Гиповолемия в системе кровообращения осложнения. Чурсин В.В. Клиническая физиология кровообращения (методические материалы к лекциям и практическим занятиям). Причины и механизмы развития гиповолемии

А.П. Ястребов, А.В. Осипенко, А.И. Воложин, Г.В. Порядин, Г.П. Щелкунова

Глава 2. Патофизиология системы крови.

Кровь – важнейшая составная часть организма, обеспечивающая его гомеостаз. Она переносит к тканям кислород из легких и удаляет из тканей углекислоту (дыхательная функция), доставляет клеткам различные необходимые для жизнедеятельности вещества (транспортная функция), участвует в терморегуляции, в поддержании водного баланса и выведении токсических веществ (дезинтоксикационная функция), в регуляции кислотно-основного состояния. От количества крови зависит величина артериального давления и работа сердца, функция почек и других органов и систем. Лейкоциты обеспечивают клеточный и гуморальный иммунитет. Тромбоциты вместе с плазменными факторами свертывания останавливают кровотечение.

Кровь состоит из плазмы и форменных элементов – эритроцитов, лейкоцитов и тромбоцитов. В 1 литре крови на долю форменных элементов (главным образом эритроцитов) приходится у мужчин 0,41 – 0,53 литра (гематокрит = 41 – 53 %), а у женщин – 0,36 – 0,48 литра (гематокрит = 36 – 48 %). Количество крови у человека составляет 7 – 8 % от массы его тела, т.е. у человека массой около 70 кг – около 5 литров.

При любой анемии количество эритроцитов в крови снижается (гематокрит- Нt – ниже нормы), но объем циркулирующей крови (ОЦК) сохраняется нормальным за счет плазмы. Такое состояние называется олигоцитемическая нормоволемия. В этом случае из-за дефицита гемоглобина (Нв) уменьшается кислородная емкость крови и развивается гипоксия гемического (кровяного) типа.

При увеличении в крови числа эритроцитов (эритроцитоз) на фоне нормального ОЦК развивается полицитемическая нормоволемия (Ht выше нормы). В большинстве случаев эритроцитоз, исключая некоторые патологические формы (см. ниже), компенсирует гипоксии различного генеза благодаря повышению кислородной емкости крови. При значительных увеличениях гематокрита может повышаться вязкость крови и сопровождаться нарушениями микроциркуляции.

Изменения объема циркулирующей крови (ОЦК)

Уменьшение ОЦК называется гиповолемией. Различают 3 формы гиповолемий:

Простая гиповолемия возникает в первые минуты (часы) после массивной острой кровопотери, когда на фоне уменьшения ОЦК гематокрит остается нормальным (скрытая анемия). При этом в зависимости от степени уменьшения ОЦК может наблюдаться падение артериального давления (АД), уменьшение сердечного выброса (УОС, МОС), тахикардия, перераспределение кровотока, выброс депонированной крови, уменьшение диуреза, нарушения мозгового кровообращения вплоть до потери сознания и другие последствия. Из-за ослабления микроциркуляции и уменьшения общего количества Нb развивается гипоксия циркуляторного и гемического типа.

Олигоцитемическая гиповолемия характеризуется уменьшением ОЦК и снижением гематокрита. Такое состояние может развиться у больных, страдающих тяжелой анемией, осложненной острым кровотечением или обезвоживанием, например, при лейкозах, апластических анемиях, лучевой болезни, злокачественных опухолях, некоторых болезнях почек и т.п. При этом развивается очень тяжелая гипоксия смешанного типа, обусловленная как дефицитом Нв, так и нарушением центрального и периферического кровообращения.

Лучшим способом коррекции простой и олигоцитемической гиповолемии является переливание крови или кровезаменителей.

Полицитемическая гиповолемия характеризуется уменьшением ОЦК и увеличением Ht. Ее причиной главным образом является гипогидратация, когда из-за дефицита воды в организме уменьшается объем плазмы крови. И хотя при этом кислородная емкость крови остается нормальной (Нb в норме), развивается гипоксия циркуляторного типа, так как в зависимости от степени обезвоживания (см. патофизиологию водно-электролитного обмена) уменьшение ОЦК приводит к падению АД, уменьшению сердечного выброса, нарушению центрального и периферического кровообращения, уменьшению фильтрации в клубочках почек, развитию ацидоза. Важным следствием является увеличение вязкости крови, затрудняющее и без того ослабленную микроциркуляцию, повышающее риск образования тромбов.

Для восстановления ОЦК необходимо вливать жидкости, вводить препараты, снижающие вязкость крови и улучшающие ее реологические свойства, дезагреганты, антикоагулянты.

Увеличение ОЦК называется гиперволемией . Различают также 3 формы гиперволемий: простая, олигоцитемическая и полицитемическая.

Простая гиперволемия может наблюдатьсяпосле массивных гемотрансфузий и сопровождаться увеличением АД и МОС. Обычно носит временный характер, т.к., благодаря включению регуляторных механизмов, ОЦК возвращается к норме.

Олигоцитемическая гиперволемия характеризуется увеличением ОЦК и снижением гематокрита. Развивается обычно на фоне гипергидратаций, когда увеличение воды в организме сопровождается увеличением объема плазмы крови. Особенно опасно такое состояние у больных с почечной недостаточностью и хронической, застойной сердечной недостаточностью, т.к. при этом повышается АД, развивается перегрузка сердца и его гипертрофия, возникают отеки, в том числе опасные для жизни. Гиперволемия и гипергидратация у этих больных обычно поддерживается активацией РААС и развитием вторичного альдостеронизма.

Для восстановления ОЦК следует использовать диуретики, блокаторы РААС (главным образом блокаторы АПФ – см. патофизиологию водно-электролитного обмена).

На фоне почечной недостаточности у больных обычно развивается и анемия, которая в свою очередь еще больше уменьшает гематокрит, а состояние больного усугубляется развитием гипоксии гемического типа.

Полицитемическая гиперволемия характеризуется увеличением ОЦК и увеличением гематокрита. Классическим примером такого состояния является хроническое миелопролиферативное заболевание (см. ниже) – эритремия (болезнь Вакеза). У больных резко увеличено в крови содержание всех форменных элементов - особенно эритроцитов, а также тромбоцитов и лейкоцитов. Заболевание сопровождается артериальной гипертензией, перегрузкой сердца и его гипертрофией, нарушениями микроциркуляции и высоким риском тромбообразования. Больные часто умирают от инфарктов и инсультов. Принципы терапии см.ниже.

Регуляция кроветворения

Существуют специфические и неспецифические механизмы регулирования гемопоэза. К специфическим - относятся коротко- и длиннодистантные регуляторные механизмы.

Короткодистантные (локальные) механизмы регуляции кроветворения работают в системе гемопоэзиндуцирующего микроокружения (ГИМ) и распространяются преимущественно на I и II классы клеток кроветворного костного мозга. Морфологически ГИМ включает три компонента.

