Aritmetik ilerlemenin A1'i eşittir. Aritmetik ilerlemenin n'inci terimi için formül

Dikkat!
Ek var
Özel Bölüm 555'teki materyaller.
Çok "pek değil..." olanlar için
Ve “çok…” diyenler için)

Aritmetik ilerleme her sayının bir öncekinden aynı miktarda daha büyük (veya daha az) olduğu bir sayı dizisidir.

Bu konu çoğu zaman karmaşık ve anlaşılmaz görünmektedir. Harf indeksleri n'inci terim ilerlemeler, ilerleme farklılıkları - bunların hepsi bir şekilde kafa karıştırıcı, evet... Aritmetik ilerlemenin anlamını çözelim ve her şey hemen daha iyi hale gelecektir.)

Aritmetik ilerleme kavramı.

Aritmetik ilerleme çok basit ve açık bir kavramdır. Herhangi bir şüpheniz var mı? Boşuna.) Kendiniz görün.

Bitmemiş bir sayı dizisi yazacağım:

1, 2, 3, 4, 5, ...

Bu seriyi uzatabilir misiniz? Beşten sonra hangi sayılar gelecek? Herkes... uh... kısacası herkes bundan sonra 6, 7, 8, 9 vb. sayıların geleceğini anlayacak.

Görevi karmaşıklaştıralım. Size bitmemiş bir sayı dizisi veriyorum:

2, 5, 8, 11, 14, ...

Deseni yakalayabilecek, seriyi genişletebilecek ve isim verebileceksiniz. yedinci satır numarası?

Bu sayının 20 olduğunu fark ettiyseniz tebrikler! Sadece hissetmedin aritmetik ilerlemenin kilit noktaları, ama aynı zamanda bunları iş hayatında da başarıyla kullandı! Eğer çözemediyseniz okumaya devam edin.

Şimdi duyumlardaki önemli noktaları matematiğe çevirelim.)

İlk önemli nokta.

Aritmetik ilerleme sayı dizileriyle ilgilidir. Bu ilk başta kafa karıştırıcıdır. Denklem çözmeye, grafik çizmeye falan alışığız... Ama burada seriyi genişletiyoruz, serinin numarasını buluyoruz...

Önemli değil. Sadece ilerlemeler matematiğin yeni bir dalıyla ilk tanışmadır. Bu bölüme "Seriler" adı verilir ve özellikle sayı ve ifade dizileriyle çalışır. Alışmak.)

İkinci önemli nokta.

Aritmetik ilerlemede herhangi bir sayı bir öncekinden farklıdır aynı miktarda.

İlk örnekte bu fark birdir. Hangi sayıyı alırsanız alın, bir öncekinin bir fazlasıdır. İkincisinde - üç. Herhangi bir sayı bir öncekinden üç fazladır. Aslında bize kalıbı kavrama ve sonraki sayıları hesaplama fırsatını veren de bu andır.

Üçüncü önemli nokta.

Bu an çok çarpıcı değil evet... Ama çok ama çok önemli. İşte burada: Her ilerleme numarası yerindedir. Birinci sayı var, yedinci var, kırk beşinci var vs. Bunları rastgele karıştırırsanız desen kaybolur. Aritmetik ilerleme de ortadan kalkacaktır. Geriye sadece bir dizi sayı kaldı.

Bütün mesele bu.

Elbette yeni bir konuda yeni terimler ve tanımlar ortaya çıkıyor. Onları bilmeniz gerekiyor. Aksi halde görevi anlayamazsınız. Örneğin, şöyle bir şeye karar vermeniz gerekecek:

a 2 = 5, d = -2,5 ise, aritmetik ilerlemenin ilk altı terimini (a n) yazın.

İlham verici mi?) Mektuplar, bazı dizinler... Ve bu arada, görev daha kolay olamazdı. Sadece terimlerin ve tanımların anlamını anlamanız gerekir. Şimdi bu konuya hakim olacağız ve göreve döneceğiz.

Terimler ve tanımlar.

Aritmetik ilerleme her sayının bir öncekinden farklı olduğu bir sayı dizisidir aynı miktarda.

Bu miktara denir . Bu konsepte daha detaylı bakalım.

Aritmetik ilerleme farkı.

