Выражения с переменными. Числовые и алгебраические выражения. Преобразование выражений


Запись условий задач с помощью принятых в математике обозначений приводит к появлению так называемых математических выражений, которые называют просто выражениями. В этой статье мы подробно поговорим про числовые, буквенные выражения и выражения с переменными : дадим определения и приведем примеры выражений каждого вида.

Навигация по странице.

Числовые выражения – что это?

Знакомство с числовыми выражениями начинается чуть ли не с самых первых уроков математики. Но свое имя – числовые выражения – они официально приобретают немного позже. Например, если следовать курсу М. И. Моро, то это происходит на страницах учебника математики для 2 классов. Там представление о числовых выражениях дается так: 3+5 , 12+1−6 , 18−(4+6) , 1+1+1+1+1 и т.п. – это все числовые выражения , а если в выражении выполнить указанные действия, то найдем значение выражения .

Можно сделать вывод, что на этом этапе изучения математики числовыми выражениями называют имеющие математический смысл записи, составленные из чисел, скобок и знаков сложения и вычитания.

Чуть позже, после знакомства с умножением и делением, записи числовых выражений начинают содержать знаки «·» и «:». Приведем несколько примеров: 6·4 , (2+5)·2 , 6:2 , (9·3):3 и т.п.

А в старших классах разнообразие записей числовых выражений разрастается как снежный ком, катящийся с горы. В них появляются обыкновенные и десятичные дроби, смешанные числа и отрицательные числа, степени, корни, логарифмы, синусы, косинусы и так далее.

Обобщим всю информацию в определение числового выражения:

Определение.

Числовое выражение - это комбинация чисел, знаков арифметических действий, дробных черт, знаков корня (радикалов), логарифмов, обозначений тригонометрических, обратных тригонометрических и других функций, а также скобок и других специальных математических символов, составленная в соответствии с принятыми в математике правилами.

Разъясним все составные части озвученного определения.

В числовых выражениях могут участвовать абсолютно любые числа: от натуральных до действительных, и даже комплексных. То есть, в числовых выражениях можно встретить

Со знаками арифметических действий все понятно – это знаки сложения, вычитания, умножения и деления, имеющие соответственно вид «+», «−» , «·» и «:». В числовых выражениях может присутствовать один из этих знаков, некоторые из них или все сразу, и причем по нескольку раз. Вот примеры числовых выражений с ними: 3+6 , 2,2+3,3+4,4+5,5 , 41−2·4:2−5+12·3·2:2:3:12−1/12 .

Что касается скобок , то имеют место как числовые выражения, в которых есть скобки, так и выражения без них. Если в числовом выражении есть скобки, то они в основном

А иногда скобки в числовых выражениях имеют какое-нибудь определенное отдельно указанное специальное предназначение. К примеру, можно встретить квадратные скобки, обозначающие целую часть числа, так числовое выражение +2 обозначает, что к целой части числа 1,75 прибавляется число 2 .

Из определения числового выражения также видно, что в выражении могут присутствовать , , log , ln , lg , обозначения или и т.п. Вот примеры числовых выражений с ними: tgπ , arcsin1+arccos1−π/2 и .

Деление в числовых выражениях может быть обозначено с помощью . В этом случае имеют место числовые выражения с дробями. Приведем примеры таких выражений: 1/(1+2) , 5+(2·3+1)/(7−2,2)+3 и .

В качестве специальных математических символов и обозначений, которые можно встретить в числовых выражениях, приведем . Для примера покажем числовое выражение с модулем .

Что такое буквенные выражения?

Понятие буквенных выражений дается практически сразу после знакомства с числовыми выражениями. Вводится оно примерно так. В некотором числовом выражении одно из чисел не записывается, а вместо него ставится кружочек (или квадратик, или нечто подобное), и говорится, что вместо кружочка можно подставить некоторое число. Для примера приведем запись . Если вместо квадратика поставить, например, число 2 , то получится числовое выражение 3+2 . Так вот вместо кружочков, квадратиков и т.п. условились записывать буквы, а такие выражения с буквами назвали буквенными выражениями . Вернемся к нашему примеру , если в этой записи вместо квадратика поставить букву a , то получится буквенное выражение вида 3+a .

Итак, если допустить в числовом выражении присутствие букв, которыми обозначены некоторые числа, то получится так называемое буквенное выражение. Дадим соответствующее определение.

Определение.