1. Тканевой - представлен клеточными элементами: костномозговыми, фибробластами, ретикулярными, стромальными механоцитами, жировыми, макрофагами, эндотелиальными клетками; волокнами и основным веществом соединительной ткани (коллагеном, гликозаминогликанами и т.д.). Клетки соединительной ткани активно участвуют в разнообразных межклеточных взаимодействиях и осуществляют транспорт метаболитов. Фибробласты вырабатывают большое количество биологически активных веществ: колониестимулирующий фактор, ростовые факторы, факторы, регулирующие остеогенез и т.п. В регуляции гемопоэза важную роль играют моноциты-макрофаги. Для костного мозга характерно наличие эритробластических островков - структурно-функциональных образований с центрально расположенным макрофагом, окруженным слоем эритроидных клеток, одной из функций которых является передача железа развивающимся эритробластам. Показано существование островков и для гранулоцитопоэза. Вместе с этим макрофаги вырабатывают КСФ, интерлейкины, факторы роста и другие биологически активные вещества, а также обладают морфогенетической функцией.

Существенное влияние на кроветворные клетки оказывают лимфоциты, которые вырабатывают вещества, действующие на пролиферацию стволовых кроветворных клеток, интерлейкины, обеспечивающие цитокиновый контроль пролиферации, межклеточные взаимодействия в ГИМ и многое другое.

Основное вещество соединительной ткани костного мозга представлено коллагеном, ретикулином, эластином, образующими сеть, в которой расположены кроветворные клетки. В состав основного вещества входят гликозаминогликаны (ГАГ), играющие большую роль в регуляции кроветворения. Они по-разному влияют на гемопоэз: кислые ГАГы поддерживают гранулоцитопоэз, нейтральные - эритропоэз.

Экстрацеллюлярная жидкость костного мозга содержит разнообразные и высокоактивные ферменты, практически отсутствующие в плазме крови.

2. Микрососудистый – представлен артериолами, капиллярами, венулами. Этот компонент обеспечивает оксигенацию, а также регуляцию поступления и выхода клеток в кровоток.

3. Нервный - осуществляет связь между кровеносными сосудами и стромальными элементами. Основная масса нервных волокон и окончаний сохраняет топографическую связь с кровеносными сосудами, тем самым регулирует клеточную трофику и вазомоторные реакции.

В целом локальный контроль гемопоэза осуществляется путем взаимодействия трех его компонентов.

Начиная с коммитированных клеток в регуляции гемопоэза на ведущую роль выходят механизмы длиннодистантной регуляции , имеющие для каждого ростка специфические факторы.

Длиннодистантная регуляция эритропоэза осуществляется в основном двумя системами: 1) эритропоэтин и ингибитор эритропоэза; 2) кейлон и антикейлон.

Центральное место в регуляции эритропоэза занимает эритропоэтин , выработка которого возрастает при действии на организм экстремальных факторов (различные виды гипоксий), требующих мобилизации эритроцитов. Эритропоэтин по химической природе относится к гликопротеинам. Основное место образования - почки. Эритропоэтин действует главным образом на эритропоэтин-чувствительные клетки, стимулируя их к пролиферации и дифференцировке. Его действие реализуется через систему циклических нуклеотидов (главным образом через цАМФ). Наряду со стимулятором, в регуляции эритропоэза участвует и ингибитор эритропоэза. Он образуется в почках, возможно в лимфатической системе и селезенке при полицитемии (увеличении числа эритроцитов в крови), при повышении парциального давления кислорода во вдыхаемом воздухе. Химическая природа близка к альбуминам.

Действие связано с угнетением дифференцировки и пролиферации эритроидных клеток, либо нейтрализации эритропоэтина, либо нарушение его синтеза.

Следующей системой является "кейлон-антикейлон". Обычно они выделяются зрелыми клетками и специфичны для каждого вида клеток. Кейлон - биологически активное вещество, ингибирующее пролиферацию той же клетки, которая ее выработала. Напротив, эритроцитарный антикейлон стимулирует вступление делящихся клеток в фазу синтеза ДНК. Предполагается, что данная система регулирует пролиферативную активность эритробластов, а при действии экстремальных факторов в действие вступает эритропоэтин.

Длиннодистантная регуляция лейкопоэза распространяет свое действие на коммитированные клетки, пролиферирующие и созревающие клетки костного мозга и осуществляется различными механизмами. Большое значение в регуляции лейкопоэза принадлежит колониестимулирующему фактору (КСФ), который действует на коммитированные клетки-предшественники миелопоэза и на более дифференцированные клетки гранулоцитопоэза, активируя в них синтез ДНК. Он образуется в костном мозге, лимфоцитах, макрофагах, стенке сосудов, а также ряда других клеток и тканей. Уровень КСФ в сыворотке крови регулируется почками. КСФ гетерогенен. Есть сведения, что КСФ может регулировать гранулоцитомоноцитопоэз (ГМ-КСФ), моноцитопоэз (М-КСФ), продукцию эозинофилов (ЭО-КСФ).

Не менее важную роль в регуляции лейкопоэза играют лейкопоэтины . В зависимости от вида клеток, пролиферацию которых стимулируют лейкопоэтины, выделяют несколько их разновидностей: нейтрофилопоэтин, моноцитопоэтин, эозинофилопоэитин, лимфоцитопоэтины. Лейкопоэтины образуются различными органами: печенью, селезенкой, почками, лейкоцитами. Особое место среди лейкопоэтинов занимает Leukocytosis Inducing factor (LIF), который способствует переходу депонированных гранулоцитов из костного мозга в циркулирующую кровь.

К гуморальным регуляторам лейкопоэза относят термостабильный и термолабильный факторы лейкоцитоза, выделенные Менкиным биохимическим путем из очага воспаления.

В настоящее время в качестве регуляторов лейкопоэза рассматриваются интерлейкины (цитокины) - продукты жизнедеятельности лимфоцитов и макрофагов, являющиеся одним из важнейших механизмов связи иммунокомпетентных клеток и регенерирующих тканей. Их основное свойство заключается в способности регулировать рост и дифференцировку кроветворных и иммунокомпетентных клеток. Они включаются в сложную сеть цитокинового контроля пролиферации и дифференцировки не только кроветворной, но и костной тканей. Существует несколько видов интерлейкинов. Так, ИЛ-2 является специфическим индуктором образования Т-лимфоцитов. ИЛ-3 - стимулирует пролиферативную активность различных ростков кроветворения. ИЛ-4 - продукт активированных Т-лимфоцитов, стимулирует выработку В-лимфоцитов. Вместе с этим, ИЛ-1 служит одним из важнейших системных регуляторов остеогенеза, оказывает активирующее влияние на пролиферацию и синтез белков фибробластами, регулирует рост и функциональное состояние остеобластов.

Наряду со стимуляторами, в регуляции лейкопоэза участвуют и ингибиторы . Помимо термостабильных и термолабильных факторов лейкопении Менкина, есть сведения о существовании ингибитора гранулоцитопоэза. Его основным источником являются гранулоциты и клетки костного мозга. Выделены гранулоцитарные кейлон и антикейлон.

Контроль за гемопоэзом осуществляется и на уровне зрелых, специализированных клеток, утративших дифференцировочные возможности и сопровождается активным разрушением таких клеток. При этом образующиеся продукты распада клеток крови оказывают стимулирующее действие на кроветворение. Так, продукты разрушения эритроцитов способны активировать эритропоэз, а продукты распада нейтрофилов - нейтрофилопоэз. Механизм действия таких регуляторов связан: с прямым действием на костный мозг, опосредуется через образование гемопоэтинов, а также путем изменения гемопоэзиндуцирующего микроокружения.

Такой механизм регулирования кроветворения встречается и в физиологических условиях. Он связан с внутрикостномозговой деструкцией клеток крови и подразумевает разрушение в нем маложизнеспособных клеток эритроидного и гранулоцитарного ряда - понятие о "неэффективных" эритро- и лейкопоэзе.