Aritmetik ilerleme farkı herhangi bir ilerleme sayısının ne kadar olduğu Dahaönceki.

Bir önemli nokta. Lütfen söze dikkat edin "Daha". Matematiksel olarak bu, her ilerleme sayısının toplayarakönceki sayıya aritmetik ilerleme farkı.

Hesaplamak için diyelim ki ikinci serinin numaraları, yapmanız gereken Birinci sayı eklemek aritmetik ilerlemenin tam da farkı. Hesaplama için beşinci- fark gerekli eklemekİle dördüncü, peki vb.

Aritmetik ilerleme farkı Belki pozitif, o zaman serideki her sayının gerçek olduğu ortaya çıkacak öncekinden daha fazla. Bu ilerlemeye denir artan.Örneğin:

8; 13; 18; 23; 28; .....

Burada her sayı elde edilir toplayarak pozitif sayı, bir öncekine +5.

Fark olabilir olumsuz, o zaman serideki her sayı öncekinden daha az. Bu ilerlemeye denir (buna inanmayacaksınız!) azalıyor.

Örneğin:

8; 3; -2; -7; -12; .....

Burada her sayı da elde edilir toplayarak bir öncekine göre, ancak zaten negatif bir sayı, -5.

Bu arada, ilerlemeyle çalışırken, ister artıyor ister azalıyor olsun, doğasını hemen belirlemek çok faydalıdır. Bu, karar vermenize, hatalarınızı tespit etmenize ve çok geç olmadan bunları düzeltmenize çok yardımcı olur.

Aritmetik ilerleme farkı genellikle harfle gösterilir D.

Nasıl bulunur D? Çok basit. Serideki herhangi bir sayıdan çıkarma yapmak gerekir öncesi sayı. Çıkar. Bu arada çıkarma sonucuna "fark" denir.)

Örneğin şunu tanımlayalım: D aritmetik ilerlemeyi artırmak için:

2, 5, 8, 11, 14, ...

Dizide istediğimiz herhangi bir sayıyı alıyoruz örneğin 11. Ondan çıkarıyoruz önceki numara onlar. 8:

Bu doğru cevap. Bu aritmetik ilerleme için fark üçtür.

Alabilirsin herhangi bir ilerleme numarası,Çünkü belirli bir ilerleme için D-her zaman aynı. En azından sıranın başında bir yerde, en azından ortada, en azından herhangi bir yerde. Yalnızca ilk sayıyı alamazsınız. Basitçe çünkü ilk sayı önceki yok.)

Bu arada bunu bilerek d=3 Bu ilerlemenin yedinci sayısını bulmak çok basittir. Beşinci sayıya 3 ekleyelim - altıncıyı elde ederiz, 17 olur. Altıncı sayıya üç ekleyelim, yedinci sayıyı - yirmiyi elde ederiz.

Hadi tanımlayalım D azalan aritmetik ilerleme için:

8; 3; -2; -7; -12; .....

İşaretler ne olursa olsun, belirlemeniz gerektiğini size hatırlatırım. D herhangi bir numaradan ihtiyaç var öncekini götür. Herhangi bir ilerleme numarasını seçin, örneğin -7. Önceki numarası -2'dir. Daha sonra:

d = -7 - (-2) = -7 + 2 = -5

Aritmetik ilerlemenin farkı herhangi bir sayı olabilir: tam sayı, kesirli, irrasyonel, herhangi bir sayı.

Diğer terimler ve tanımlar.

Dizideki her sayıya denir aritmetik ilerlemenin üyesi.

İlerlemenin her üyesi kendi numarası vardır. Rakamlar hiçbir hile olmaksızın kesinlikle sıralıdır. Birinci, ikinci, üçüncü, dördüncü vb. Örneğin, 2, 5, 8, 11, 14, ... diziliminde ilk terim iki, ikinci terim beş, dördüncü terim onbir, yani anlıyor musunuz...) Lütfen açıkça anlayın - sayıların kendisi kesinlikle herhangi bir şey olabilir, bütün, kesirli, negatif, her ne olursa olsun, ama sayıların numaralandırılması- kesinlikle sırayla!