Выражение, содержащее буквы, которыми обозначены некоторые числа, называется буквенным выражением .

Из данного определения понятно, что принципиально буквенное выражение отличается от числового выражения тем, что может содержать буквы. Обычно в буквенных выражениях используются маленькие буквы латинского алфавита (a, b, c, … ), а при обозначении углов – маленькие буквы греческого алфавита (α, β, γ, … ).

Итак, буквенные выражения могут быть составлены из чисел, букв и содержать все математические символы, которые могут встречаться в числовых выражениях, такие как скобки, знаки корней, логарифмы, тригонометрические и другие функции и т.п. Отдельно подчеркнем, что буквенное выражение содержит по крайней мере одну букву. Но может содержать и несколько одинаковых или различных букв.

Теперь приведем несколько примеров буквенных выражений. Например, a+b – это буквенное выражение с буквами a и b . Вот другой пример буквенного выражения 5·x 3 −3·x 2 +x−2,5 . И приведем пример буквенного выражения сложного вида: .

Выражения с переменными

Если в буквенном выражении буква обозначает величину, которая принимает не какое-то одно конкретное значение, а может принимать различные значения, то эту букву называют переменной и выражение называют выражением с переменной .

Определение.

Выражение с переменными – это буквенное выражение, в котором буквы (все или некоторые) обозначают величины, принимающие различные значения.

Например, пусть в выражении x 2 −1 буква x может принимать любые натуральные значения из интервала от 0 до 10 , тогда x – есть переменная, а выражение x 2 −1 есть выражение с переменной x .

Стоит отметить, что переменных в выражении может быть несколько. К примеру, если считать x и y переменными, то выражение является выражением с двумя переменными x и y .

Вообще, переход от понятия буквенного выражения к выражению с переменными происходит в 7 классе, когда начинают изучать алгебру. До этого момента буквенные выражения моделировали какие-то конкретные задачи. В алгебре же начинают смотреть на выражение более общо, без привязки к конкретной задаче, с пониманием того, что данное выражение подходит под огромное число задач.

В заключение этого пункта обратим внимание еще на один момент: по внешнему виду буквенного выражения невозможно узнать, являются ли входящие в него буквы переменными или нет. Поэтому ничто нам не мешает считать эти буквы переменными. При этом разница между терминами «буквенное выражение» и «выражение с переменными» исчезает.

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

Записи 2а + 8, 3а + 5b , а 4 – называют выражениями с переменными. Поставляя вместо букв числа, получим числовые выражения. Общее понятие выражения с переменными определяется точно так же, как и понятие числового выражения, только, кроме чисел, выражения с переменными могут содержать и буквы.

Для выражений с переменной тоже применяются упрощения: не ставят скобок, содержащих лишь число или букву, не ставят знака умножения между буквами, между числами и буквами и т.д.

Различают выражения с одной, двумя, тремя и т.д. переменными. Обозначают А (х ), В (х, у ) и т.д.

Выражение с переменной нельзя назвать ни высказыванием, ни предикатом. Например, о выражении 2а + 5 нельзя сказать, истинно оно или ложно, следовательно, высказыванием оно не является. Если вместо переменной а подставить числа, то получим различные числовые выражения, которые тоже высказываниями не являются, следовательно, данное выражение предикатом тоже не является.

Каждому выражению с переменной соответствует множество чисел, при подстановке которых получается числовое выражение, имеющее смысл. Это множество называют областью определения выражения.

Пример . 8: (4 – х ) – область определения R \{4}, т.к. при х = 4 выражение 8: (4 – 4) не имеет смысла.

Если выражение содержит несколько переменных, например, х и у , то под областью определения этого выражения понимают множество пар чисел (а ; b ) таких, что при замене х на а и у на b получается числовое выражение, имеющее значение.

Пример . , область определения множество пар (а ; b ) │а b.

Определение . Два выражения с переменной называются тождественно равными, если при любых значения. Переменных из области определения выражений их соответственные значения равны.

Т.о. два выражения А (х ), В (х ) тождественно равны на множестве Х , если

1) множества допустимых значений переменной в этих выражениях совпадают;

2) для любого х 0 их множества допустимых значений, значения выражений при х 0 совпадают, т.е. А (х 0) = В (х 0) – верное числовое равенство.

Пример. (2х + 5) 2 и 4х 2 + 20х + 25 – тождественно равные выражения.