Наряду со специфической регуляцией гемопоэза существует ряд неспецифических механизмов, оказывающих воздействие на метаболизм многих клеток организма, включая и кроветворные.

Эндокринная регуляция кроветворения . Существенное влияние на кровь и кроветворение оказывает гипофиз . В экспериментах на животных установлено, что гипофизэктомия вызывает развитие микроцитарной анемии, ретикулоцитопении, уменьшение клеточности костного мозга.

Гормон передней доли гипофиза АКТГ увеличивает в периферической крови содержание эритроцитов и гемоглобина, угнетает миграцию стволовых кроветворных клеток и уменьшает эндогенное колониеобразование, одновременно угнетает лимфоидную ткань. СТГ - потенцирует реакцию эритропоэтинчувствительных клеток на эритропоэтин и не влияет на клетки-предшественники гранулоцитов и макрофагов. Средняя и задняя доли гипофиза не оказывают заметного действия на гемопоэз.

Надпочечники . При адреналэктомии уменьшается клеточность костного мозга. Глюкокортикоиды стимулируют костномозговое кроветворение, ускоряя созревание и выход в кровь гранулоцитов, с одновременным уменьшением числа эозинофилов и лимфоцитов.

Половые железы . Мужские и женские половые гормоны по-разному влияют на кроветворение. Эстрогены обладают способностью тормозить костномозговое кроветворение. В эксперименте введение эстрона приводит к развитию остеосклероза и замещению костного мозга костной тканью со снижением числа стволовых кроветворных клеток. Андрогены - стимулируют эритропоэз. Тестостерон при введении животным стимулирует все звенья образования гранулоцитов.

В целом, гормоны обладают прямым действием на пролиферацию и дифференцировку кроветворных клеток, изменяют их чувствительность к специфическим регуляторам, формируют гематологические сдвиги, характерные для стресс-реакции.

Нервная регуляция кроветворения . Кора головного мозга оказывает регулирующее влияние на гемопоэз. При экспериментальных неврозах развивается анемия и ретикулоцитопения. Различные отделы гипоталамуса могут по-разному воздействовать на кровь. Так, стимуляция заднего гипоталамуса стимулирует эритропоэз, переднего - тормозит эритропоэз. При удалении мозжечка может развиться макроцитарная анемия.

Влияние нервной системы на кроветворение реализуется и через изменение гемодинамики. Симпатический и парасимпатический отделы нервной системы играют определенную роль в изменении состава крови: раздражение симпатического отдела и его медиаторы увеличивает число клеток крови, парасимпатический - уменьшает.

Наряду с указанной специфической и неспецифической регуляцией существуют механизмы иммунологической и метаболической регуляции кроветворения. Так, регулирующее влияние иммунной системы на кроветворение базируется на общности этих систем и важнейшей роли лимфоцитов в гемопоэзе, а также наличии у лимфоцитов морфогенетической функции, которая обеспечивает постоянство клеточного состава организма.

Метаболический контроль осуществляется путем прямого (метаболиты выступают в качестве индукторов пролиферации клеток) и опосредованного (метаболиты изменяют метаболизм клеток и тем самым действуют на пролиферацию - циклические нуклеотиды) влияния на кроветворение.

Патофизиология эритрона.

Эритрон – это совокупность зрелых и незрелых клеток красной крови – эритроцитов. Эритроциты рождаются в красном костном мозге из стволовой клетки, как и все другие форменные элементы. Монопотентными клетками, из которых могут развиваться только эритроциты, являются БОЕэр (бурстобразующие единицы эритроидные), которые под влиянием почечных эритропоэтинов (ЭПО), интерлейкина –3 (ИЛ-3) и колониестимулирующих факторов (КСФ) превращаются в КОЕэр (колониеобразующие единицы эритроидные), также реагирующие на ЭПО, и затем - в эритробласты. Эритробласты, одновременно пролиферируя, дифференцируются в пронормоциты, далее – нормоциты базофильные, -нормоциты полихроматофильные и нормоциты оксифильные. Нормоциты (старое название нормобласты) – это класс созревающих ядерных предшественников эритроцитов. Последней клеткой, способной к делению, является полихроматофильный нормоцит. На стадии нормоцитов происходит синтез гемоглобина. Оксифильные нормоциты, теряя ядра, через стадию ретикулоцита превращаются в зрелые безъядерные оксифильные эритроциты. 10 – 15 % предшественников эритроцитов гибнет еще в костном мозге, что носит название «неэффективный эритропоэз ».

В периферической крови здорового человека ядерных предшественников эритроцитов быть не должно. Из незрелых клеток красного ростка в крови в норме встречаются только ретикулоциты (или полихроматофильные эритроциты) от двух до десяти на тысячу (2-10%o или 0,2 – 1%). Ретикулоциты (клетки содержащие в цитоплазме сетчатую зернистость – остатки полирибосом) выявляются только при специальной суправитальной окраске красителем бриллианткрезилблау. Эти же клетки при окраске по Райту или по Романовскому-Гимза, воспринимая и кислые и основные красители, имеют сиреневый цвет цитоплазмы без зернистости.

Основную массу клеток периферической крови составляют зрелые безядерные оксифильные эритроциты. Их количество у мужчин – 4–5 ´ 10 12 /л, у женщин – 3,7–4,7 ´ 10 12 /л. Поэтому гематокрит у мужчин – 41–53%, а у женщин – 36–48%. Общее содержание гемоглобина (Нb) – 130–160 г/л у мужчин и 120–140 г/л у женщин. Среднее содержание гемоглобина (ССГ = Нb г/л:число Эр/л) - 25,4 – 34,6 пг/кл. Средняя концентрация гемоглобина (СКГ = Нb г/л:Нt л/л) – 310 – 360 г/л концентрата эритроцитов. Средняя концентрация клеточного гемоглобина (СККГ) = 32 – 36%. Средний диаметр эритроцитов 6 – 8 мкм, а средний объем клетки (СОК или MCV) – 80 – 95 мкм 3 . Скорость оседания эритроцитов (СОЭ) у мужчин – 1 – 10 мм /час, а у женщин – 2 – 15 мм/час. Осмотическая резистентность эритроцитов (ОРЭ), т.е. их устойчивость к гипотоническим растворам NaCl: минимальная – 0,48 – 0,44%, а максимальная – 0,32 – 0,28% NaCl. Благодаря своей двояковогнутой форме нормальные эритроциты имеют резерв прочности при попадании в гипотоническую среду. Их гемолизу предшествует перемещение воды в клетки и превращение их в легко разрушающиеся сфероциты.

Максимальная продолжительность жизни эритроцитов в крови – 100 – 120 суток. Разрушаются отжившие эритроциты в ретикулоэндотелиальной системе, главным образом в селезенке («кладбище эритроцитов»). При разрушении эритроцитов путем последовательных превращений образуется пигмент билирубин.

Патология эритрона может выражаться как в изменении количества эритроцитов, так и в изменении их морфологических и функциональных свойств. Нарушения могут происходить на этапе их рождения в костном мозге, на этапе их циркуляции в периферической крови и на этапе их гибели в РЭС.

