Кремний химические свойства. Кремний. Свойства кремния. Применение кремния

Один из самых распространенных в природе элементов - это silicium, или кремний. Такое широкое расселение говорит о важности и значимости данного вещества. Это быстро поняли и усвоили люди, которые научились правильно использовать в своих целях кремний. Применение его основано на особых свойствах, о которых и поговорим дальше.

Кремний - химический элемент

Если давать характеристику данного элемента по положению в периодической системе, то можно обозначить следующие важные пункты:

  1. Порядковый номер - 14.
  2. Период - третий малый.
  3. Группа - IV.
  4. Подгруппа - главная.
  5. Строение внешней электронной оболочки выражается формулой 3s 2 3p 2 .
  6. Элемент кремний обозначается химическим символом Si, который произносится как "силициум".
  7. Степени окисления, которые он проявляет: -4; +2; +4.
  8. Валентность атома равна IV.
  9. Атомная масса кремния равна 28,086.
  10. В природе существует три устойчивых изотопа данного элемента с массовыми числами 28, 29 и 30.

Таким образом, атом кремния с химической точки зрения - достаточно изученный элемент, описано множество различных его свойств.

История открытия

Так как в природе очень популярны и массовы по содержанию именно различные соединения рассматриваемого элемента, издревле люди использовали и знали о свойствах именно многих из них. Чистый же кремний долгое время оставался за гранью познаний человека в химии.

Наиболее популярными соединениями, которыми пользовались в быту и промышленности народы древних культур (египтяне, римляне, китайцы, русичи, персы и прочие), были драгоценные и поделочные камни на основе оксида кремния. К ним относятся:

  • опал;
  • горный хрусталь;
  • топаз;
  • хризопраз;
  • оникс;
  • халцедон и другие.

Также издревле принято использовать кварц и в строительном деле. Однако сам элементарный кремний оставался нераскрытым вплоть до XIX века, хотя многие ученые тщетно пытались выделить его из разных соединений, используя для этого и катализаторы, и высокие температуры, и даже электрический ток. Это такие светлые умы, как:

  • Карл Шееле;
  • Гей-Люссак;
  • Тенар;
  • Гемфри Дэви;
  • Антуан Лавуазье.

Осуществить удачно получение кремния в чистом виде удалось Йенсу Якобсу Берцелиусу в 1823 году. Для этого он проводил опыт по сплавлению паров фтористого кремния и металлического калия. В результате получил аморфную модификацию рассматриваемого элемента. Этим же ученым было предложено латинское название открытому атому.

Еще несколько позже, в 1855 году, другой ученый - Сент Клер-Девилль - сумел синтезировать другую аллотропную разновидность - кристаллический кремний. С тех пор знания о данном элементе и его свойствах стали очень быстро пополняться. Люди поняли, что он обладает уникальными особенностями, которые можно очень грамотно использовать для удовлетворения собственных нужд. Поэтому сегодня один из самых востребованных элементов в электронике и технике - это кремний. Применение его лишь расширяет свои границы с каждым годом.

Русское название атому дал ученый Гесс в 1831 году. Именно оно и закрепилось до сегодняшнего дня.

По распространенности в природе кремний занимает второе место после кислорода. Его процентное соотношение в сравнении с другими атомами в составе земной коры - 29,5%. Кроме того, углерод и кремний - это два особых элемента, способных формировать цепи, соединяясь друг с другом. Именно поэтому для последнего известно более 400 различных природных минералов, в составе которых он и содержится в литосфере, гидросфере и биомассе.

Где конкретно содержится кремний?

  1. В глубоких слоях почвы.
  2. В горных породах, залежах и массивах.
  3. На дне водоемов, особенно морей и океанов.
  4. В растениях и морских обитателях царства животных.
  5. В организме человека и наземных животных.

Можно обозначить несколько самых распространенных минералов и горных пород, в составе которых в большом количестве присутствует кремний. Химия их такова, что массовое содержание чистого элемента в них достигает 75%. Однако конкретная цифра зависит от разновидности материала. Итак, горные породы и минералы с содержанием кремния:

  • полевые шпаты;
  • слюды;
  • амфиболы;
  • опалы;
  • халцедоны;
  • силикаты;
  • песчаники;
  • алюмосиликаты;
  • глины и прочие.

Накапливаясь в панцирях и наружных скелетах морских животных, кремний со временем формирует мощные залежи кремнезема на дне водоемов. Это один из природных источников данного элемента.

Кроме того, было установлено, что силициум может существовать в чистом самородном виде - в виде кристаллов. Но подобные месторождения очень редки.

Физические свойства кремния

Если давать характеристику рассматриваемого элемента по набору физико-химических свойств, то в первую очередь следует обозначить именно физические параметры. Вот несколько основных:

  1. Существует в виде двух аллотропных модификаций - аморфный и кристаллический, которые отличаются по всем свойствам.
  2. Кристаллическая решетка очень схожа с таковой у алмаза, ведь углерод и кремний в этом отношении практически одинаковы. Однако расстояние между атомами разное (у кремния больше), поэтому алмаз гораздо тверже и прочнее. Тип решетки - кубическая гранецентрированная.
  3. Вещество очень хрупкое, при высоких температурах становится пластичным.
  4. Температура плавления равна 1415˚С.
  5. Температура кипения - 3250˚С.
  6. Плотность вещества - 2,33 г/см 3 .
  7. Цвет соединения - серебристо-серый, выражен характерный металлический блеск.
  8. Обладает хорошими полупроводниковыми свойствами, которые способны варьировать при добавлении тех или иных агентов.
  9. Не растворяется в воде, органических растворителях и кислотах.
  10. Специфически растворим в щелочах.

Обозначенные физические свойства кремния позволяют людям управлять им и применять для создания различных изделий. Так, например, на свойствах полупроводимости основано использование чистого кремния в электронике.

Химические свойства

Химические свойства кремния очень сильно зависят от условий проведения реакции. Если говорить о при стандартных параметрах, то нужно обозначить очень низкую активность. Как кристаллический, так и аморфный кремний очень инертны. Не взаимодействуют ни с сильными окислителями (кроме фтора), ни с сильными восстановителями.

Это связано с тем, что на поверхности вещества мгновенно формируется оксидная пленка SiO 2 , которая препятствует дальнейшим взаимодействиям. Она способна образоваться под влиянием воды, воздуха, паров.

Если же изменить стандартные условия и произвести нагревание кремния до температуры свыше 400˚С, то его химическая активность сильно возрастет. В этом случае он будет вступать в реакции с:

  • кислородом;
  • всеми видами галогенов;
  • водородом.