Обозначают А (х ) º В (х ). Заметим, что если два выражения тождественно равны на каком-то множестве Е , то они тождественно равны и на любом подмножестве Е 1 Ì Е. Также следует отметить, что утверждение о тождественном равенстве двух выражений с переменной является высказыванием.

Если два тождественно равных на некотором множестве выражения соединить знаком равенства, то получим предложение, которое называют тождеством на этом множестве.

Тождествами считают и верные числовые равенства. Тожествами являются законы сложения и умножения действительных чисел, правила вычитания числа из суммы и суммы из числа, правила деления суммы на число и др. Тождествами также являются правила действий с нулем и единицей.



Замена выражения другим, тожественно равным ему на некотором множестве, называется тождественным преобразованием данного выражения.

Пример. 7х + 2 + 3х = 10 х + 2 - тождественное преобразование, не является тождественным преобразованием на R .

§ 5. Классификация выражений с переменной

1) Выражение, составленное из переменных и чисел с помощью только операций сложения, вычитания, умножения, возведения в степень, называется целым выражением или многочленом.

Пример . (3х 2 + 5) ∙ (2х – 3у )

2) Рациональным называется выражение, построенное из переменных и чисел с помощью операций сложения, вычитания, умножения, деления, возведения в степень. Рациональное выражение можно представить в виде отношения двух целых выражений, т.е. многочленов. Заметим, что целые выражения являются частным случаем рациональных.

Пример . .

3) Иррациональным называется выражение, построенное из переменных и чисел с помощью операций сложения, вычитания, умножения, деления, возведения в степень, а также операциии извлечения корня п -ой степени.

Решение задач и некоторых выражений не всегда приводит к чистым числовым ответам. Даже в случае тривиальных расчетов, можно прийти к определенной конструкции, именуемой выражением с переменной.

Например, рассмотрим две практические задачи. В первом случае у нас есть некий завод, вырабатывающий 5 тонн молока каждый день. Необходимо найти, сколько молока вырабатывается заводом за р дней.

Во втором случае есть прямоугольник, ширина которого равна 5 см, а длина р см. Найти площадь фигуры.

Разумеется, если завод вырабатывает пять тонн в день, то за р дней, по простейшей математической логике, он выдаст 5р тонн молока. С другой стороны, площадь прямоугольника равна произведению его сторон - то есть, в данном случае, это 5р. Иными словами, в двух тривиальных задачах с разными условиями, ответом является одно целое выражение - 5р. Подобные одночлены именуются выражением с переменной, так как помимо числовой части они содержат некоторую букву, именуемую неизвестной, или переменной. Обозначается такой элемент строчными буквами латинского алфавита, чаще всего, х или у, хотя это не принципиально.

Особенностью переменной является то, что она может принимать любые значения на практике. Подставляя разные числа, мы будем получать итоговое решение для наших задач, например, для первой:

р = 2 дня, завод выдает 5р = 10 тонн молока;

р = 4 дня, завод выдает 5р = 20 тонн молока;

Или для второй:

р = 10 см, площадь фигуры равна 5р = 50 см2

р = 20 см, площадь фигуры равна 5р = 100 см2

Важно понимать, что р - это не набор некоторых отдельных значений, а все множество, которое будет математически соответствовать условию задачи. Основная роль переменной - это заменить недостающий элемент в условии. Любая математическая задача должна включать некоторые конструкции и отображать взаимосвязь между этими конструкциями в условии. Если значения какого-либо объекта не хватает, то вместо него и вводится переменная. При этом она является абстрактной заменой именно самого элемента условия (количества чего-либо, представленного числом, или выражением), а не функциональных связей.

Если рассматривать выражение вида 5р, как нейтральный и независимый объект, то значение р в нем может принимать какие угодно значения, фактически р тут равен множеству всех действительных чисел.

Но в наших задачах на ответ в виде 5р накладываются определенные математические ограничения, которые вытекают из условий. Например, дни и сутки не могут быть отрицательными, поэтому р в обеих задачах всегда равен нулю или больше его. Кроме того, дни не могут быть дробными - для первой задачи действительны только те значения р, которые являются целыми положительными числами.

В первой задаче: р равно конечному множеству всех положительных целых чисел;

Во второй задаче: р равно конечному множеству всех положительных чисел.