Эритроцитозы

Эритроцитоз – состояние, характеризующееся увеличением содержания эритроцитов и гемоглобина в единице объема крови и повышением гематокрита, без признаков системной гиперплазии костномозговой ткани. Эритроцитоз может быть относительным и абсолютным, приобретенным и наследственным.

Относительный эритроцитоз является следствием уменьшения объема плазмы крови главным образом на фоне гипогидратации (см. выше полицитемическая гиповолемия). Из-за уменьшения объема плазмы в единице объема крови увеличивается содержание эритроцитов, гемоглобина и растет Ht, повышается вязкость крови и нарушается микроциркуляция. И хотя кислородная емкость крови не изменяется, ткани могут испытывать кислородное голодание по причине нарушения кровообращения.

Абсолютные эритроцитозы приобретенные (вторичные) обычно являются адекватной реакцией организма на гипоксию тканей. При дефиците кислорода в воздухе (например, у жителей высокогорья), при хронической дыхательной и сердечной недостаточности, при увеличении сродства Нb к О 2 и ослаблении диссоциации оксигемоглобина в тканях, при угнетении тканевого дыхания и т.п. включается универсальный компенсаторный механизм: в почках (главным образом) вырабатываются эритропоэтины (ЭПО), под влиянием которых чувствительные к ним клетки (см. выше) усиливают свою пролиферацию и в кровь из костного мозга поступает большее число эритроцитов (так называемый физиологический , гипоксический, компенсаторный эритроцитоз). Это сопровождается увеличением кислородной емкости крови и усилением ее дыхательной функции.

Абсолютные эритроцитозы наследственные (первичные) могут быть нескольких видов:

· Аутосомно-рецессивный дефект в аминокислотных участках Нb, ответственных за его дезоксигенацию, приводит к увеличению сродства Нb к кислороду и затрудняет диссоциацию оксигемоглобина в тканях, которые получают меньше кислорода. В ответ на гипоксию развивается эритроцитоз.

· Понижение в эритроцитах 2,3 – дифосфоглицерата (может снижаться на 70%) также приводит к увеличению сродства Нв к кислороду и затруднению диссоциации оксигемоглобина. Результат аналогичный – в ответ на гипоксию вырабатываются ЭПО и усиливается эритропоэз.

· Постоянная повышенная продукция эритропоэтинов почками, которые по причине аутосомно-рецессивного генетического дефекта перестают адекватно реагировать на уровень оксигенации тканей.

· Генетически обусловленная усиленная пролиферация эритроидных клеток в костном мозге без увеличения ЭПО.

Наследственные эритроцитозы являются патологическими , характеризуются увеличением Ht, вязкости крови и нарушением микроциркуляции, гипоксией тканей (особенно при увеличении сродства Нb к О 2), увеличением селезенки (рабочая гипертрофия), могут сопровождаться головными болями, повышенной утомляемостью, варикозным расширением сосудов, тромбозами и другими осложнениями.

Анемии

Анемия (дословно – бескровие, или общее малокровие ) – это клинико-гематологический синдром, характеризующийся уменьшением содержания гемоглобина и (за редким исключением) числа эритроцитов в единице объема крови .

В результате уменьшения количества эритроцитов снижается и показатель гематокрита.

Поскольку для всех анемий характерен низкий уровень гемоглобина, а значит снижена кислородная емкость крови и нарушена ее дыхательная функция, то у всех больных, страдающих анемией, развивается гипоксический синдром гемического типа . Его клинические проявления: бледность кожных покровов и слизистых оболочек, слабость, повышенная утомляемость, головокружение, может быть головная боль, одышка, сердцебиение с тахикардией или аритмией, боли в сердце, иногда изменения на ЭКГ. Так как на фоне низкого гематокрита снижается вязкость крови, то следствием этого обычно является ускорение СОЭ (чем меньше эритроцитов, тем быстрее они оседают), а также такие симптомы, как шум в ушах, систолический шум на верхушке сердца и шум «волчка» на яремных венах.

Классификации анемий.

Существует несколько подходов к классификации анемий: по патогенезу, по типу эритропоэза, по цветовому показателю (ЦП), по СККГ (см. выше), по диаметру эритроцитов и по СОК (см. выше), по функциональному состоянию костного мозга (его регенераторной способности).

По патогенезу все анемии делят на три группы:

Анемии, вследствие нарушенного кровообразования (гемопоэза). В эту группу входят все дефицитные анемии: железодефицитные (ЖДА), В 12 - и фолиеводефицитные анемии, сидеробластные анемии (СБА), анемии при дефиците белка, микроэлементов и других витаминов, а также анемии, обусловленные нарушениями самого костного мозга – гипо-и апластические анемии. В последние годы отдельно рассматривают анемии при хронических заболеваниях (АХЗ).

  • Анализ собственного капитала по данным отчета об изменениях капитала.

  • Гиповолемия – патологическое состояние, проявляющееся уменьшением объема циркулирующей крови, в ряде случаев сопровождающееся нарушением соотношения между плазмой и форменными элементами (эритроцитами, тромбоцитами, лейкоцитами).

    К сведению, в норме у взрослых женщин общий объем крови составляет 58–64 мл на 1 кг массы тела, у мужчин – 65–75 мл/кг.

    Причины

    К развитию гиповолемии приводят:

    • острая кровопотеря;
    • значительная потеря организмом жидкости (при ожогах большой площади, диарее, неукротимой рвоте, полиурии);
    • вазодилатационный коллапс (резкое расширение сосудов, в результате чего их объем перестает соответствовать объему циркулирующей крови);
    • шоковые состояния;
    • недостаточное поступление в организм жидкости при повышенных ее потерях (например, при высокой температуре окружающей среды).
    На фоне снижения объема циркулирующей крови может возникнуть функциональная недостаточность ряда внутренних органов (головного мозга, почек, печени).

    Виды

    В зависимости от гематокрита (показателя соотношения форменных элементов крови и плазмы) выделяют следующие виды гиповолемии:

    1. Нормоцитемическая. Характеризуется общим уменьшением объема крови с сохранением соотношения плазмы и форменных элементов (гематокрит в пределах нормы).
    2. Олигоцитемическая. Преимущественно уменьшается содержание форменных элементов крови (снижается значение гематокрита).
    3. Полицитемическая. В большей степени происходит уменьшение объема плазмы (гематокрит выше нормы).

    Наиболее тяжелое проявление гиповолемии называется гиповолемическим шоком.

    Признаки

    Клинические проявления гиповолемии определяются ее видом.

    Основные симптомы нормоцитемической гиповолемии:

    • слабость;
    • головокружение;
    • снижение артериального давления;
    • тахикардия;
    • слабый пульсовой толчок;
    • снижение диуреза;
    • цианоз слизистых и кожных покровов;
    • снижение температуры тела;
    • обмороки;
    • судороги мышц нижних конечностей.

    Для олигоцитемической гиповолемии характерны признаки нарушения кровоснабжения органов и тканей, снижения кислородной емкости крови, нарастающей гипоксии.

    Признаки полицитемической гиповолемии:

    • значительное повышение вязкости крови;
    • выраженные расстройства микроциркуляторного кровообращения;
    • диссеминированный микротромбоз; и др.

    Гиповолемический шок проявляется резко выраженной клинической картиной, быстрым нарастанием симптоматики.

    Диагностика

    Диагноз и степень гиповолемии ставят на основании клинических симптомов.

    В норме у взрослых женщин общий объем крови составляет 58–64 мл на 1 кг массы тела, у мужчин – 65–75 мл/кг.

