примере приведенных ниже реакций, изначально частичное окисление производит меньше водорода на единицу топлива, чем получается в процессе парового реформинга.

Реакция частичного окисления метана CH4:
CH 4 + ½O 2 → CO + H 2 (+ тепло)

Пропана C3H8:
C 3 H 8 + 1½O 2 → 3CO + 4H 2 (+ тепло)

Этилового спирта C2H5OH:
C 2 H 5 OH + ½O 2 → 2CO + 3H 2 (+ тепло)

Частичное окисление бензина на примере изооктана и толуола, из более чем ста химических соединений, присутствующих в бензине:
C 8 H 18 + 4O 2 → 8CO + 9H 2 (+ тепло)
C 7 H 18 + 3½O 2 → 7CO + 4H 2 (+ тепло)

Для конвертации CO в углекислый газ и получения дополнительного водорода используется уже упомянутая в описании процесса парового реформинга реакция сдвига кислорода вода→газ:
CO + H 2 O → CO 2 + H 2 (+ небольшое количество тепла)

CO2 при ферментации сахара

В производстве алкогольных напитков и хлебобулочных изделий из дрожжевого теста, используется процесс ферментации сахаров - глюкозы, фруктозы, сахарозы и др., с образованием этилового спирта C2H5OH и диоксида углерода CO2. Например, реакция ферментации глюкозы C6H12O6 такова:
C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2

А ферментации фруктозы C12H22O11 - выглядит вот так:
C 12 H 22 O 11 + H 2 O → 4C 2 H 5 OH + 4CO 2

Оборудование для производства CO2 пр-ва компании Wittemann

В производстве алкогольных напитков, получаемый алкоголь является желательным и даже, можно сказать, необходимым продуктом реакции брожения. Углекислый газ же иногда выпускается в атмосферу, а иногда оставляется в напитке для его газирования. В выпечке хлеба все происходит наоборот: CO2 нужен для образования пузырьков, вызывающих поднятие теста, а этиловый спирт почти полностью испаряется при выпечке.

Многие предприятия, прежде всего спиртозаводы, для которых CO 2 является совсем уж ненужным побочным продуктом, наладили его сбор и продажу. Газ из бродильных чанов через спиртовые ловушки подается в углекислотный цех, где CO2 очищают, сжижают и разливают в баллоны. Собственно, именно спиртовые заводы являются во многих регионах основными поставщиками углекислоты - и для многих из них, продажа углекислоты является отнюдь не последним источником доходов.

Существует целая отрасль производства оборудования для выделения чистого углекислого газа на пивоваренных и спиртовых заводах (Huppmann/GEA Brewery, Wittemann и др.), а также его прямого производства из углеводородного топлива. Поставщики газов, такие как Air Products и Air Liquide, также осуществляют установку станций по выделению CO 2 и его последующей очистке, сжижению у заправке в баллоны.

CO2 при производстве негашеной извести CaO из CaCO3

Процесс производства широко используемой негашеной извести CaO также имеет в качестве побочного продукта реакции двуокись углерода. Реакция разложения известняка CaCO3 эндотермическая, нуждается в температуре порядка +850°C и выглядит так:
CaCO3 → CaO + CO2

Если же известняк (или другой карбонат металла) вступает в реакцию с кислотой, то в качестве одного из продуктов реакции выделяется углекисота H2CO3. Например, соляная кислота HCl реагирует с известняком (карбонатом кальция) CaCO3 следующим образом:
2HCl + CaCO 3 → CaCl 2 + H 2 CO 3

Угольная кислота является очень нестойкой, и при атмосферных условиях быстро разлагается на CO2 и воду H2O.

(IV), диоксид углерода или же двуокись углерода. Также его еще называют угольным ангидридом. Он является совершенно бесцветным газом, который не имеет запаха, с кисловатым вкусом. Углекислый газ тяжелее воздуха и плохо растворяется в воде. При температуре ниже - 78 градусов Цельсия кристаллизуется и становится похожим на снег.

Из газообразного состояния это вещество переходит в твердое, поскольку не может существовать в жидком состоянии в условиях атмосферного давления. Плотность углекислого газа в нормальных условиях составляет 1,97 кг/м3 - в 1,5 раза выше Диоксид углерода в твердом виде называется «сухой лед». В жидкое состояние, в котором его можно хранить длительное время, он переходит при повышении давления. Рассмотрим подробнее данное вещество и его химическое строение.

Углекислый газ, формула которого CO2, состоит из углерода и кислорода, а получается он в результате сжигания или гниения органических веществ. Оксид углерода содержится в воздухе и подземных минеральных источниках. Люди и животные тоже выделяют углекислый газ при выдыхании воздуха. Растения без освещения выделяют его, а во время фотосинтеза интенсивно поглощают. Благодаря процессу метаболизма клеток всех живых существ оксид углерода является одним из главных составляющих окружающей природы.