При дальнейшем повышении температуры возможно образование продуктов при взаимодействии с бором, азотом и углеродом. Особое значение имеет карборунд - SiC, так как он является хорошим абразивным материалом.

Также химические свойства кремния четко прослеживаются при реакциях с металлами. По отношению к ним он окислитель, поэтому продукты носят название силицидов. Известны подобные соединения для:

  • щелочных;
  • щелочноземельных;
  • переходных металлов.

Необычными свойствами обладает соединение, получаемое при сплавлении железа и кремния. Оно носит название ферросилициевой керамики и успешно применяется в промышленности.

Со сложными веществами кремний во взаимодействие не вступает, поэтому из всех их разновидностей способен растворяться лишь в:

  • царской водке (смесь азотной и соляной кислот);
  • едких щелочах.

При этом температура раствора должна быть не меньше 60˚С. Все это еще раз подтверждает физическую основу вещества - алмазоподобную устойчивую кристаллическую решетку, придающую ему прочность и инертность.

Способы получения

Получение кремния в чистом виде - процесс достаточно затратный экономически. Кроме того, в силу его свойств любой способ дает лишь на 90-99 % чистый продукт, в то время как примеси в виде металлов и углерода остаются все равно. Поэтому просто получить вещество недостаточно. Его следует еще и качественно очистить от посторонних элементов.

В целом же производство кремния осуществляется двумя основными путями:

  1. Из белого песка, который представляет собой чистый оксид кремния SiO 2 . При прокаливании его с активными металлами (чаще всего с магнием) происходит образование свободного элемента в виде аморфной модификации. Чистота такого способа высока, продукт получается с 99,9-процентным выходом.
  2. Более широко распространенный способ в промышленных масштабах - это спекание расплава песка с коксом в специализированных термических печах для обжига. Данный способ был разработан русским ученым Бекетовым Н. Н.

Дальнейшая обработка заключается в подвергании продуктов методам очистки. Для этого используются кислоты или галогены (хлор, фтор).

Аморфный кремний

Характеристика кремния будет неполной, если не рассмотреть отдельно каждую его аллотропную модификацию. Первая из них - это аморфная. В таком состоянии рассматриваемое нами вещество представляет собой порошок буро-коричневого цвета, мелкодисперсный. Обладает высокой степенью гигроскопичности, проявляет достаточно высокую химическую активность при нагревании. В стандартных условиях способен взаимодействовать только с сильнейшим окислителем - фтором.

Называть аморфный кремний именно разновидностью кристаллического не совсем правильно. Его решетка показывает, что данное вещество - это лишь форма мелкодисперсного кремния, существующего в виде кристаллов. Поэтому как таковые эти модификации - одно и то же соединение.

Однако свойства их различаются, поэтому и принято говорить об аллотропии. Сам по себе аморфный кремний обладает высокой светопоглотительной способностью. Кроме того, при определенных условиях данный показатель в разы превышает подобный у кристаллической формы. Поэтому его используют в технических целях. В рассматриваемом виде (порошок) соединение легко наносится на любую поверхность, будь то пластик или стекло. Поэтому так удобен для использования именно аморфный кремний. Применение основано на различных размеров.

Хотя износ батарей подобного типа довольно быстрый, что связано с истиранием тонкой пленки вещества, однако применение и востребованность только растет. Ведь даже за короткий срок службы солнечные батареи на основе аморфного кремния способны обеспечить энергией целые предприятия. К тому же производство подобного вещества безотходное, что делает его очень экономным.

Получают такую модификацию путем восстановления соединений активными металлами, например, натрием или магнием.

Кристаллический кремний

Серебристо-серая блестящая модификация рассматриваемого элемента. Именно такая форма является самой распространенной и наиболее востребованной. Это объясняется набором качественных свойств, которыми обладает данное вещество.

Характеристика кремния с кристаллической решеткой включает в себя классификацию его видов, так как их несколько:

  1. Электронного качества - самый чистый и максимально высококачественный. Именно такой вид используется в электронике для создания особо чувствительных приборов.
  2. Солнечного качества. Само название определяет область использования. Это также достаточно высокий по чистоте кремний, применение которого необходимо для создания качественных и долго работающих солнечных батарей. Фотоэлектрические преобразователи, созданные на основе именно кристаллической структуры, более качественны и износостойки, нежели те, что созданы с использованием аморфной модификации путем напыления на различного типа подложки.
  3. Технический кремний. В данную разновидность включаются те образцы вещества, в которых содержится около 98 % чистого элемента. Все остальное уходит на различного рода примеси:
  • алюминий;
  • хлор;
  • углерод;
  • фосфор и прочие.

Последняя разновидность рассматриваемого вещества используется с целью получения поликристаллов кремния. Для этого проводятся процессы перекристаллизации. Вследствие этого по чистоте получаются такие продукты, которые можно относить к группам солнечного и электронного качества.

По своей природе поликремний - это промежуточный продукт между аморфной модификацией и кристаллической. С таким вариантом легче работать, он лучше подвергается переработке и очистке фтором и хлором.

Продукты, которые получаются в результате, можно классифицировать так:

  • мультикремний;
  • монокристаллический;
  • профилированные кристаллы;
  • кремниевый скрап;
  • технический кремний;
  • отходы производства в виде осколков и обрезков вещества.

Каждый из них находит применение в промышленности и используется человеком полностью. Поэтому касающиеся кремния, считаются безотходными. Это значительно снижает его экономическую стоимость, при этом не влияя на качество.

Использование чистого кремния

Производство кремния в промышленности налажено достаточно хорошо, а его масштабы довольно объемны. Это связано с тем, что данный элемент, как чистый, так и в виде различных соединений, широко распространен и востребован в разных отраслях науки и техники.

Где же используется кристаллический и аморфный кремний в чистом виде?

  1. В металлургии как легирующая добавка, способная менять свойства металлов и их сплавов. Так, он используется при выплавке стали и чугуна.
  2. Разные виды вещества уходят на изготовление более чистого варианта - поликремния.
  3. Соединения кремния с - это целая химическая отрасль, которая получила особую популярность сегодня. Кремнийорганические материалы используются в медицине, при изготовлении посуды, инструментов и многого другого.
  4. Изготовление различных солнечных батарей. Этот способ получения энергии является одним из самых перспективных в будущем. Экологически чисто, экономически выгодно и износостойко - основные достоинства такого получения электричества.
  5. Кремний для зажигалок используется уже очень давно. Еще в древности люди использовали кремень для получения искры при розжиге огня. Этот принцип заложен в основу производства зажигалок различного рода. Сегодня встречаются виды, в которых кремень заменен на сплав определенного состава, дающий еще более быстрый результат (искрение).
  6. Электроника и солнечная энергетика.
  7. Изготовление зеркалец в газовых лазерных устройствах.