Genel biçimde bir ilerleme nasıl yazılır? Sorun değil! Bir dizideki her sayı bir harf olarak yazılır. Aritmetik ilerlemeyi belirtmek için genellikle harf kullanılır A. Üye numarası sağ altta bir indeksle gösterilir. Terimleri virgülle (veya noktalı virgülle) ayırarak şu şekilde yazarız:

bir 1, bir 2, bir 3, bir 4, bir 5, .....

1- bu ilk sayı, 3- üçüncü vb. Süslü bir şey yok. Bu seriyi kısaca şu şekilde yazabiliriz: (BİR).

İlerlemeler oluyor sonlu ve sonsuz.

Nihai ilerlemenin sınırlı sayıda üyesi vardır. Beş, otuz sekiz, her neyse. Ama bu sonlu bir sayı.

Sonsuz ilerleme - tahmin edebileceğiniz gibi sonsuz sayıda üyeye sahiptir.)

Son ilerlemeyi bunun gibi bir seri aracılığıyla, tüm terimleri ve sonunda bir noktayı yazabilirsiniz:

1, 2, 3, 4, 5.

Veya çok sayıda üye varsa şöyle:

bir 1, bir 2,... bir 14, bir 15.

Kısa girişte ayrıca üye sayısını da belirtmeniz gerekecektir. Örneğin (yirmi üye için), şöyle:

(bir n), n = 20

Bu dersteki örneklerde olduğu gibi, satırın sonundaki üç nokta ile sonsuz bir ilerleme fark edilebilir.

Artık görevleri çözebilirsiniz. Görevler basit, yalnızca aritmetik ilerlemenin anlamını anlamaya yönelik.

Aritmetik ilerlemeyle ilgili görev örnekleri.

Yukarıda verilen göreve ayrıntılı olarak bakalım:

1. a 2 = 5, d = -2,5 ise, aritmetik ilerlemenin ilk altı terimini (a n) yazın.

Görevi anlaşılır bir dile çeviriyoruz. Sonsuz bir aritmetik ilerleme verilmiştir. Bu ilerlemenin ikinci sayısı biliniyor: 2 = 5.İlerleme farkı biliniyor: d = -2,5. Bu ilerlemenin birinci, üçüncü, dördüncü, beşinci ve altıncı terimlerini bulmamız gerekiyor.

Netlik sağlamak için sorunun koşullarına göre bir dizi yazacağım. İkinci terimin beş olduğu ilk altı terim:

1, 5, 3, 4, 5, 6,...

3 = bir 2 + D

İfadeye ikame bir 2 = 5 Ve d = -2,5. Eksileri unutma!

3=5+(-2,5)=5 - 2,5 = 2,5

Üçüncü dönem ikinciden daha az çıktı. Her şey mantıklı. Sayı öncekinden büyükse olumsuz değer, bu da sayının kendisinin öncekinden daha az olacağı anlamına gelir. İlerleme azalıyor. Tamam, dikkate alalım.) Serimizin dördüncü dönemini sayıyoruz:

4 = 3 + D

4=2,5+(-2,5)=2,5 - 2,5 = 0

5 = 4 + D

5=0+(-2,5)= - 2,5

6 = 5 + D

6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Böylece üçüncüden altıncıya kadar olan terimler hesaplandı. Sonuç aşağıdaki seridir:

a 1, 5, 2,5, 0, -2,5, -5, ....

Geriye ilk terimi bulmak kalıyor 1 iyi bilinen ikinciye göre. Bu, diğer yönde, sola doğru bir adımdır.) Yani, aritmetik ilerlemenin farkı D eklenmemelidir bir 2, A götürmek:

1 = bir 2 - D

1=5-(-2,5)=5 + 2,5=7,5

Bu kadar. Ödev cevabı:

7,5, 5, 2,5, 0, -2,5, -5, ...

Bu arada, bu görevi çözdüğümüzü belirtmek isterim. tekrarlayan yol. Bu korkunç kelime yalnızca ilerlemenin bir üyesinin aranması anlamına gelir önceki (bitişik) numaraya göre. Aşağıda ilerlemeyle çalışmanın diğer yollarına bakacağız.

Bu basit görevden önemli bir sonuç çıkarılabilir.

Hatırlamak:

Bir aritmetik ilerlemenin en az bir terimini ve farkını biliyorsak, bu ilerlemenin herhangi bir terimini bulabiliriz.