Этот газ не токсичен, но если он скапливается в большой концентрации, может начаться удушье (гиперкапния), а при его недостатке развивается противоположное состояние - гипокапния. Диоксид углерода пропускает и отражает инфракрасные. Он является который непосредственно влияет на глобальное потепление. Это происходит из-за того, что уровень его содержания в атмосфере постоянно растет, что и приводит к парниковому эффекту.

Диоксид углерода получают промышленным путем из дымных или печных газов, или же путем разложения карбонатов доломита и известняка. Смесь этих газов тщательно промывается специальным раствором, состоящим из карбоната калия. Далее она переходит в гидрокарбонат и при нагревании разлагается, в результате чего высвобождается углекислота. Углекислота (H2CO3) образуется из углекислого газа, растворенного в воде, но в современных условиях получают ее и другими, более прогрессивными методами. После того как углекислый газ очищен, его сжимают, охлаждают и закачивают в баллоны.

В промышленности это вещество широко и повсеместно применяется. Пищевики используют его как разрыхлитель (например, для приготовления теста) или в качестве консерванта (Е290). С помощью углекислого газа производят различные тонизирующие напитки и газировки, которые так любимы не только детьми, но и взрослыми. Диоксид углерода используют при изготовлении пищевой соды, пива, сахара, шипучих вин.

Углекислый газ применяется и при производстве эффективных огнетушителей. С помощью углекислого газа создается активная среда, необходимая при При высокой температуре сварочной дуги углекислый газ распадается на кислород и угарный газ. Кислород взаимодействует с жидким металлом и окисляет его. Углекислота в баллончиках применяется в пневматических ружьях и пистолетах.

Авиамоделисты используют это вещество в качестве топлива для своих моделей. С помощью углекислого газа можно значительно повысить урожайность культур, выращиваемых в оранжерее. Также в промышленности широко используется в котором продукты питания сохраняются значительно лучше. Его применяют в качестве хладагента в холодильниках, морозильных камерах, электрических генераторах и других теплоэнергетических установках.

В промышленном масштабе углекислоту можно получить следующими способами:

  1. из известняка, в котором содержится до 40% СО 2 , кокса или антрацита до 18% CO 2 путем их обжига в специальных печах;
  2. на установках, работающих по сернокислому методу за счет реакций взаимодействия серной кислоты с эмульсией мела;
  3. из газов, образующихся при брожении спирта, пива, расщепления жиров;
  4. из дымовых газов промышленных котельных, сжигающих уголь, природный газ и другое топливо. Дымовой газ содержит 12-20% СО 2 ;
  5. из отходящих газов химических производств, в первую очередь синтетического аммиака и метанола. Отходящие газы содержат примерно 90% СО 2 .

На данный момент наиболее распространенным способом получения углекислоты является – получение из газов при брожении . Отходящий газ в этих случаях представляет собой почти чистый углекислый газ и является дешевым побочным продуктом производства.

На гидролизных заводах при брожении дрожжей с опилками выделяются газы, содержащие 99% CO 2 .

1 - бродильный чан; 2 - газгольдер; 3 - промывочная башня; 4 - предварительный компрессор; 5 - трубчатый холодильник; 6 - маслоотделитель; 7 - башня; 8 - башня; 9 - двухступенчатый компрессор; 10 - холодильник; 11 - маслоотделитель; 12 - цистерна.

Схема получения углекислого газа на гидролизных заводах

Газ из бродильного чана 1 подается насосами, а при наличии достаточного давления поступает самостоятельно в газгольдер 2, где происходит отделение от него твердых частиц. Затем газ поступает в промывочную башню 3, заполненную коксом или керамическими кольцами, где он омывается встречным потоком воды и окончательно освобождается от твердых частиц и растворимых в воде примесей. После промывки газ поступает в предварительный компрессор 4, где он сжимается до давления 400-550 кПа.

Так как при сжатии температура углекислого газа повышается до 90-100°С, то после компрессора газ поступает в трубчатый холодильник 5, где охлаждается до 15°С. Затем углекислота направляется в маслоотделитель 6, где отделяется масло, попавшее в газ при сжатии. После этого углекислый газ подвергается очистке водными растворами окислителей (KMnO 4 , K 2 Cr 2 P 7 , гипохромитом) в башне 7, а затем осушке активированным углем или силикагелем в башне 8.

После очистки и осушки углекислота поступает в двухступенчатый компрессор 9. На ступени I происходит сжатие его до 1-1,2 МПа. Затем углекислый газ поступает в холодильник 10, где охлаждается со 100 до 15°C, проходит маслоотделитель 11 и поступает на II ступень компрессора, где сжимается до 6-7 МПа, превращается в жидкую двуокись углерода и собирается в цистерну 12, из которой производится заправка стандартных баллонов или других емкостей (танков).

ОПРЕДЕЛЕНИЕ

Углекислый газ (двуокись углерода, угольный ангидрид, диоксид углерода) – оксид углерода (IV).