Таким образом, чистый кремний имеет массу преимущественных и особенных свойств, позволяющих использовать его для создания важных и нужных продуктов.

Применение соединений кремния

Помимо простого вещества, используются и различные соединения кремния, причем очень широко. Существует целая отрасль промышленности, которая называется силикатной. Именно она основана на использовании различных веществ, в состав которых входит этот удивительный элемент. Какие это соединения и что из них производят?

  1. Кварц, или речной песок - SiO 2 . Используется для изготовления таких строительных и декоративных материалов, как цемент и стекло. Где используются эти материалы, всем известно. Ни одно строительство не обходится без данных компонентов, что подтверждает значимость соединений кремния.
  2. Силикатная керамика, в которую входят такие материалы, как фаянс, фарфор, кирпич и продукты на их основе. Данные компоненты используются в медицине, при изготовлении посуды, декоративных украшений, предметов быта, в строительстве и прочих бытовых областях деятельности человека.
  3. - силиконы, силикагели, силиконовые масла.
  4. Силикатный клей - используется как канцелярский, в пиротехнике и строительстве.

Кремний, цена на который варьирует на мировом рынке, но не пересекает сверху вниз отметку в 100 рублей РФ за килограмм (за кристаллический), является востребованным и ценным веществом. Естественно, что и соединения этого элемента так же широко распространены и применимы.

Биологическая роль кремния

С точки зрения значимости для организма кремний немаловажен. Его содержание и распределение по тканям таково:

  • 0,002 % - мышечная;
  • 0,000017 % - костная;
  • кровь - 3,9 мг/л.

Каждый день внутрь должно попадать около одного грамма кремния, иначе начнут развиваться заболевания. Смертельно опасных среди них нет, однако длительное кремниевое голодание приводит к:

  • выпадению волос;
  • появлению угревой сыпи и прыщей;
  • хрупкости и ломкости костей;
  • легкой проницаемости капилляров;
  • усталости и головным болям;
  • появлению многочисленных синяков и кровоподтеков.

Для растений кремний - важный микроэлемент, необходимый для нормального роста и развития. Опыты на животных показали, что лучше растут те особи, которые ежедневно потребляют достаточное количество кремния.

Химия подготовка к ЗНО и ДПА
Комплексное издание

ЧАСТЬ И

ОБЩАЯ ХИМИЯ

ХИМИЯ ЭЛЕМЕНТОВ

КАРБОН. СИЛИЦИЯ

Применение углерода и кремния

Применение углерода

Углерод является одной из самых востребованных полезных ископаемых на нашей планете. Углерод преимущественно используют как топливо для энергетической промышленности. Ежегодная добыча каменного угля в мире составляет около 550 миллионов тонн. Кроме использование угля в качестве теплоносителя, немалое его количество перерабатывают в кокс, необходим для извлечения различных металлов. На каждую тонну полученного железа в результате доменного процесса тратят 0,9 тонн кокса. Активированный уголь применяют в медицине при отравлениях и в противогазах.

Графит в больших количествах используют для изготовления карандашей. Добавка графита в стали увеличивает ее твердость и устойчивость к истиранию. Такую сталь используют, например, для производства поршней, коленчатых валов и некоторых других механизмов. Способность структуры графита к расслаиванию позволяет применять его как высокоэффективную смазку при очень высоких температурах (около +2500 °С).

Графит имеет еще одно очень важное свойство - он является эффективным замедлителем тепловых нейтронов. Это свойство используют в ядерных реакторах. Последнее время стали пользоваться пластмассами, в которые как наполнитель добавляют графит. Свойства таких материалов позволяют использовать их для производства многих важных устройств и механизмов.

Алмазы используют как хороший твердый материал для производства таких механизмов, как шлифовальные-круги, стеклорезы, буровые установки и другие приборы, требующие высокой твердости. Красиво ограненные алмазы применяют как дорогие украшения, которые называют бриллиантами.

Фуллерены были открыты сравнительно недавно (в 1985 году), потому прикладного применения они еще не нашли, однако уже сейчас ученые проводят исследования по созданию носителей информации огромной емкости. Нанотрубки уже сейчас применяют в различных нанотехнологиях, например таких, как введение лекарств с помощью наноголки, изготовление нанокомпьютеров и многое другое.

Применение кремния

Кремний - хороший полупроводник. Из него изготавливают различные полупроводниковые приборы, такие как диоды, транзисторы, микросхемы и микропроцессоры. Во всех современных мікрокомп"ютерах применяются процессоры на основе кремниевого кристалла. С кремния изготавливают солнечные батареи, способные преобразовывать солнечную энергию в электрическую. Кроме того, кремний используют как легирующие компонент для производства высококачественных легированных сталей.


Слайд 2

Нахождение в природе.

Среди множества химических элементов, без которых невозможно существование жизни на Земле, углерод является главным. Более 99% углерода в атмосфере содержится в виде углекислого газа. Около 97% углерода в океанах существует в растворённой форме (), а в литосфере - в виде минералов. Элементарный углерод присутствует в атмосфере в малых количествах в виде графита и алмаза, а в почве - в форме древесного угля.

Слайд 3

Положение в ПСХЭ.Общая характеристика элементов подгруппы углерода.

Главную подгруппу IV группы периодической системы Д. И. Менделеева образуют пять элементов - углерод, кремний, германий, олово и свинец. В связи с тем, что от углерода к свинцу радиус атома увеличивается, размеры атомов возрастают, способность к присоединению электронов, а, следовательно, и неметаллические свойства будут ослабевать, легкость же отдачи электронов - возрастать.

Слайд 4

Электронноестроение

В нормальном состоянии элементы этой подгруппы проявляют валентность, равную 2.При переходе в возбуждённое состояние, сопровождающееся переходом одного из s – электронов внешнего слоя в свободную ячейку p – подуровня того же уровня, все электроны наружного слоя становятся не спаренными и валентность при этом возрастает до 4.

Слайд 5

Методы получения: лабораторные и промышленные.

Углерод Неполное сжигание метана: СН4 + О2 = С + 2Н2О Оксид углерода (II) В промышленности: Оксид углерода (II) получают в особых печах, называемых газогенераторами, в результате двух последовательно протекающих реакций. В нижней части газогенератора, где кислорода достаточно, происходит полное сгорание угля и образуется оксид углерода (IV): C + O2 = CO2 + 402 кДж.