Hatırlıyor musun? Bu basit sonuç, okul kursunun bu konudaki sorunlarının çoğunu çözmenize olanak sağlar. Tüm görevler üç ana parametre etrafında döner: Bir aritmetik ilerlemenin üyesi, bir ilerlemenin farkı, ilerlemenin bir üyesinin sayısı. Tüm.

Elbette önceki cebirlerin tümü iptal edilmez.) Eşitsizlikler, denklemler ve diğer şeyler ilerlemeye bağlıdır. Ancak ilerlemenin kendisine göre- her şey üç parametre etrafında dönüyor.

Örnek olarak bu konuyla ilgili bazı popüler görevlere bakalım.

2. n=5, d = 0,4 ve a 1 = 3,6 ise sonlu aritmetik ilerlemeyi bir seri olarak yazın.

Burada her şey basit. Her şey zaten verildi. Bir aritmetik dizinin üyelerinin nasıl sayıldığını hatırlamanız, saymanız ve yazmanız gerekir. Görev koşullarındaki kelimeleri kaçırmamanız tavsiye edilir: “final” ve “ n=5". Yüzün tamamen morarıncaya kadar saymamak için.) Bu ilerlemede yalnızca 5 (beş) üye var:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

4 = 3 + d = 4,4 + 0,4 = 4,8

5 = 4 + d = 4,8 + 0,4 = 5,2

Cevabı yazmaya devam ediyor:

3,6; 4; 4,4; 4,8; 5,2.

Başka bir görev:

3. 7 sayısının aritmetik ilerlemenin (a n) bir üyesi olup olmayacağını belirleyin: a 1 = 4,1; d = 1,2.

Hımm... Kim bilir? Bir şey nasıl belirlenir?

Nasıl-nasıl... İlerlemeyi bir seri halinde yazın ve orada yedi olup olmayacağını görün! Sayarız:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

4 = 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Şimdi sadece yedi kişi olduğumuz açıkça görülüyor doğru kaymış 6,5 ile 7,7 arasında! Yedi, sayı dizimize girmedi ve bu nedenle yedi, verilen ilerlemenin bir üyesi olmayacak.

Cevap: hayır.

İşte buna dayalı bir sorun gerçek seçenek- GIA:

4. Aritmetik ilerlemenin birkaç ardışık terimi yazılır:

...; 15; X; 9; 6; ...

İşte sonu ve başlangıcı olmayan yazılmış bir seri. Üye sayısı yok, fark yok D. Önemli değil. Sorunu çözmek için aritmetik ilerlemenin anlamını anlamak yeterlidir. Hadi bakalım ve neyin mümkün olduğunu görelim bilmek bu seriden mi? Üç ana parametre nedir?

Üye numaraları? Burada tek bir numara yok.

Ama üç sayı var ve - dikkat! - kelime "tutarlı" durumda. Bu, sayıların boşluksuz, kesinlikle sıralı olduğu anlamına gelir. Bu sırada iki tane mi var? komşu bilinen numaralar? Evet bende var! Bunlar 9 ve 6'dır. Dolayısıyla aritmetik ilerlemenin farkını hesaplayabiliriz! Altıdan çıkar öncesi sayı, yani dokuz:

Geriye sadece önemsiz şeyler kaldı. X'in bir önceki sayısı hangi sayı olacak? On beş. Bu, X'in basit toplama işlemiyle kolayca bulunabileceği anlamına gelir. Aritmetik ilerlemenin farkını 15'e ekleyin:

Bu kadar. Cevap: x=12

Aşağıdaki sorunları kendimiz çözüyoruz. Not: Bu problemler formüllere dayalı değildir. Sırf aritmetik ilerlemenin anlamını anlamak için.) Sadece bir dizi rakam ve harf yazıyoruz, bakıp anlıyoruz.

5. a 5 = -3 ise aritmetik ilerlemenin ilk pozitif terimini bulun; d = 1.1.

6. 5,5 sayısının aritmetik ilerlemenin (an n) bir üyesi olduğu bilinmektedir; burada a 1 = 1,6; d = 1,3. Bu üyenin n sayısını belirleyin.

7. Aritmetik ilerlemede a 2 = 4 olduğu bilinmektedir; 5 = 15,1. 3'ü bulun.

8. Aritmetik ilerlemenin birkaç ardışık terimi yazılmıştır:

...; 15.6; X; 3.4; ...