Формула – СО 2 . Молярная масса – 44 г/моль.

Химические свойства углекислого газа

Углекислый газ относится к классу кислотных оксидов, т.е. при взаимодействии с водой он образует кислоту, которая называется угольная. Угольная кислота химически неустойчива и в момент образования сразу же распадается на составляющие, т.е. реакция взаимодействия углекислого газа с водой носит обратимый характер:

CO 2 + H 2 O ↔ CO 2 ×H 2 O(solution) ↔ H 2 CO 3 .

При нагревании углекислый газ распадается на угарный газ и кислород:

2CO 2 = 2CO + O 2 .

Как и для всех кислотных оксидов, для углекислого газа характерны реакции взаимодействия с основными оксидами (образованными только активными металлами) и основаниями:

CaO + CO 2 = CaCO 3 ;

Al 2 O 3 + 3CO 2 = Al 2 (CO 3) 3 ;

CO 2 + NaOH (dilute) = NaHCO 3 ;

CO 2 + 2NaOH (conc) = Na 2 CO 3 + H 2 O.

Углекислый газ не поддерживает горения, в нем горят только активные металлы:

CO 2 + 2Mg = C + 2MgO (t);

CO 2 + 2Ca = C + 2CaO (t).

Углекислый газ вступает в реакции взаимодействия с простыми веществами, такими как водород и углерод:

CO 2 + 4H 2 = CH 4 + 2H 2 O (t, kat = Cu 2 O);

CO 2 + C = 2CO (t).

При взаимодействии углекислого газа с пероксидами активных металлов образуются карбонаты и выделяется кислород:

2CO 2 + 2Na 2 O 2 = 2Na 2 CO 3 + O 2 .

Качественной реакцией на углекислый газ является реакция его взаимодействия с известковой водой (молоком), т.е. с гидроксидом кальция, в которой образуется осадок белого цвета – карбонат кальция:

CO 2 + Ca(OH) 2 = CaCO 3 ↓ + H 2 O.

Физические свойства углекислого газа

Углекислый газ – газообразное вещество без цвета и запаха. Тяжелее воздуха. Термически устойчив. При сжатии и охлаждении легко переходит в жидкое и твердое состояния. Углекислый газ в твердом агрегатном состоянии носит название «сухой лед» и легко возгоняется при комнатной температуре. Углекислый газ плохо растворим в воде, частично реагирует с ней. Плотность – 1,977 г/л.

Получение и применение углекислого газа

Выделяют промышленные и лабораторные способы получения углекислого газа. Так, в промышленности его получают обжигом известняка (1), а в лаборатории – действием сильных кислот на соли угольной кислоты (2):

CaCO 3 = CaO + CO 2 (t) (1);

CaCO 3 + 2HCl = CaCl 2 + CO 2 + H 2 O (2).

Углекислый газ используется в пищевой (газирование лимонада), химической (регулировка температур при производстве синтетических волокон), металлургической (защита окружающей среды, например, осаждение бурого газа) и других отраслях промышленности.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем углекислого газа выделится при действии 200 г 10%-го раствора азотной кислоты на 90 г карбоната кальция, содержащего 8% примесей, нерастворимых в кислоте?
Решение Молярные массы азотной кислоты и карбоната кальция, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 63 и 100 г/моль, соответственно.

Запишем уравнение растворения известняка в азотной кислоте:

CaCO 3 + 2HNO 3 → Ca(NO 3) 2 + CO 2 + H 2 O.

ω(CaCO 3) cl = 100% — ω admixture = 100% — 8% = 92% = 0,92.

Тогда, масса чистого карбоната кальция:

m(CaCO 3) cl = m limestone × ω(CaCO 3) cl / 100%;

m(CaCO 3) cl = 90 × 92 / 100% = 82,8 г.

Количество вещества карбоната кальция равно:

n(CaCO 3) = m(CaCO 3) cl / M(CaCO 3);

n(CaCO 3) = 82,8 / 100 = 0,83 моль.

Масса азотной кислоты в растворе будет равна:

m(HNO 3) = m(HNO 3) solution × ω(HNO 3) / 100%;

m(HNO 3) = 200 × 10 / 100% = 20 г.

Количество вещества азотной кислоты кальция равно:

n(HNO 3) = m(HNO 3) / M(HNO 3);

n(HNO 3) = 20 / 63 = 0,32 моль.

Сравнивая количества веществ, вступивших в реакцию, определяем, что азотная кислота находится в недостатке, следовательно дальнейшие расчеты производим по азотной кислоте. Согласно уравнению реакции n(HNO 3): n(CO 2) = 2:1, следовательно n(CO 2) = 1/2×n(HNO 3) = 0,16 моль. Тогда, объем углекислого газа будет равен:

V(CO 2) = n(CO 2)×V m ;

V(CO 2) = 0,16×22,4 = 3,58 г.

Ответ Объем углекислого газа — 3,58 г.