Слайд 6

По мере продвижения оксида углерода (IV) снизу вверх последний соприкасается с раскалённым углём: CO2 + C = CO – 175 кДж. Получающийся газ состоит из свободного азота и оксида углерода (II). Такая смесь называется генераторным газом. В газогенераторах иногда через раскалённый уголь продувают водяной пар: C + H2O = CO + H2 – Q, «CO + H2» - водянойгаз. В лаборатории: Действуя на муравьиную кислоту концентрированной серной кислотой, которая связывает воду: HCOOH  H2O + CO.

Слайд 7

Оксид углерода (IV) В промышленности: Побочный продукт при производстве извести: CaCO3 CaO + CO2. В лаборатории: При взаимодействии кислот с мелом или мрамором: CaCO3 + 2HCl  CaCl2 + CO2+ H2O. Карбиды Карбиды получают при помощи прокаливания металлов или их оксидов с углём.

Слайд 8

Угольная кислота Получают растворением оксида углерода (IV) в воде. Так как угольная кислота очень не прочное соединение, то эта реакция обратима:CO2 + H2O H2CO3. Кремний В промышленности: При нагревании смеси песка и угля: 2C + SiO2Si + 2CO. В лаборатории: При взаимодействии смеси чистого песка с порошком магния: 2Mg + SiO2  2MgO + Si.

Слайд 9

Кремниевая кислота Получают при действии кислот на растворы её солей. При этом она выпадает в виде студенистого осадка: Na2SiO3 + HCl  2NaCl + H2SiO3 2H+ + SiO32- H2SiO3

Слайд 10

Аллотропные видоизменения углерода.

Углерод существует в трех аллотропных модификациях: алмаз, графит и карбин.

Слайд 11

Графит.

Мягкий графит имеет слоистое строение. Непрозрачен, серого цвета с металлическим блеском. Довольно хорошо проводит электрический ток, благодаря наличию подвижных электронов. Скользок на ощупь. Одно из самых мягких среди твердых веществ. Рис.2 Модель решетки графита.

Слайд 12

Алмаз.

Алмаз - самое твердое природное вещество. Кристаллы алмазов высоко ценятся и как технический материал, и как драгоценное украшение. Хорошо отшлифованный алмаз - бриллиант. Преломляя лучи света, он сверкает чистыми, яркими цветами радуги. Самый крупный из когда-либо найденных алмазов весит 602 г, имеет длину 11 см, ширину 5 см, высоту 6 см. Этот алмаз был найден в 1905 г и носит имя «Кэллиан». Рис.1 Модель решетки алмаза.

Слайд 13

Карбин и Зеркальный углерод.

Карбин представляет собой порошок глубокого черного цвета с вкраплением более крупных частиц. Карбин - самая термодинамически устойчивая форма элементарного углерода. Зеркальный углерод имеет слоистое строение. Одна из важнейших особенностей зеркального углерода (кроме твердости, стойкости к высоким температурам и т. д.) - его биологическая совместимость с живыми тканями.

Слайд 14

Химические свойства.

Щелочи переводят кремний в соли кремниевой кислоты с выделением водорода:Si + 2КОН + H2O= К2Si03 + 2Н2 С водой углерод и кремний реагируют лишь при высоких температурах: С + Н2О ¬ СО + Н2 Si + ЗН2О = Н2SiO3 + 2Н2 Углерод в отличие от кремния непосредственно взаимодействует с водородом:С + 2Н2 = СН4

Слайд 15

Карбиды.

Соединения углерода с металлами и другими элементами, которые по отношению к углероду являются электроположительными, называются карбидами. При взаимодействии карбида алюминия с водой образуется метан Al4C3 + 12H2O = 4Al (OH)3 + 3CH4 При взаимодействии с водой карбида кальция – ацетилен: CaC2 + 2H2O = Ca (OH)2 + C2H2

Краткая сравнительная характеристика элементов углерода и кремния представлена в таблице 6.

Таблица 6

Сравнительная характеристика углерода и кремния

Критерии сравнения Углерод – С Кремний – Si
положение в периодической системе химических элементов , 2-ой период, IV группа, главная подгруппа , 3-ий период, IV группа, главная подгруппа
электронная конфигурация атомов
валентные возможности II – в стационарном состоянии IV – в возбужденном состоянии
возможные степени окисления , , , , , ,
высший оксид , кислотный , кислотный
высший гидроксид – слабая нестойкая кислота () или – слабая кислота, имеет полимерную структуру
водородное соединение – метан (углеводород) – силан, неустойчив

Углерод . Для углерода-элемента характерна аллотропия. Углерод существует в форме следующих простых веществ: алмаз, графит, карбин, фуллерен, из которых термодинамически устойчивым является только графит. Уголь и сажу можно рассматривать как аморфные разновидности графита.

Графит тугоплавок, мало летуч, при обычной температуре химически инертен, представляет собой непрозрачное, мягкое вещество, слабо проводящее ток. Структура графита слоистая.

Аламаз – чрезвычайно твердое, химически инертное (до 900 °С) вещество, не проводит тока и плохо проводит тепло. Структура алмаза тетраэдрическая (каждый атом в тетраэдре окружен четырьмя атомами и т.д.). Поэтому алмаз – простейший полимер, макромолекула которого состоит из одних атомов углерода.

Карбин имеет линейную структуру ( –карбин, полиин) или ( – карбин, полиен). Представляет собой черный порошок, обладает полупроводниковыми свойствами. Под действием света электропроводность карбина увеличивается, а при температуре карбин превращается в графит. Химически более активен, чем графит. Синтезирован в начале 60-х годов XX в., позже был обнаружен в некоторых метеоритах.

Фуллерен – аллотропная модификация углерода, образованная молекулами , имеющими конструкцию типа “футбольный мяч”. Были синтезированы молекулы , и другие фуллерены. Все фуллерены представляют собой замкнутые структуры из атомов углерода в гибридном состоянии. Негибридизованные электроны связей делокализованы как в ароматических соединениях. Кристаллы фуллерена относятся к молекулярному типу.



Кремний . Для кремния не характерно связей, не характерно существование в гибридном состоянии. Поэтому существует только одна устойчивая аллотропная модификация кремния, кристаллическая решетка которой подобна решетке алмаза. Кремний – твердое (по шкале Мооса твердость равна 7), тугоплавкое (), очень хрупкое вещество темно-серого цвета с металлическим блеском при стандартных условиях – полупроводник. Химическая активность зависит от размеров кристаллов (крупнокристаллический менее активен, чем аморфный).

