Частицы в узлах молекулярной решетки. Кристаллическая решетка и ее основные типы

Связи между ионами в кристалле очень прочные и устойчивые.Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

Вещества с ионной кристаллической решеткой обладают следующими свойствами:

1. Относительно высокой твердостью и прочностю;

2. Хрупкостью;

3. Термостойкостью;

4. Тугоплавкостью;

5. Нелетучестью.

Примеры: соли – хлорид натрия, карбонат калия, основания – гидрооксид кальция, гидрооксид натрия.

4. Механизм образования ковалентной связи (обменный и донорно-акцепторный).

Каждый атом стремится завершить свой внешний электронный уровень, чтобы уменьшить потенциальную энергию. Поэтому ядро одного атома притягивается к себе электронную плотность другого атома и наоборот, происходит наложение электронных облаков двух соседних атомов.

Демонстрация аппликации и схемы образования ковалентной неполярной химической связи в молекуле водорода. (Учащиеся записывают и зарисовывают схемы).

Вывод: Связь между атомами в молекуле водорода осуществляется за счет общей электронной пары. Такая связь называется ковалентной.

Какую связь называют ковалентной неполярной? (Учебник стр. 33).

Составление электронных формул молекул простых веществ неметаллов:

CI CI - электронная формула молекулы хлора,

CI -- CI - структурная формула молекула хлора.

N N - электронная формула молекулы азота,

N ≡ N - структурная формула молекулы азота.

Электроотрицательность. Ковалентные полярная и неполярная связи. Кратность ковалентной связи.

Но молекулы могут образовывать и разные атомы неметаллов и в этом случае общая электронная пара будет смещаться к более электроотрицательному химическому элементу.

Изучить материал учебника на стр. 34

Вывод: Металлы имеют более низкое значение электроотрицательности, чем неметаллы. И между ними она сильно отличается.

Демонстрация схемы образования полярной ковалентной связи в молекуле хлороводорода.

Общая электронная пара смещена к хлору, как более электроотрицательному. Значит это ковалентная связь. Она образована атомами, электроотрицательности которых несильно отличаются, поэтому это ковалентная полярная связь.



Составление электронных формул молекул йодоводорода и воды:

H J - электронная формула молекулы йодоводорода,

H → J - структурная формула молекулы йодоводорода.

H O - электронная формула молекулы воды,

Н →О - структурная формула молекулы воды.

Самостоятельная работа с учебником: выписать определение электроотрицательности.

Молекулярные и атомные кристаллические решетки. Свойства веществ с молекулярными и атомными кристаллическими решетками

Самостоятельная работа с учебником.

Вопросы для самоконтроля

Атом, какого химического элемента имеет заряд ядра +11

– Записать схему электронного строения атома натрия

– Внешний слой завершен?

– Как добиться завершения заполнения электронного слоя?

– Составить схему отдачи электрона

– Сравнить строение атома и иона натрия

Сравнить строение атома и иона инертного газа неона.

Определить атом, какого элемента с количеством протонов 17.

– Запишите схему электронного строения атома.

– Слой завершен? Как этого добиться.

– Составить схему завершения электронного слоя хлора.

Задание по группам:

1-3 группа: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи Br 2 ; NH 3 .

4-6 группы: Cоставьте электронные и структурные формулы молекул веществ и укажите тип связи F 2 ; HBr.

Два ученика работают у дополнительной доски с этим же заданием для образца к самопроверке.

Устный опрос.

1. Дайте определение понятия «электроотрицательность».

2. От чего зависит электроотрицательность атома?

3. Как изменяется электроотрицательность атомов элементов в периодах?

4. Как изменяется электроотрицательность атомов элементов в главных подгруппах?

5. Сравните электроотрицательность атомов металлов и неметаллов. Отличаются ли способы завершения внешнего электронного слоя, характерные для атомов металлов и неметаллов? Каковы причины этого?



7. Какие химические элементы способны отдавать электроны, принимать электроны?

Что происходит между атомами при отдаче и принятии электронов?

Как называют частицы, образовавшиеся из атома в результате отдачи или присоединения электронов?

8. Что произойдет при встрече атомов металла и неметалла?

9. Как образуется ионная связь?

10. Химическая связь, образуемая за счет образования общих электронных пар называется …

11. Ковалентная связь бывает … и …

12. В чем сходство ковалентной полярной и ковалентной неполярной связи? От чего зависит полярность связи?

13. В чем различие ковалентной полярной и ковалентной неполярной связи?


ПЛАН ЗАНЯТИЯ № 8

Дисциплина: Химия.

Тема: Металлическая связь. Агрегатные состояния веществ и водородная связь.

Цель занятия: Сформировать понятие об химических связях на примере металлической связи. Добиться понимания механизма образования связи.