    Объем лабораторно-инструментальных исследований зависит от характера патологии, приведшей к уменьшению объема циркулирующей крови. Обязательный минимум включает:

    • определение гематокрита;
    • общий анализ крови;
    • биохимию крови;
    • общий анализ мочи;
    • определение группы крови и резус-фактора.

    При подозрении на гиповолемию, вызванную кровотечением в брюшную полость, выполняют диагностическую лапароскопию.

    Лечение

    Цель терапии – как можно скорее добиться восстановления нормального объема циркулирующей крови. Для этого осуществляют инфузию растворов декстрозы, физиологического раствора и полиионных растворов. При отсутствии стойкого эффекта показано внутривенное введение искусственных плазмозаменителей (растворов гидроксиэтилкрахмала, желатина, декстрана).

    Параллельно проводят терапию основной патологии, чтобы предотвратить нарастание тяжести гиповолемии. Так, при наличии источника кровотечения выполняют хирургический гемостаз. Если уменьшение объема циркулирующей крови обусловлено шоковым состоянием, назначается соответствующая противошоковая терапия.

    При тяжелом состоянии пациента и появлении у него признаков дыхательной недостаточности решается вопрос о целесообразности интубации трахеи и переводе больного на искусственную вентиляцию легких.

    В отсутствие экстренной терапии тяжелая гиповолемия заканчивается развитием гиповолемического шока – угрожающего жизни состояния.

    Профилактика

    Профилактика гиповолемии включает:

    • профилактику травматизма;
    • своевременное лечение острых кишечных инфекций;
    • достаточное поступление воды в организм, коррекцию водного режима при изменяющихся условиях окружающей среды;
    • отказ от самолечения мочегонными препаратами.

    Последствия и осложнения

    В отсутствие экстренной терапии тяжелая гиповолемия заканчивается развитием гиповолемического шока – угрожающего жизни состояния. Кроме того, на фоне снижения объема циркулирующей крови может возникнуть функциональная недостаточность ряда внутренних органов (головного мозга, почек, печени).

    Объём циркулирующей крови (ОЦК)

    Кислородтранспортные возможности организма зависят от объёма крови и содержания в ней гемоглобина.

    Объём циркулирующей крови в покое у молодых женщин составляет в среднем 4,3л, у мужчин-5,7л. При нагрузке ОЦК сначала увеличивается, а затем уменьшается на 0,2-0,3л из-за оттока части плазмы из расширенных капилляров в межклеточное пространство работающих мышц.При длительных упражнениях среднее значение ОЦК у женщин равно 4 л, у мужчин-5,2л. Тренировка выносливости ведёт к повышению ОЦК. При нагрузке максимальной аэробной мощности ОЦК у тренированных мужчин в среднем равен 6,42л

    ОЦК и её составляющие: объём циркулирующей плазмы(ОЦП) и объём циркулирующих эритроцитов(ОЦЭ) повышаются при занятиях спортом. Увеличение ОЦК является специфическим эффектом тренировки выносливости. Его не наблюдается у представителей скоростно-силовых видов спорта. С учётом размеров(веса) тела разница между ОЦК у выносливых спортсменов, с одной стороны, и нетренированных людей и спортсменов, тренирующих другие физические качества, с другой, в среднем составляет более 20%. Если ОЦК у спортсмена, тренирующего выносливость, равна 6,4литра (95,4мл на 1кг веса тела), то у нетренированных она равна5,5 л (76,3мл/кг веса тела).

    В таблице 9 приведены показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина на 1 кг веса тела у спортсменов с различной направленностью тренировочного процесса.

    Таблица 9

    Показатели ОЦК,ОЦЭ,ОЦП и количества гемоглобина у спортсменов с различной направленностью тренировочного процесса

    Из таблицы 9 следует, что при увеличении ОЦК у выносливых спортсменов пропорционально увеличивается и общее количество эритроцитов и гемоглобина крови. Это значительно повышает общую кислородную ёмкость крови и способствует увеличению аэробной выносливости.

    Благодаря увеличению ОЦК растёт центральный объём крови и венозный возврат к сердцу, что обеспечивает большой СО крови. Увеличивается кровенаполнение альвеолярных капилляров, что повышает диффузную способность лёгких. Увеличение ОЦК позволяет направлять большее количество крови в кожную сеть и таким образом увеличивает возможность организма для теплоотдачи во время длительной работы.

    В период врабатывания АД,СО,СВ, АВР-О2 растут медленнее чем ЧСС. Причина этого- медленный рост(2-3мин) объёма циркулирующей крови вследствие медленного выхода крови из депо. Быстрый рост ОЦК может оказать травмирующую нагрузку на сосудистое русло.

    Во время нагрузок большой аэробной мощности через сердце прокачивается большое количество крови с высокой скоростью. Излишек плазмы даёт резерв, позволяющий избежать гемоконцентрацию и увеличение вязкости. То есть у спортсменов увеличение ОЦК, обусловленое больше увеличением объёма плазмы, чем объёмом эритроцитов, приводит к снижению показателя гематокрита (вязкости крови) по сравнению с не спортсменами (42,8 против44,6).

    Благодаря большому объёму плазмы уменьшается концентрация в крови продуктов тканевого обмена, например молочной кислоты. Поэтому концентрация лактата при анаэробной нагрузке растёт медленнее.

    Механизм роста ОЦК состоит в следующем: рабочая гипертрофия мышц => возрастание запроса организма в белках => повышение продукции белка печенью => увеличивается выброс белков печенью в кровь => повышается колоидно- осматическое давление и вязкость крови => рост абсорбции воды из тканевой жидкости внутрь сосудов а также происходит задержка воды, поступающей в организм => увеличивается объём плазмы (основу плазмы составляют белки и вода) => рост ОЦК.

    «Объём циркулирующей крови - доминирующий фактор хорошо уравновешенного кровообращения.» Уменьшение ОЦК, накопление крови в депо(в печени, в селезёнке, в сети воротной вены) сопровождается уменьшением объёма крови, которая прибывает к сердцу и которая выбрасывается каждой систолой. Внезапное уменьшение ОЦК ведёт за собой острую сердечную недостаточность. За уменьшением объёма крови, естественно, всегда следует серьёзная тканевая и клеточная гипоксия.

    ОЦК (по отношению к весу тела) зависит от возраста: у детей до 1 года-11%, у взрослых-7%. На 1кг веса тела у детей 7-12 лет-70мл, у взрослых-50-60мл.

    Физиология различает два вида гемодинамической нагрузки на желудочки сердца: пред- и постнагрузку.


    Это нагрузка объёмом крови, которым заполняется полость желудочка перед началом изгнания. В клинической практике мерой преднагрузки является конечно-диастолическое давление (КДД) в полости желудочка (правого - КДДп, левого - КДДл). Это давление определяется только инвазивным методом. В норме КДДп = 4-7 мм Hg, КДДл = 5-12 мм Hg.


    Для правого желудочка косвенным показателем может быть величина центрального венозного давления (ЦВД). Для левого желудочка очень информативным показателем может быть давление наполнения левого желудочка (ДНЛЖ), которое возможно определить неинвазивным (реографическим) методом.