Выражения могут включать и сразу две переменные, например:

В данном случае, бином представлен двумя одночленами, каждый из которых имеет переменную в составе, причем эти переменные являются разными, то есть - независимыми друг от друга. Значение этого выражения может быть рассчитано полностью только при наличии значения обеих переменных. Например, если х = 2, а у = 4, то:

2х + 3у = 4 + 12 = 16 (при х = 2, у = 4)

Стоит отметить, что в этом выражении нет математических, или логических ограничений на значения переменной - и х, и у принадлежат всему множеству действительных чисел.

В общем плане, множество всех чисел, при подстановке которых вместо переменной выражение сохраняет смысл и действительность, называется областью определения (или значения) переменной.

В абстрактных примерах, не связанных с реальными задачами, область определения переменной чаще всего либо равна всему множеству действительных чисел либо ограничивается некоторыми конструкциями, например, дробью. Как известно, при нулевом значении делителя вся дробь теряет смысл. Поэтому переменная в выражении вида:

не может быть равна пяти, так как тогда:

7х/(х - 5) = 7х/0 (при х = 5)

И дробь потеряет смысл. Поэтому для этого выражения переменная х имеет область определения - множество всех чисел за исключением 5.

В нашем видеоуроке отмечен также особый случай применения переменных, когда они обозначают число одного порядка. Например, числа 54, 30, 78 можно задать через переменную а, либо же через конструкцию аb (с горизонтальной чертой сверху, для отличия от произведения), где b задает единицы (соответственно 4, 0, 8), а - десятки (соответственно, 5, 3, 7).


На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.

Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.

Навигация по странице.

Одночлены и многочлены

Начнем с выражений, имеющих название одночлены и многочлены . На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.

Определение.

Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.

Определение.

Многочлены – это сумма одночленов.

Например, число 5 , переменная x , степень z 7 , произведения 5·x и 7·x·2·7·z 7 – это все одночлены. Если же взять сумму одночленов, например, 5+x или z 7 +7+7·x·2·7·z 7 , то получим многочлен.

Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень , в том смысле, что в результате их выполнения получается одночлен.

На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами .

Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен , а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители .

Рациональные (алгебраические) дроби

В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби , которые некоторые авторы называют алгебраическими дробями .

Определение.

Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.

Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.

На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями .

Часто приходится выполнять и преобразование алгебраических дробей , наиболее распространенными из них являются сокращение и приведение к новому знаменателю.

Рациональные выражения

Определение.

Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.

Приведем несколько примеров выражений со степенями. Они могут не содержать переменных, например, 2 3 , . Также имеют место степенные выражения с переменными: и т.п.

Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями .

Иррациональные выражения, выражения с корнями

Определение.

Выражения, содержащие логарифмы называют логарифмическими выражениями .

Примерами логарифмических выражений являются log 3 9+lne , log 2 (4·a·b) , .

Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .

В продолжение темы обращайтесь к материалу преобразование логарифмических выражений .

Дроби

В этом пункте мы рассмотрим выражения особого вида - дроби.

Дробь расширяет понятие . Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.

Итак, дадим определение дроби.

Определение.

Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.

Данное определение позволяет привести примеры дробей.

Начнем с примеров дробей, числителями и знаменателями которых являются числа: 1/4 , , (−15)/(−2) . В числителе и знаменателе дроби могут быть и выражения, как числовые, так и буквенные. Вот примеры таких дробей: (a+1)/3 , (a+b+c)/(a 2 +b 2) , .

А вот выражения 2/5−3/7 , дробями не являются, хотя и содержат дроби в своих записях.

Выражения общего вида

В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида , а при описании говорят просто выражение, не добавляя дополнительных уточнений.

Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

АЛГЕБРА
Уроки для 7 классов

Урок № 14

Тема. Выражения с переменными

Цель: совершенствовать умение учащихся работать с выражениями, содержащими переменные (вычисление значений выражений, нахождение ОДЗ выражений с переменными).

Тип урока: применение умений.

Ход урока

И. Проверка домашнего задания

@ Особенно тщательно следует проверить выполнение задания № 2 (на составление выражения с переменными) и № 3 (на нахождение ОДЗ переменной в выражении).

№ 2. Выражение имеет вид: 6n - 50m . Если m = 2, n = 30 , то

6 · 30 - 2 · 50 = 180 - 100 = 80 (к).

Ответ. На 80 копеек.