Планируемые результаты

Предметные: формировании кругозора и функциональной грамотности человека для решения практических задач; умение обрабатывать, объяснять результаты; готовность и способность применять методы познания при решении практических задач;

Метапредметные: использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

Личностные: умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

Норма времени: 2 часа

Вид занятия: Лекция.

План занятия:

1. Металлическая связь. Металлическая кристаллическая решетка и металлическая химическая связь.

2. Физические свойства металлов.

3. Агрегатные состояния веществ. Переход вещества из одного агрегатного состояния в другое.

4. Водородная связь

Оснащение: Периодическая система химических элементов, кристаллическая решетка, раздаточный материал.

Литература:

1. Химия 11 класс: учеб. для общеобразоват. организаций Г.Е. Рудзитис, Ф.Г. Фельдман. – М.:Просвещение, 2014. -208 с.: ил..

2. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования / О.С.Габриелян, И.Г. Остроумов. – 5 - изд., стер. – М.: Издательский центр «Академия», 2017. – 272с., с цв. ил.

Преподаватель: Тубальцева Ю.Н.

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц . Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой . Точки, в которых размещены частицы кристалла, называют узлами решётки . В узлах воображаемой решётки могут находиться атомы , ионы или молекулы .

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионные кристаллические решётки имеют соли , щёлочи , оксиды активных металлов . Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

Кристаллическая решётка хлорида натрия

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Такие кристаллические решётки характерны для простых веществ металлов и сплавов .

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

Металлическая кристаллическая решётка

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз - одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния(\(IV\)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма - \(1728\) °С, а у графита она выше - \(4000\) °С. Атомные кристаллы практически нерастворимы .

Кристаллическая решётка алмаза

Алмаз

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения . Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы . Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах .

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами (He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода - лёд , твёрдые аммиак , кислоты , оксиды неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин , сахар , глюкоза ).

Любое вещество в природе, как известно, состоит из более мелких частиц. Они, в свою очередь, связаны и образуют определенную структуру, которая определяет свойства конкретного вещества.

Атомная свойственна и возникает при низких температурах и высоком давлении. Собственно, именно благодаря такому , металлы и ряд других материалов приобретают характерную прочность.

Строение таких веществ на молекулярном уровне выглядит, как кристаллическая решетка, каждый атом в которой связан со своим соседом самым прочным соединением, существующим в природе - ковалентной связью. Все мельчайшие элементы, образующие структуры, расположены упорядоченно и с определенной периодичностью. Представляя собой сетку, в углах которой расположены атомы, окруженные всегда одинаковым числом спутников, атомная кристаллическая решетка практически не меняет своего строения. Общеизвестно, что изменить структуру чистого металла или сплава можно лишь нагревая его. При этом температура тем выше, чем более прочные связи в решетке.

Иными словами, атомная кристаллическая решетка является залогом прочности и твердости материалов. При этом, однако, стоит учитывать, что расположение атомов в различных веществах также может отличаться, что, в свою очередь, влияет на степень прочности. Так, например, алмаз и графит, имеющие в составе один и тот же атом углерода, в высшей мере отличаются друг от друга по показателям прочности: алмаз - на Земле, графит же может слоиться и ломаться. Дело в том, что в кристаллической решетке графита атомы расположены слоями. Каждый слой напоминает пчелиную соту, в которой атомы углерода сочленены достаточно слабо. Подобное строение обуславливает слоистое крошение грифелей карандаша: при поломке части графита попросту отслаиваются. Другое дело - алмаз, кристаллическая решетка которого состоит из возбужденных атомов углерода, то есть тех, что способны образовывать 4 прочных связи. Разрушить такое сочленение попросту невозможно.

Кристаллические решетки металлов, кроме того, обладают определенными характеристиками:

1. Период решетки - величина, определяющая расстояние между центрами двух рядом расположенных атомов, измеряемая по ребру решетки. Общепринятое обозначение не отличается от оного в математике: a, b, c - длина, ширина, высота решетки соответственно. Очевидно, что размеры фигуры столь малы, что расстояние измеряется в наименьших единицах измерения - десятой доли нанометра или ангстремах .

2. К - координационное число . Показатель, определяющий плотность упаковки атомов в рамках одной решетки. Соответственно, плотность ее тем больше, чем выше число К. По факту же данная цифра являет собой количество атомов, находящихся как можно ближе и на равном расстоянии от изучаемого атома.

3. Базис решетки . Также величина, характеризующая плотность решетки. Представляет собой общее число атомов, которые принадлежат конкретной изучаемой ячейке.

4. Коэффициент компактности измеряется путем подсчета общего объема решетки, поделенного на тот объем, что занимают все атомы в ней. Как и предыдущие две, эта величина отражает плотность изучаемой решетки.

Мы рассмотрели всего несколько веществ, которым свойственна атомная кристаллическая решетка. Меж тем, их великое множество. Несмотря на большое разнообразие, кристаллическая атомная решетка включает в себя единицы, всегда соединенные при помощи (полярной или неполярной). Кроме того, подобные вещества практически не растворяются в воде и характеризуются низкой теплопроводностью.