Реакционная способность углерода зависит от аллотропной модификации. Углерод в виде алмаза и графита довольно инертен, устойчив к действию кислот, щелочей, что позволяет изготавливать из графита тигли, электроды и т.д. Более высокую реакционную способность углерод проявляет в виде угля и сажи.

Кристаллический кремний достаточно инертен, в аморфной форме – более активен.

Основные виды реакций, отражающих химические свойства углерода и кремния, приведены в таблице 7.


Таблица 7

Основные химические свойства углерода и кремния

реакция с углерод реакция с кремний
простыми веществами кислородом кислородом
галогенами галогенами
серой углеродом
водородом водородом не реагирует
металлами металлами
сложными веществами оксидами металлов щелочами
водяным паром кислотами не реагирует
кислотами

Вяжущие материалы

Вяжущие материалы минеральные или органические строительные материалы, применяемые для изготовления бетонов, скрепления отдельных элементов строительных конструкций, гидроизоляции и др .

Минеральные вяжущие материалы (МВМ)– тонкоизмельченные порошкообразные материалы (цементы, гипс, известь и др.), образущие при смешивании с водой (в отдельных случаях – с растворами солей, кислот, щелочей) пластичную удобоукладываемую массу, затвердевающую в прочное камневидное тело и связывающую частицы твердых заполнителей и арматуру в монолитное целое.

Твердение МВМ осуществляется вследствие процессов растворения, образования пересыщенного раствора и коллоидной массы; последняя частично или полностью кристаллизуется.

Классификация МВМ:

1. гидравлические вяжущие материалы:

При смешивании с водой (затворении) твердеют и продолжают сохранять или наращивать свою прочность в воде. К ним относятся различные цементы и гидравлическая известь. При твердении гидравлической извести происходит взаимодействие СаО с водой и углекислым газом воздуха и кристаллизация образующегося продукта. Применяют в строительстве наземных, подземных и гидротехнических сооружений, подвергающихся постоянному воздействию воды.

2. воздушные вяжущие материалы:

При смешивании с водой твердеют и сохраняют прочность только на воздухе. К ним относятся воздушная известь, гипсово-ангидритные и магнезиальные воздушные вяжущие.

3. кислотоупорные вяжущие материалы:

Состоят в основном из кислотоупорного цемента, содержащего тонкоизмельченную смесь кварцевого песка и ; их затворяют, как правило, водными растворами силиката натрия или калия, они длительно сохраняют свою прочность при воздействии кислот. При твердении осуществляется реакция . Применяют для производства кислотоупорных замазок, строительных растворов и бетонов при строительстве химических предприятий.

4. вяжущие материалы автоклавного твердения:

Состоят из известково-кремнеземистых и известково-нефелиновых вяжущих (известь, кварцевый песок, нефелиновый шлам) и твердеют при обработке в автоклаве (6-10 ч, давление пара 0,9-1,3 МПа). К ним относят также песчанистые портландцементы и другие вяжущие на основе извести, зол и малоактивных шламов. Применяют в производстве изделий из силикатных бетонов (блоки, силикатный кирпич и др.).

5. фосфатные вяжущие материалы:

Состоят из специальных цементов; их затворяют фосфорной кислотой с образованием пластичной массы, постепенно затвердевающей в монолитное тело, и сохраняющей свою прочность при температурах выше 1000 °С. Обычно используют титанофосфатный, цинкофосфатный, алюмофосфатный и др. цементы. Применяют для изготовления огнеупорной футеровочной массы и герметиков для высокотемпературной защиты металлических деталей и конструкций в производстве огнеупорных бетонов и др.

Органические вяжущие материалы (ОВМ)– вещества органического происхождения, способные переходить из пластичного состояния в твердое или малопластичное в результате полимеризации или поликонденсации.

По сравнению с МВМ они менее хрупки, имеют большую прочность при растяжении. К ним относятся продукты, образующиеся при переработке нефти (асфальт, битум), продукты термического разложения древесины (деготь), а также синтетические термореактивные полиэфирные, эпоксидные, феноло-формальдегидные смолы. Применяют в строительстве дорог, мостов, полов производственных помещений, рулонных кровельных материалов, асфальтополимерныбетонов и др.

В бинарных соединениях кремния с углеродом каждый атом кремния непосредственно связан с четырьмя соседними атомами углерода, располагающимися в вершинах тетраэдра, центром ко­торого и является атом кремния. В то же время каждый атом углерода в свою очередь связан с четырьмя соседними атомами кремния, размещенными в вершинах тетраэдра, центром которо­го является атом углелода. Такое взаимное расположение атомов кремния и углерода основано на кремний-углеродной связи Si - C- и образует плотную и весьма прочную кристаллическую структуру.

В настоящее время известно только два бинарных соединения кремния с углеродом. Это очень редко встречающийся в природе минерал муассанит, пока не имеющий практического применения, и искусственно получаемый карборунд SiC, который иногда назы­вается силундом, рефраксом, карбофраксом, кристоланом и т. д.

В лабораторной практике и в технике карборунд получают восстановлением кремнезема углеродом по уравнению реакция

SiO 2 + 3C =2СО + SiC

В состав шихты для получения карборунда вводят кроме тонкоизмельчениых кварца или чистого кварцевого леска и кокса в качестве добавок поваренную соль и древесные опилки. Опилки во время обжига рыхлят шихту, а поваренная соль, реагируя с железистыми и алюминиевыми примесями, превращает их в ле: тучие хлориды FеС1 3 и А1С1 3 , удаляющиеся из зоны реакции при 1000-1200° С. Фактически реакция между кремнеземом и коксом начинается уже при 1150° С, но протекает чрезвычайно медленно. С повышением температуры до 1220° С скорость ее возрастает. В температурном интервале от 1220 до 1340° С она становится экзотермической и протекает бурно. В результате реакции снача­ла образуется смесь, состоящая из мельчайших кристаллов и из аморфной разновидности карборунда. С повышением температу­ры до 1800-2000° С смесь перекристаллизовывается и превраща­ется в хорошо развитые, таблитчатой формы, редко бесцветные, чаще окрашенные в зеленый, серый и даже черный цвет с алмазным блеском и радужной игрой шестигранные кристаллы, содержащие около 98-99,5% карборунда. Процесс получения карборунда из шихты ведут в электропечах гари 2000-2200° С. Чтобы получить химически чистый карборунд, продукт, полученный в результате обжига шихты, обрабатывают щелочью, растворяющей не вошедший в реакцию кремнезем.