@ № 3. Для учеников достаточно сложным является момент перехода от условия, при котором выражение не имеет смысла (делитель или знаменатель равны нулю), в условия, когда выражение имеет смысл (то есть из множества любых чисел исключаем те значения переменной, при которых выражение не имеет смысла):

1) 2х - 5 имеет смысл при любых значениях х, потому что это - целое выражение;

2) имеет смысл при всех х, кроме 0;

3) имеет смысл при всех х, кроме х = -3, при х = -3 х + 3 = 0;

4) имеет смысл при любых значениях х, потому что это - целое выражение.

II . Актуализация опорных знаний

@ Вместо рутинного (и не очень эффективного) фронтального опроса можно организовать работу в парах (или группах) с таким заданием.

Даны выражения: ; 25: (3,5 + а); (3,5 + а) : 25.

Сравните их и найдите как можно больше отличий. Во время презентации результатов выполнения работы учащиеся воспроизводят содержание основных понятий темы:

1. Числовые выражения и выражения с переменными.

2. Значение числовых выражений и выражений с переменными.

3. Выражения, не имеющие смысла

III . Совершенствование умений

@ На этом уроке продолжаем работу по совершенствованию умений учащихся:

а) вычислять значения выражений с переменными;

б) находить значения переменных, при которых выражение имеет смысл;

в) составлять выражения с определенными условиями.

Уровень задач подбираем более высокий.

Выполнение письменных упражнений

1. Найдите значение выражения , если:

1) x = 4; в = 1 ,5;

2) х = -1; у = ;

3) х = 1,4; у = 0;

4) х = 1,3; у = -2,6.

2. Известно, что а - b = 6; с = 5. Найдите значение выражения:
1) a - b + 3 c ;

3. 2) c (b - a );

4. 3) ;

5. 4) .

6. При каких значениях переменной имеет смысл выражение:
1) ;

2) ;

3) ;

4) ;

5) ;

6) ;

7) ?

@ Поскольку учащиеся еще не владеют умением решать уравнения разложением многочленов на множители, решать дробные уравнения, системы уравнений, задачи решаем с использованием рассуждений примерно такого содержания: поскольку переменная в знаменателе выражения (выражение дробный), то, чтобы выражение имело смысл, необходимо, чтобы знаменатель не был равен 0. Но поскольку х2 не может быть отрицательным числом, то сумма x 2 + 1 не может равняться 0 при каких значениях х, поэтому х2 +1 не равно 0 ни при каких значениях х.

Следовательно, выражение имеет смысл при любых х (и т. д.).

7. Составьте выражение для решения задачи.

а) Периметр прямоугольника 16 см, одна из его сторон т см. Какова площадь прямоугольника?

б) Из двух городов, расстояние между которыми S км, навстречу друг другу выехали два автомобиля. Скорость одного из них v 1 км/ч., а скорость второго - v 2 км/ч. Через сколько часов они встретятся?

8. Запишите в виде выражения:

1) сумма произведения чисел а и b и числа с;

2) разность числа с и доли чисел а и b ;

3) произведение разности чисел х и у и их суммы;

4) долю суммы а и b и их разности.

IV . Диагностика усвоения

Самостоятельная работа (разноуровневая)

1. Найдите значение выражения:

A. 3 х - 5, если х = -1. (2 б.)

Б. , если а = 3,5. (3 6.)

B. , если m + n = 8, г = 3. (4 6.)

2. Составьте выражение, что соответствует условию:

A. Разность чисел 5 и 7b . (2 б.)

Б. Піврізниця произведению чисел -0,2 и а и числа 0,8. (По б.)

B. Скорость лодки в стоячей воде равна v км/ч. Скорость течения реки в км/ч. За какое время лодка преодолеет S км за течение реки? (4 б.)

3. Найдите, при каких значениях переменной мас смысл выражение:

А. 2а + 5. (2 б. )

Б. . (3 б.)

В. . (4 б.)

@ Во время выполнения работы учащиеся должны выбрать только одно задание (А, Б, В) из трех предложенных. Оцениваем соответственно: А - 2 балла, Б - 3 балла; В - 4 балла. (Ученик имеет право выбирать задания разного уровня, например № 1 - А, № 2 - В, № 3 - Б.)

V . Рефлексия

Проверяем правильность выполнения заданий. (Учащиеся получают таблицу с решениями и ответами и проверяют свои работы.)

№ задачи

Условие (выражение)

Значение переменной

Числовое выражение

Значение выражения

Количество баллов

= -16

m + n = 8

5а - 7b

(-0,2 а -0,8)