    Увеличение преднагрузки

    К увеличению преднагрузки (справа или слева) любого происхождения желудочек приспосабливается к новым условиям работы по закону О.Франка и Е.Старлинга. Е.Старлинг так охарактеризовал эту закономерность: "ударный объём пропорционален конечному диастолическому объему":

    Суть закона состоит в том, что чем больше растягиваются мышечные волокна желудочка при его избыточном наполнении, тем больше сила их сокращения в последующую систолу.

    Правомочность этого закона была подтверждена многочисленными исследованиями, даже на клеточном уровне (сила сокращения кардиомиоцита является функцией длины саркомера перед началом его сокращения). Главный вопрос в законе О.Франка и Е.Старлинга в том, почему сверхнормальное увеличение длины мышечного волокна увеличивает силу его сокращения?

    Здесь уместно привести ответ Ф.З.Меерсона (1968 г.). Сила сокращения мышечного волокна определяется количеством актино-миозионовых связей, которые могут возникнуть в мышечном волокне одновременно. Удлинение волокна до определенного предела так меняет взаимное расположение актиновых и миозиновых нитей, что при сокращении возрастает либо количество актино-миозиновых связей (точнее скорость их образования), либо контрактильная сила, которую каждая такая связь развивает.


    До какой границы (предела) действует приспособительная реакция О.Франка и Е.Старлинга, когда изменение длины волокна изменяет напряжение, а оно изменяет силу сокращения?

    Этот закон действует, пока длина мышечного волокна увеличивается на 45% сверх обычной длины при нормальном заполнении желудочка (т.е. примерно в 1,5 раза). Дальнейший рост диастолического давления в желудочке увеличивает длину мышечного волокна в малой мере, т.к. волокна становятся трудно растяжимыми потому, что в процесс вовлекается трудно растяжимый соединительно-тканный эластический каркас самих волокон.


    Ориентиром, контролируемым в клинических условиях, для правого желудочка может быть повышение ЦВД более 120 мм Н 2 О (норма 50-120). Это косвенный ориентир. Непосредственным ориентиром является повышение КДДп до 12 мм Hg. Ориентиром для левого желудочка является увеличение КДДл (ДНЛЖ) до 18 мм Hg. Иными словами, когда КДДп в пределах от 7 до 12 или КДДл в пределах от 12 до 18 мм Hg, то правый или левый желудочек уже работает по закону О.Франка и Е.Старлинга.


    При приспособительной реакции О.Франка и Е.Старлинга, УО левого желудочка не зависит от диастолического артериального давления (ДАД) в аорте, а систолическое артериальное давление (САД) и ДАД в аорте не изменяются. Эту приспособительную реакцию сердца S.Sarnoff назвал гетерометрической регуляцией (heteros по греч. - другой; применительно к теме раздела - регуляция посредством другой длины волокна).


    Надо отметить, что еще в 1882 г. Fick и в 1895 г. Blix отметили, что "закон сердца таков же, как закон скелетной мышцы, а именно, что механическая энергия, освобождающаяся при переходе из состояния покоя в состояние сокращения, зависит от площади "химически сокращающихся поверхностей", т.е. от длины мышечного волокна".

    В желудочках, как и во всей сосудистой системе, какая-то часть объема крови является заполняющей и какая-то часть является растягивающей, она то и создает КДД.


    Поскольку приспособительная реакция сердца, подчиняющаяся закону, имеет определенную границу, за которой этот закон О.Франка и Е.Старлинга уже не действует, то возникает вопрос: а можно ли усилить эффект этого закона? Ответ на этот вопрос имеет очень важное значение для врачей анестезистов и интенсивистов. В исследованиях E.H.Sonnenblick (1962-1965 г.г.) было установлено, что при чрезмерной преднагрузке миокард способен значительно увеличивать силу сокращения под воздействием положительно инотропных средств. Изменяя функциональные состояния миокарда посредством воздействия инотропных средств (Са, гликозиды, норадреналин, дофамин) при одном и том же притоке крови (одно и то же растяжение волокон), он получил целое семейство «кривых Е.Старлинга» со смещением кверху от исходной кривой (без действия инотропика).

    Рисунок 4. График изменения кривой напряжения без инотропного средства и с ним при одинаковой длине мышечного волокна


    Из рисунка 4 видно, что:

    1. Увеличение напряжения (Т2) при использовании инотропного средства и неизменной исходной длине мышечного волокна (L1) за тот же отрезок времени (t1) связано с ускорением образования актиномиозиновых связей (V2 > V1);

    2. С инотропным средством получается такой же эффект величины Т1, как и без него, за меньший отрезок времени - t2 (3).

    3. С инотропным средством получаемый эффект величины Т1 достигается как бы при меньшей длине волокна L2 (3).


    Уменьшение преднагрузки.

    Обусловлено уменьшением притока крови в полость желудочка. Это может быть вследствии уменьшения ОЦК, сужения сосудов в МКК, сосудистой недостаточности, органических изменений в сердце (стеноз АВ - клапанов справа или слева).


    Вначале включаются следующие приспособительные элементы:

    1. Усиливается изгнание крови из предсердия в желудочек.

    2. Увеличивается скорость расслабления желудочка, что способствует его заполнению, т.к. основная масса крови поступает в фазу быстрого наполнения.

    3. Увеличивается скорость сокращения мышечных волокон и возрастания напряжения, благодаря чему поддерживается фракция изгнания и уменьшается остаточный объем крови в полости желудочка.

    4. Увеличивается скорость изгнания крови из желудочков, что способствует сохранению продолжительности диастолы и заполнения желудочка кровью.


    Если совокупность этих приспособительных элементов оказывается недостаточной, то развивается тахикардия, направленная на поддержание СВ.


    Это нагрузка сопротивлением току крови при изгнании её из полости желудочка. В клинической практике мерой постнагрузки является величина общего легочного сопротивления (ОЛС) для МКК, равная в норме 150-350 дин*с*см-5, и общего периферического сосудистого сопротивления (ОПСС) для БКК, равная в норме 1200-1700 дин*с*см-5. Косвенным признаком изменения постнагрузки для левого желудочка может быть величина АДср, равная в норме 80-95 мм Hg.

    Однако в физиологии классическим представлением о постнагрузке является давление над полулунными клапанами перед изгнанием крови желудочками. Иными словами это конечно-диастолическое давление над полулунными клапанами в легочной артерии и аорте. Естественно, чем больше периферическое сопротивление сосудов, тем больше конечно-диастолическое давление над полулунными клапанами.


    Увеличение постнагрузки.

    Такая ситуация возникает при функциональном сужении артериальных периферических сосудов, хоть в МКК, хоть в БКК. Она может быть обусловлена органическими изменениями в сосудах (первичная лёгочная гипертензия или гипертоническая болезнь). Это может быть при сужении выходного отдела из правого или левого желудочка (подклапанные, клапанные стенозы).


    Закон, по которому желудочек приспосабливается к нагрузке сопротивлением, впервые открыл Г.Анреп (1912г., лаборатория Е.Старлинга).

    Дальнейшие исследования этого закона были продолжены самим Е.Старлингом и далее многими известными физиологами. Результаты каждого исследования были опорой и толчком к следующему.

    Г. Анреп установил, что при увеличении сопротивления в аорте, вначале кратковременно объём сердца увеличивается (похоже на приспособительную реакцию О.Франка и Е.Старлинга). Однако затем объём сердца постепенно уменьшается до новой, больше исходной, величины и далее остается стабильным. При этом, несмотря на увеличение сопротивления в аорте, УО остается прежним.