Кристаллический карборунд относится к весьма твердым веществам; твердость его 9. Омическое сопротивление поликристаллического карборунда с повышением температуры уменьшается и при 1500 0 С становится незначительным.



Hа воздухе при температуре свыше 1000 0 С карборунд начинает окисляться сначала медленно, а затем с повышением температуры свыше 1700° С энергично. При этом образуются кремнезем и оксид углерода:

2SiC + ЗО 2 = 2SiO 2 + 2CO

Образующийся на поверхности карборунда диоксид кремния представляет собой защитную пленку, несколько замедляющую даль­нейшее окисление карборунда. В среде водяного пара окисление карборунда при тех же условиях протекает более энергично.

Минеральные кислоты, за исключением ортофосфорной, на карборунд не действуют, хлор при 100° С разлагает его по уравнению реакции

SiC + 2Cl 2 = SiCl 4 + C

а при 1000° С вместо углерода выделяется СС1 4:

SiC + 4C1 2 =SiCl + CC1 4

Расплавленные металлы, реагируя с карборундом, образуют соответствующие силициды:

SiC + Fe =FeSl + С

При температурах выше 810° С карборунд восстанавливает до металла оксиды щелочноземельных металлов, свыше 1000° С он восстанавливает оксид железа (III) Fe 2 O 3 и свыше 1300-1370° С оксид железа (II) FeO, оксид никеля (II) NiO и оксид марган­ца МnО.

Расплавленные едкие щелочи и их карбонаты в присутствии кислорода воздуха полностью разлагают карборунд с образова­нием соответствующих силикатов:

SiC + 2КОН + 2О 2 = K 2 SiO 3 + Н 2 О + СО 2

SiC + Na 2 CO 3 + 2O 2 = Na 2 SiO 3 + 2СО 2

Карборунд способен также реагировать с пероксидом натрия, оксидом свинца (II) и ортофосфорной кислотой.

Благодаря тому, что карборунд обладает высокой твердостью, его широко используют в качестве абразивных порошков для шлифовки металла, а также и для изготовления из него карборундовых абразивных кругов, брусков и шлифо­вальной бумаги. Электрическая проводимость карборунда при высоких температурах дает возможность использовать его как основной материал при изготовлении так называемых силитовых стержней, представляющих собой элементы сопротивления в электропечах. Для этой цели смесь карборунда с кремнием за­творяют глицерином или другим органическим цементирующим -веществом и из полученной массы формуют стержни, которые обжигают при 1400-1500° С в атмосфере оксида углерода или в атмосфере азота. Вo время обжига цементирующее органическое вещество разлагается, выделяющийся углерод, соединяясь с кремнием, превращает его в карборунд и придает стержням требуемую прочность.



Из карборунда изготовляют специальные огнеупорные тигли
для плавки металлов, которые получают горячим прессованием
карборунда при 2500° С под давлением 42-70 МПа. Еще извест­
ны огнеупоры, изготовленные из смесей карборунда с нитридами
бора, стеатитом, молибденсодержащими.связками и другими ве­
ществами.

ГИДРИДЫ КРЕМНИЯ, ИЛИ СИЛАНЫ

Водородные соединения кремния принято называть гидридами кремния, или силанами. Подобно насыщенным углеводородам гидриды кремния образуют гомологический ряд, в котором атомы кремния соединены между собой одинарной связью

Si-Si -Si -Si -Si- и т. д.

Простейшим.представителем

этого гомологического ряда является моносилан, или просто силан, SiH 4 , строение молекулы которого подобно строению метана, затем следует

дисилан H 3 Si-SiH 3 , который по строению молекулы подобен этану, затем трисилан H 3 Si-SiH 2 -SiH 3 ,

тетрасилан H 3 Si-SiH 2 -SiH 2 -SiH 3 ,

пентасилан H 3 Si-SiH 2 -SiH 2 -SiH 2 ^--SiH 3 и последний из полученных силанов этого гомологического ряда

гексасилан Н 3 Si-SiH 2 -SiH 2 -SiH 2 -SiH 2 -SiH 3 . Силаны в чистом виде в природе не встречаются. Получают их искусственным способом:

1. Разложением силицидов металлов кислотами или щелоча­ми по уравнению реакции

Mg 2 Si+ 4HCI = 2MgCl 2 + SiH 4

при этом образуется смесь силанов, которую затем разделяют дробной перегонкой при весьма низких температурах.

2. Восстановлением галогеносиланов гидридом лития или алюмогидридом лития:

SiCl 4 + 4 LiH = 4LiCl + SiH 4

Этот способ получения силалов впервые описан в 1947 г.

3. Восстановлением галогеносиланов водородом. Реакция протекает при 300 - 400° С в реакционных трубках, наполненных контактной смесью, содержащей, кремний, металлическую медь и в качестве катализаторов 1 - 2% галогенидов алюминия.

Несмотря на сходство в молекулярном строении ситанов и пре­дельных углеводородов, физические свойства их различны.

По сравнению с углеводородами силаны менее устойчивы. Наиболее устойчивым из них является моносилан SiH4, разлагаю­щийся на кремний и водород только при красном калении. Другие силаны с большим содержанием кремния при значительно более низких температурах образуют низшие производные. Напри­мер, дисилан Si 2 H 6 дает при 300° С силан и твердый полимер, а гексасилан Si 6 H 14 разлагается медленно даже при нормальных температурах. При соприкосновении с кислородом силаны легко окисляются, а некоторые из них, например моносилан SiH 4 , само­воспламеняются при -180° С. Силаны легко гидролизуются на диоксид кремния и водород:

SiH 4 + 2H 2 0 = SiO 2 + 4H 2

У высших силанов этот процесс совершается с расщеплением

связи - Si - Si - Si - между атомами кремния. Например, три-

силан Si 3 H 8 дает три молекулы SiO 2 и десять молекул газообразного водорода:

H 3 Si - SiH 2 - SiH 3 + 6Н 3 О = 3SiO 2 + 10Н 2

В присутствии едких щелочей в результате гидролиза силанов образуется силикат соответствующего щелочного металла и водород:

SiH 4 + 2NaOH + H 2 0 = Na 2 Si0 3 + 4H 2

ГАЛОГЕНИДЫ КРЕМНИЯ

К бинарным соединениям кремния относятся также и галогеносиланы. Подобно гидридам кремния - силанам - они образуют гомологический ряд химических соединений, в которых атомы галогенида непосредственно соединены с атомами кремния, связанными между собой одинарными связями

и т. д. в цепочки соответствующей длины. Благодаря такому сход­ству галогеносиланы можно рассматривать как продукты заме­щения водорода в силанах на соответствующий галоген. При этом замещение может быть полным и неполным. В последнем случае получаются галогенопроизводные силанов. Наивысшим, известным до настоящего времени галогеносилаиом считается хлорсилан Si 25 Cl 52. Галогеносиланы и их галогенопроизводные в природе в чистом виде не встречаются и могут быть получены исключительно искусственным путем.