В природе существует три вида кристаллических решеток: кубическая объемно-центрированная, кубическая гранецентрированная, плотноупакованная гексагональная.

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические . Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления . По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой .

В отличии от аморфных тел, кристаллические вещества имеют фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки , и от того какие связи удерживают их различают: молекулярную , атомную , ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества .

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия : водородные связи, силы Ван-дер-Ваальса.

Связи эти слабые, поэтому молекулярная решетка – самая непрочная , температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I 2 , P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей ).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (NH 3 , O 2 , H 2 O, кислоты, CO 2).

Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы . Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные , так как решетку образуют только атомы углерода.

А вот, например, в кристалле кварца (химическая формула которого SiO 2) есть атомы Si и O. Поэтому связи ковалентные полярные .

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO 2 .
  7. Корунд, рубин, сапфир – у этих веществ состав Al 2 O 3 .

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы : Na + и Cl – . Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь .

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли , оксиды металлов , щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах . Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

Na 0 – 1e → Na +

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

Как определить тип кристаллической решетки.

P. S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al 2 O 3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.

Как мы уже знаем, вещество может существовать в трех агрегатных состояниях: газообразном , твердом и жидком . Кислород, который при обычных условиях находится в газообразном состоянии, при температуре -194° С преобразуется в жидкость голубоватого цвета, а при температуре -218,8° С превращается в снегообразную массу с кристаллами синего цвета.

Температурный интервал существования вещества в твердом состоянии определяется температурами кипения и плавления. Твердые вещества бывают кристаллическими и аморфными .

У аморфных веществ нет фиксированной температуры плавления – при нагревании они постепенно размягчаются и переходят в текучее состояние. В таком состоянии, например, находятся различные смолы, пластилин.

Кристаллические вещества отличаются закономерным расположением частиц, из которых они состоят: атомов, молекул и ионов, – в строго определенных точках пространства. Когда эти точки соединяются прямыми линиями, создается пространственный каркас, его называют кристаллической решеткой. Точки, в которых находятся частицы кристалла, называют узлами решетки.

В узлах воображаемой нами решетки могут находиться ионы, атомы и молекулы. Эти частицы совершают колебательные движения. Когда температура увеличивается, размах этих колебаний тоже возрастает, что приводит к тепловому расширению тел.

В зависимости от разновидности частиц, находящихся в узлах кристаллической решетки, и характера связи между ними различают четыре типа кристаллических решеток: ионные , атомные , молекулярные и металлические .

Ионными называют такие кристаллические решетки, в узлах которых расположены ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na+, Cl- , так и сложные SO24-, OH-. Таким образом, ионные кристаллические решетки имеют соли, некоторые оксиды и гидроксилы металлов, т.е. те вещества, в которых существует ионная химическая связь. Рассмотрим кристалл хлорида натрия, он состоит из положительно чередующихся ионов Na+ и отрицательных CL-, вместе они образуют решетку в виде куба. Связи между ионами в таком кристалле чрезвычайно устойчивы. Из-за этого вещества с ионной решеткой обладают сравнительно высокой прочностью и твердостью, они тугоплавки и нелетучи.

Атомными кристаллическими решетками называют такие кристаллические решетки, в узлах которых находятся отдельные атомы. В подобных решетках атомы соединяются между собой очень крепкими ковалентными связями. К примеру, алмаз – одно из аллотропных видоизменений углерода.

Вещества с атомной кристаллической решеткой не сильно распространены в природе. К ним относятся кристаллический бор, кремний и германий, а также сложные вещества, например такие, в составе которых есть оксид кремния (IV) – SiO 2: кремнезем, кварц, песок, горный хрусталь.

Подавляющее большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (у алмаза она превышает 3500° С), такие вещества прочны и тверды, практически не растворимы.

Молекулярными называют такие кристаллические решетки, в узлах которых расположены молекулы. Химические связи в этих молекулах могут быть также, как полярными (HCl, H 2 0), так и неполярными (N 2 , O 3). И хотя атомы внутри молекукл связаны очень крепкими ковалентными связями, между самими молекулами действует слабые силы межмолекулярного притяжения. Именно поэтому вещества с молекулярными кристаллическими решетками характеризуются малой твердостью, низкой температурой плавления, летучестью.

Примерами таких веществ могут послужить твердая вода – лед, твердый оксид углерода (IV) – «сухой лед», твердые хлороводород и сероводород, твердые простые вещества, образованные одно – (благородные газы), двух – (H 2 , O 2 , CL 2 , N 2 , I 2), трех – (O 3), четырех – (P 4), восьмиатомными (S 8) молекулами. Подавляющее большинство твердых органических соединений обладают молекулярными кристаллическими решетками (нафталин, глюкоза, сахар).

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.