    Приспособительную реакцию сердца по закону Г. Анрепа и А. Хилла при увеличении нагрузки сопротивлением Ф.З.Меерсон объясняет следующим образом (1968 г.): по мере повышения нагрузки сопротивлением количество актиномиозиновых связей увеличивается. А количество свободных центров, способных реагировать между собой, в актиновых и миозиновых волокнах уменьшается. Поэтому с каждой, всё большей, нагрузкой количество вновь образующихся актиномиозиновых связей уменьшается в единицу времени.


    Одновременно уменьшается и скорость сокращения, и количество механической и тепловой энергии, освобождающейся при распаде актиномиозиновых связей, постепенно приближаясь к нулю.

    Очень важно, что количество актиномиозиновых связей увеличивается, а их распад уменьшается. Это означает, что с увеличением нагрузки наступает пересократимость актиномиозиновых волокон, что и ограничивает эффективность работы сердца.


    Итак, когда нагрузка сопротивлением увеличивается на 40-50%, адекватно ей увеличивается мощность и сила мышечного сокращения. При большем увеличении нагрузки эффективность этой приспособительной реакции утрачивается из-за потери мышцей способности расслабляться.


    Другим фактором, со временем ограничивающим эту приспособительную реакцию, является, как было установлено Ф.З.Меерсоном и его сотрудниками (1968 г.), снижение сопряжения окисления и фосфорилирования на 27-28% на участке - «цитохром с» - «кислород», при этом в миокарде уменьшается количество АТФ и особенно креатинфосфата (КФ).

    Значит, закон Г. Анрепа и А. Хилла обеспечивает приспособление сердечной мышцы к нагрузке сопротивлением путём увеличения мощности желудочка, приводящей к увеличению силы сокращения без изменения исходной длины мышечного волокна.


    Приспособительную реакцию Г. Анрепа и А. Хилла S.Sarnoff назвал гомеометрической регуляцией (homoios по греч. - подобный; применительно к теме раздела - регуляция посредством такой же длины волокна).

    Здесь также важен вопрос: можно ли усилить эффект закона Г. Анрепа и А. Хилла? Исследования E.H. Sonnenblick (1962-1965 г.г.) показали, что при чрезмерной постнагрузке миокард способен увеличивать мощность, скорость и силу сокращения под воздействием положительно инотропных средств.

    Уменьшение постнагрузки.

    Связано с уменьшением давления над полулунными клапанами. При нормальном ОЦК уменьшение постнагрузки становится возможным только при единственном обстоятельстве - при увеличении объема сосудистого русла, т.е. при сосудистой недостаточности.

    Уменьшение давления над полулунными клапанами способствует укорочению периода повышения внутрижелудочкового давления и уменьшению самой величины этого давления перед началом изгнания крови. Это уменьшает потребность миокарда в кислороде и его энергозатраты на напряжение.

    Однако все это уменьшает линейную и объемную скорость кровотока. В связи с этим уменьшается и венозный возврат, что ухудшает наполнение желудочков. В таких условиях единственно возможной приспособительной реакцией становится увеличение ЧСС, направленное на поддержание СВ. Как только тахикардия станет сопровождаться снижением СВ, эта приспособительная реакция переходит в разряд патологической.


    Совокупность всех исследований, выполненных О.Франком, Е.Старлингом, Г.Анрепом, А.Хиллом и другими физиологами того периода позволила выделить два варианта сокращения сердечного волокна: изотоническое и изометрическое сокращения.


    В соответствии с этим выделены два варианта работы желудочков сердца.


    1. Когда желудочек работает преимущественно с нагрузкой по объему - он работает по варианту изотонического сокращения. При этом тонус мышцы изменяется в меньшей мере (изотония), преимущественно изменяется длина и поперечное сечение мышцы.


    2. Когда желудочек работает преимущественно с нагрузкой по сопротивлению - он работает по варианту изометрического сокращения. При этом преимущественно изменяется напряжение мышцы (тонус), а её длина и поперечное сечение изменяются в меньшей мере или почти не изменяются (изометрия).

    При работе желудочка с нагрузкой по сопротивлению (даже при функциональном изменении ОЛС или ОПСС) многократно увеличивается потребность миокарда в кислороде. Поэтому исключительно важным является обеспечение такого больного в первую очередь кислородом.

    Врачам нередко приходится усиливать работу сердца инотропными средствами. В физиологии кровообращения (в т.ч. и клинической) под инотропизмом понимается (Ф.З. Меерсон, 1968 г.) регулирование скорости сокращения и расслабления, и поэтому мощности и эффективности работы сердца при неизменных размерах желудочка.

    Инотропизм направлен не на сверхнормальное увеличение силы сокращений сердца, а на поддержание силы сокращений, в лучшем случае близкой к норме.

    Инотропизм отличается от закона О.Франка и Е.Старлинга тем, что при этом не изменяется исходная длина волокон миокарда. Он отличается от закона Г. Анрепа и А. Хилла тем, что при этом увеличивается не только скорость сокращения, но и (главное!) скорость расслабления волокон миокарда (чем предупреждается пересократимость, или контрактура, миокарда).


    Однако при искусственной инотропной регуляции работы сердца норадреналином и др. аналогичными средствами может быть серьезная опасность. Если резко и значительно уменьшить введение инотропного средства или прекратить введение его, то может резко снизиться тонус миокарда.

    Возникает острая тоногенная дилатация желудочка. Его полость увеличивается, резко снижается внутрижелудочковое давление. В этих условиях, чтобы достигнуть прежней величины напряжения необходимы большие затраты энергии.


    Процесс наращивания напряжения является самым главным потребителем энергии в сердечном цикле. Кроме того, он идет в первую очередь. В физиологии существует закон, что первый процесс всегда старается как можно полнее использовать наличную энергию, чтобы завершить его целиком и полностью. Остаток энергии расходуется на выполнение следующего процесса и т.д. (т.е. каждый предыдущий процесс как Людовик XV: "после нас хоть потоп").

    За процессом увеличения напряжения идет работа по перемещению крови из желудочков в сосуды. Из-за того, что на напряжение затрачивается почти вся наличная энергия, а на изгнание ее недостает, от напряжения начинает отставать работа желудочков по перемещению крови. В результате общая эффективность сердца снижается. С каждым таким неполноценным сокращением прогрессивно увеличивается остаточный объем крови в полости желудочка и, в конце концов, наступает асистолия.

    Объем циркулирующей крови (ОЦК) составляет 2,4 л на 1 м 2 поверхности тела у женщины и 2,8 л на 1 м 2 поверхности тела у мужчин, что соответствует 6,5 % массы тела женщин и 7,5 % массы тела мужчин [Шустер X. П. и др., 1981].

    Величину ОЦК можно рассчитывать в миллилитрах на килограмм массы тела. У здоровых мужчин ОЦК составляет в среднем 70 мл/кг, у здоровых женщин — 65 мл/кг. Г. А. Рябов (1982) рекомендует для определения должной величины ОЦК использовать рассчетную таблицу, составленную Moore.

    Для практической работы, особенно в экстренных случаях, при лечении острой кровопотери более удобен расчет величины кровопотери по отношению к ОЦК. Так, средний ОЦК взрослого человека с массой тела 70 кг составляет 5 л, из которых 2 л приходится на клеточные элементы — эритроциты, лейкоциты, тромбоциты (глобулярный объем) и 3 л — на плазму (плазматический объем) . Таким образом, в среднем ОЦК составляет 5—6 л, или 7 % массы тела Климанский В. А., Рудаев Я. А., 1984].