1. Непосредственным соединением элементарного кремния с галогенами. Например, SiCl 4 получают из ферросилиция, содер­жащего от 35 до 50% кремния, обрабатывая его при 350-500° С сухим хлором. При этом в качестве основного продукта получают SiCl 4 в смеси с другими более сложными галогеносиланами Si 2 С1 6 , Si 3 Cl 8 и т. д. по уравнению реакции

Si + 2Cl 2 = SiCl 4

Это же соединение может быть получено хлорированием смеси кремнезема с коксом при высоких температурах. Реакция проте­кает по схеме

SiO 2 + 2C=Si +2CO

Si + 2C1 2 =SiС1 4

SiO 2 + 2C + 2Cl 2 = 2CO + SiCl 4

Тетрабромсилан получают бромированием при красном кале­нии элементарного кремния парами брома:

Si + 2Вг 2 = SiBr 4

или смеси кремнезема с коксом:

SiO 2 + 2C = Si+2CO

Si + 2Br 3 = SiBi 4

SiO 2 + 2С + 2Br 2 = 2CO + SiBr 4

При этом одновременно с тетрасиланами возможно образова­ние силанов высших степеней. Например, при хлорировании сили­цида магния получают 80% SiCI 4 , 20% SiCl 6 и 0,5-1% Si 3 Cl 8 ; при хлорировании силицида кальция состав продуктов реакции выражается в таком виде: 65% SiС1 4 ; 30% Si 2 Cl 6 ; 4% Si 3 Cl 8 .

2. Галогенирование силанов галогецоводородами в присут­ствии катализаторов А1Вг 3 при температурах свыше 100° С. Реак­ция протекает по схеме

SiH 4 + НВг = SiH 3 Br + Н 2

SiН 4 + 2НВг = SiH 2 Br 2 + 2H 2

3. Галогенирование силанов хлороформом в присутствии катализаторов АlСl 3:

Si 3 H 8 + 4СНС1 3 = Si 3 H 4 Cl 4 + 4СН 2 С1 3

Si 3 H 8 + 5СНСl 3 = Si 3 Н 3 С1 5 + 5СН 2 С1 2

4. Тетрафторид кремния получают действием на кремнезем плавиковой кислотой:

SiO 2 + 4HF= SiF 4 + 2H 2 0

5. Некоторые полигалогеносиланы могут быть получены из простейших галогеносиланов галогенировалием их соответствую­щим галогенидом. Например, тетраиодсилан в запаянной трубке при 200-300° С, реагируя с серебром, выделяет гексаиоддисилан по

Иодсиланы могут быть получены при взаимодействии иода с силанами в среде четыреххлористого углерода или хлороформа, а также в присутствии катализатора AlI 3 при взаимодействии силана с йодистым водородом

Галогеносиланы менее прочны, чем подобные им по строению галогенопроизводные углеводородов. Они легко гидролизуются, образуя силикагель и галогеноводородную кислоту:

SiCl 4 + 2H 2 O = Si0 2 + 4HCl

Простейшими представителями галогеносиланов являются SiF 4 ,SiCl 4 , SiBr 4 и SiI 4 . Из них в технике в основном используются тетрафторсилан и тётрахлорсилан. Тетрафторсилан SiF 4 -бесцветный газ с острым запахом, на воздухе дымит, гидролизуется на кремнефтористрводородную кислоту и силикагель. Получают SiF 4 действием фтористоводородной кислоты на кремнезем по уравнению реакции

SiО 2 + 4HF = SlF 4 + 2H 2 0

Для промышленного получения. SiF 4 используют плавиковый шпат CaF 2 , кремнезем SiO 2 и серную кислоту H 2 SO 4 . Реакция протекает в две фазы:

2CaF 2 + 2H 3 SO 4 = 2СаSО 4 + 4HF

SiO 2 + 4HF = 2H 2 O + SiF 4

2CaF 2 + 2H 2 S0 4 + SiO 2 = 2CaSO 4 + 2H 2 O + SiF 4

Газообразное состояние и летучесть тетрафторсилана исполь­зуется для травления известковонатриевых силикатных стекол фтористым водородом. При взаимодействии фтористого водоро­да со стеклом образуется тетрафторсилан, фторид кальция, фто-_ рид натрия и вода. Тетрафторсилан, улетучиваясь, освобождает новые более глубокие слои стекла для реакции с фтористым во­дородом. На месте реакции остаются CaF 2 и NaF, которые раст­воряются в воде и тем самым освобождают доступ фтористому водороду для дальнейшего проникновения к свежеоголенной по­верхности стекла. Протравленная поверхность может быть матовой или прозрачной. Матовое травление получается при действий на стекло газообразного фтористого водорода, прозрачное - при травлении водными растворами плавиковой кислоты. Если пропускать тетрафторсилан в воду, получаются H 2 SiF 6 и кремнезем в виде геля:

3SiF 4 + 2Н 2 О = 2H 2 SiF 6 + Si0 2

Кремнефтористоводородная кислота относится к числу сильных двухосновных кислот, в свободном состоянии не получена, при выпаривании разлагается на SiF 4 и 2HF, которые улетучиваются; с едкими щелочами образует кислые и нормальные соли:

H 2 SlF 6 + 2NaOH.= Na 2 SiF 6 + 2H 2 O

с избытком щелочей дает фторид щелочного металла, кремнезем и воду:

H 2 SiF 6 + 6NaOH = 6NaF+SiO 2 + 4H 2 O

Выделяющийся в этой реакции кремнезем реагирует с едкой ще-
лочью и приводит к образованию силиката:

SiO 2 + 2NaOH = Na 2 SiO 3 +H 2 O

Соли кремнефтористоводородной кислоты называются силикофторидами или флюатами. В настоящее время известны кремнефто-риды Na, H, Rb, Cs, NH 4 , Cu, Ag, Hg, Mg, Ca, Sr, Ba, Cd, Zn, Mn, Ni, Co, Al, Fe, Cr, Pb и т. д.

В технике для различных целей используются кремнефториды натрия Na 2 SiF 6 , магния MgSiF 6 *6HgO, цинка ZnSiF 6 * 6H 2 O, алю­миния Al 2 (SiF 6) 3 , свинца PbSiF 6 , бария BaSiF 6 и др. Кремнефто­риды обладают антисептическими и уплотняющими свойствами; в то же время они являются антипиренами. Благодаря этому их используют для пропитки древесины, чтобы предотвратить преждевременное загнивание ее и уберечь от воспламенения при пожа­рах. Кремнефторидами пропитывают также искусственные и естественные камни строительного назначения для уплотнения их. Сущность пропитки заключается в том, что раствор кремнефторидов, проникая в поры и трещины камня, реагирует с карбона­том кальция и некоторыми другими соединениями и образует нерастворимые соли, отлагающиеся в порах и уплотняющие их. Это значительно повышает сопротивляемость камня выветриванию. Материалы, которые совсем не содержат карбоната кальция или содержат его мало, предварительно обрабатываются аванфлюатами, т.е. веществами, содержащими в растворенном виде соли кальция, силикаты щелочных металлов и другие вещества, способные образовывать с флюатами нерастворимые осадки. В качестве флюатов используются кремнефториды магния, цинка и алюминия. Процесс флюатирования может быть представлен в таком виде:

MgSiF 6 + 2СаСО 3 = MgF 2 + 2CaF 2 + SiO 2 + 2СО 2

ZnSiF 6 + ЗСаС0 3 = 3CaF 6 + ZnCO 3 + SiO 2 + 2CO 2

Al 2 (SiF 6) 3 + 6CaCO 3 =. 2A1F 3 + 6CaF 2 + 3SiO 2 + 6CO 2

Кремнефториды щелочных металлов получаются при взаимодействии кремнефтористоводородной кислоты с растворами солей этих металлов:

2NaCl + H 2 SiF 6 = Na 2 SlF 6 + 2НС1

Это студенистые осадки, растворимые в воде и практически нерастворимые в абсолютном спирте. Поэтому их используют в количественном анализе при определении кремнезема объем­ным методом. Для технических целей используется кремнефторид натрия, получающийся в виде белого порошка в качестве побочного продукта в производстве суперфосфата. Из смеси Na 2 SiF 6 и А1 2 О 3 при 800° С образуется криолит 3NaF٠AlF 3 ,который широко применяется в производстве зубных цементов и является хо­рошим глушителем как в стекольном деле, так и при изготовле­нии непрозрачных глазурей и эмалей.

Кремнефторид натрия как один из компонентов вводится в со- став химически стойких замазок, изготовляемых на жидком стекле:

Na 2 SiF 6 + 2Na 2 SiO 3 = 6NaF + 3SiO 2

Выделяющийся по этой реакции кремнезем придает затвердевшей замазке химическую устойчивость. В то же время Na 2 SiF 6 явля­ется ускорителем твердения. Кремнефторид натрия вводится так­же в качестве минерализатора в сырьевые смеси при производ­стве цементов.

Тетрахлорсилан SiCl 4 -бесцветная, дымящая.на воздухе, лег­ко гидролизующаяся жидкость, получающаяся хлорированием карборунда или ферросилиция действием на силаны при повы­шенных температурах

Тетрахлорсилан - основной исходный продукт для получения многих кремнийорганических соединений.

Тетрабромсилан SiBr 4 - бесцветная, дымящая на воздухе, лег­ко гидролизующаяся на SiО 2 и НВг жидкость, получающаяся при температуре красного каления, при пропускании над раскален­ным элементарным кремнием паров брома.

Тетраиодсилан SiI 4 - белое кристаллическое вещество, полу­чающееся при пропускании смеси паров иода с диоксидом угле­рода над раскаленным элементарным кремнием.

Бориды и нитриды кремния

Боридами кремния называют соединения кремния с бором. В настоящее время известно два борнда кремния: триборид крем­ния B 3 Si и гексаборид кремния B 6 Si. Это чрезвычайно твердые, химически стойкие и огнеупорные вещества. Получают их сплав­лением в электрическом токе тонкоизмельченной смеси, состоя­щей из 5 вес. ч. элементарного кремния и 1 вес. ч. бора. Сцекшуюся массу очищают расплавленным карбонатом калия. Г. М. Сам­сонов и В. П. Латышев получили триборид кремния горячим прессованием при 1600-1800 0 С.

Триборид кремния с пл. 2,52 г/см 3 образует черные пластин­-
чатого строения ромбические кристаллы, просвечивающиеся
в тонком слое в желто-бурых тонах. Гексаборид кремния с пл.
2,47 г/см 3 получается в виде непрозрачных опаковых зерен непра­-
вильной формы.

Бориды кремния плавятся около 2000° С, но окисляются весь­ма медленно даже при высоких температурах. Это дает возмож­ность использовать их в качестве специальных огнеупоров. Твер­дость боридов кремния весьма высока, и в этом отношении они приближаются к карборунду.

Соединения кремния с азотом называются нитридами кремния. Известны следующие нитриды: Si 3 N 4 , Si 2 N 3 и SIN. Нитриды крем­ния получаются при прокаливании элементарного кремния в ат­мосфере чистого азота в температурном интервале от 1300 до 1500° С. Нормальный нитрид кремния Si 3 N 4 может быть получен из смеси кремнезема с коксом, прокаливаемой в атмосфере чисто­го азота при 1400-1500° С:

6С + 3Si0 2 + 2N 3 ͢ Si 3 N 4 + 6CO

Si 3 N 4 - серовато-белый огнеупорный и кислотостойкий поро­шок, улетучивающийся лишь свыше 1900° С. Нитрид кремния гидролизуется с выделением кремнезема и аммиака:

Si 3 N 4 + 6H 2 O = 3SiO 2 + 4NH 3

Концентрированная серная кислота при нагревании медленно разлагает Si 3 N 4 , а разбавленная кремнефтористоводородная раз­лагает его более энергично.

Нитрид кремния состава Si 2 N 3 получается тоже действием азота при высоких температурах на элементарный кремний или на карбоазоткремний C 2 Si 2 N + N 2 =2C + Si2N 3 .

Кроме бинарных соединений кремния с азотом в настоящее время известно много других более сложных, в основе которых лежит непосредственная связь атомов кремния с атомами азота, например: 1) аминосиланы SiH 3 NH 2 , SiH 2 (NH 2) 2 , SiH(NH 2 } 3, Si(NH 2) 4 ; 2) силиламины NH 2 (SiH 3), NH(SiH 3) 2 , N(SiH 3) 3 ; 3) азотсодержащие соединения кремния более сложного состава.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