    Объем циркулирующей крови у здоровых людей (в миллилитрах)

    Масса
    тела, кг
    Мужчины Женщины
    нормостеники (7,0)* гиперстеники (6,0) гипостеники (6,5) с развитой мускулатурой (7,5) нормостеники (6,5) гиперстеники (5,5) гипостеники (6,0) с развитой
    мускулатурой (7,0)
    40 2800 2400 2600 3000 2600 2200 2400 2800
    45 3150 2700 2920 3370 2920 2470 2700 3150
    50 3500 3000 3250 3750 3250 2750 3000 3500
    55 3850 3300 3570 4120 3570 3020 3300 3850
    60 4200 3600 3900 4500 3900 3300 3600 4200
    65 4550 3900 4220 4870 4220 3570 3900 4550
    70 4900 4200 4550 5250 4550 3850 4200 4900
    75 5250 4500 4870 5620 4870 4120 4500 5250
    80 5600 4800 5200 6000 5200 4400 4800 5600
    85 5950 5100 5520 6380 5520 4670 5100 5950
    90 6300 5400 5850 6750 5850 4950 5400 6300
    95 6650 5700 6170 7120 6170 5220 5700 6650

    В венах циркулирует 70—80 % крови, в артериях — 15—20 % и в капиллярах 5—7,5 % [Малышев В. Д., 1985]. В целом в сердечно-сосудистой системе циркулирует 80 %, в паренхиматозных органах — 20 % ОЦК.

    ОЦК характеризуется относительным постоянством. Это обеспечивается механизмами саморегуляции. Регуляция ОЦК является сложным и многоступенчатым процессом, но в конечном итоге он сводится к перемещению жидкости между кровью и внесосудистым пространством и к изменениям выведения жидкости из организма [Левите Е. М. и др., 1975; Селезнев С. А. и др., 1976; Клецкин С. 3., 1983].

    В то же время ОЦК — величина, весьма вариабельная даже для одного человека в зависимости от его физического статуса и состояния гомеостаза. Люди, систематически занимающиеся спортом, имеют большой ОЦК. На величину ОЦК влияют возраст, пол, профессия, температура окружающей среды, величина атмосферного давления и другие факторы.

    В ответ на острую кровопотерю в организме развиваются патофизиологические изменения, носящие сначала компенсаторно-защитный характер и обеспечивающие сохранение жизни. Некоторые из них мы рассмотрим ниже.


    «Инфузионно-трансфузионная терапия острой кровопотери»,
    Е.А. Вагнер, В.С. Заугольников

    Веномоторный эффект компенсирует потерю 10—15 % ОЦК (500—700 мл) у взрослого человека, если тот не страдает каким-либо хроническим заболеванием и у него нет признаков гиповолемического шока или дефицита ОЦК. Такая «централизация» кровообращения биологически целесообразна, ибо какое-то время сохраняется кровоснабжение жизненно важных органов (мозг, сердце, легкие). Однако сама по себе она может явиться причиной развития тяжелых…


    Реакция системного кровотока при острой кровопотере и геморрагическом шоке вначале дают защитный эффект. Однако длительная вазоконстрикция в связи с развитием ацидоза и накоплением повышенных концентраций тканевых метаболитов — вазодилататоров приводит к изменениям, которые считают ответственными за развитие декомпенсированного обратимого и необратимого шока. Так, сокращение артериол ведет к уменьшению тканевого кровотока и оксигенации, вызывая снижение рН…


    Реакции, развивающиеся в ответ на снижение ОЦК, приводят к снижению объемного кровотока в тканях и развитию компенсаторных механизмов, направленных на коррекцию сниженного кровотока. Одним из таких компенсаторных механизмов является гемодилюция — поступление внесосудистой, внеклеточной жидкости в сосудистое русло. При геморрагическом шоке наблюдается прогрессирующая гемодилюция, которая возрастает с тяжестью шока. Гематокрит служит показателем уровня гемодилюции. В…


    Восполнение дефицита белков плазмы происходит за счет мобилизации лимфы из всех лимфатических сосудов. Под воздействием повышенных концентраций адреналина и возбуждения симпатической нервной системы развивается спазм мелких лимфатических сосудов. Содержащаяся в них лимфа выталкивается в венозные коллекторы, чему способствует пониженное венозное давление. Объем лимфы в грудном лимфатическом протоке после кровотечения быстро увеличивается. Это способствует увеличению ОЦК…


    Периферический кровоток зависит не только от перфузионного артериального давления, ОЦК и тонуса сосудов. Важная роль принадлежит реологическим свойствам крови и в первую очередь ее вязкости. Симпатико-адреналовая стимуляция приводит к пре- и посткапиллярной вазоконстрикции, в результате чего значительно уменьшается тканевая перфузия. Тканевый кровоток в капиллярах замедляется, что создает условия для агрегации эритроцитов и тромбоцитов и развития…


    Расстройства кровообращения при острой кровопотере и геморрагическом шоке и массивная инфузионная терапия могут вызвать дыхательную недостаточность, которая нарастает через несколько часов после операции. Она проявляется нарушением легочно-капиллярной мембранной проницаемости — интерстициальным отеком легкого, т. е. одним из вариантов «шокового легкого». Травма и острая кровопотеря вызывают гипервентиляцию. При геморрагическом шоке минутная вентиляция обычно в 1 1/2—2…


    Экспериментальные и клинические исследования показали, что при острой кровопотере отмечается снижение почечного кровотока на 50—70 % с селективным снижением кортикального кровотока . Кортикальный кровоток составляет приблизительно 93 % почечного. Селективное снижение почечного -кровотока вследствие преклубочковой артериальной вазоконстрикции снижает клубочковое давление до уровня, при котором клубочковая фильтрация уменьшается или прекращается, развиваются олигурия или анурия. Гемодинамические…


    Острая кровопотеря, особенно массивная, часто вызывает нарушения функции печени. Они обусловлены в первую очередь снижением печеночного кровотока, главным образом артериального . Возникающая ишемия печени приводит к развитию центролобу-лярного некроза IRauber, Floguet, 1971]. Нарушается функция печени: возрастает содержание трансаминазы, снижается количество протромбина, наблюдаются гипо-альбуминемия и гиперлакцидемия. Вследствие рассасывания гематомы или в результате массивной…


    Показателем изменения метаболизма является образование в качестве конечного продукта молочной кислоты вместо нормального конечного продукта аэробного метаболизма — СO2. В результате развивается метаболический ацидоз. Количество буферных оснований прогрессивно снижается, и хотя рано развивается респираторная компенсация, при геморрагическом шоке она часто неадекватна. Изучая изменения метаболизма у больных с кровопотерей и шоком А. Лабори (1980) установил, что…


    Острая кровопотеря в результате уменьшенного венозного возраста (абсолютная или относительная гиповолемия) приводит к снижению сердечного выброса. В связи с освобождением катехоламинов в окончаниях постганглионарных симпатических нервов прекапиллярной и посткапиллярной частей сосудистой системы происходит максимальная стимуляция адренокортикальной секреции. Реакции организма на острую уровопотерю «Инфузионно-трансфузионная терапия острой кровопотери»,Е.А. Вагнер, В.С. Заугольников