İlerlemenin x harfiyle gösterilen terimini bulun.

9. Tren, hızını dakikada 30 metre artırarak istasyondan hareket etmeye başladı. Beş dakika sonra trenin hızı ne olacak? Cevabınızı km/saat cinsinden verin.

10. Aritmetik ilerlemede a 2 = 5 olduğu bilinmektedir; a 6 = -5. 1'i bul.

Cevaplar (karışıklık içinde): 7.7; 7.5; 9.5; 9; 0,3; 4.

Her şey yolunda gitti mi? İnanılmaz! Daha fazlası için aritmetik ilerlemede ustalaşabilirsiniz yüksek seviye, aşağıdaki derslerde.

Her şey yolunda gitmedi mi? Sorun değil. Özel Bölüm 555'te tüm bu sorunlar parça parça sıralanmıştır.) Ve elbette, bu tür görevlerin çözümünü bir bakışta net, net bir şekilde hemen vurgulayan basit pratik bir teknik anlatılmaktadır!

Bu arada, tren bulmacasında insanların sıklıkla karşılaştığı iki sorun var. Biri tamamen ilerleme açısından, ikincisi ise matematik ve fizikteki herhangi bir problem için geneldir. Bu, boyutların birinden diğerine çevrilmesidir. Bu sorunların nasıl çözülmesi gerektiğini gösteriyor.

Bu derste aritmetik ilerlemenin temel anlamına ve ana parametrelerine baktık. Bu, bu konudaki hemen hemen tüm sorunları çözmek için yeterlidir. Eklemek D sayılara seri yaz her şey çözülecek.

Parmak çözümü, bu eğitimdeki örneklerde olduğu gibi, bir satırın çok kısa parçaları için iyi çalışır. Seri uzunsa hesaplamalar daha karmaşık hale gelir. Örneğin, eğer sorudaki 9. problemde yerine koyarsak "Beş dakika" Açık "otuz beş dakika" sorun önemli ölçüde daha da kötüleşecektir.)

Ayrıca özünde basit ancak hesaplamalar açısından saçma olan görevler de vardır, örneğin:

Aritmetik ilerleme (a n) verilmiştir. a 1 =3 ve d=1/6 ise 121'i bulun.

Peki 1/6'yı defalarca mı toplayacağız? Kendini öldürebilirsin!?

Yapabilirsiniz.) Bu tür görevleri bir dakika içinde çözebileceğiniz basit bir formül bilmiyorsanız. Bu formül bir sonraki derste olacak. Ve bu sorun orada çözüldü. Bir dakika içinde.)

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

Dersimizin sloganı Rus matematikçi V.P.'nin sözleri olacak. Ermakova: “Matematikte formülleri değil, düşünme süreçlerini hatırlamak gerekir.”

Dersler sırasında

Sorunun formülasyonu

Tahtada Gauss'un bir portresi var. Önceden mesaj hazırlama görevi verilen bir öğretmen veya öğrenci, Gauss okuldayken öğretmenin öğrencilerden 1'den 100'e kadar tüm doğal sayıları toplamalarını istediğini söylüyor. Küçük Gauss bu sorunu bir dakika içinde çözdü.

Soru . Gauss bu cevaba nasıl ulaştı?

Çözüm bulma

Öğrenciler varsayımlarını ifade eder, sonra özetlerler: toplamların 1 + 100, 2 + 99 vb. olduğunun farkına varırlar. Gauss 101'i 50 ile, yani bu toplamların sayısıyla çarpmıştır. Başka bir deyişle, aritmetik ilerlemenin doğasında olan bir modeli fark etti.

Toplam formülünün türetilmesi N aritmetik ilerlemenin ilk terimleri

Dersin konusunu tahtaya ve not defterlerinize yazın. Öğrenciler öğretmenle birlikte formülün sonucunu yazarlar:

İzin vermek A 1 ; A 2 ; A 3 ; A 4 ; ...; BİR – 2 ; BİR – 1 ; BİR- aritmetik ilerleme.

Birincil konsolidasyon

1. Formül (1)'i kullanarak Gauss problemini çözüyoruz:

2. Formül (1)’i kullanarak problemleri sözlü olarak çözünüz (koşulları tahtaya veya pozitif koda yazılır), ( BİR) - aritmetik ilerleme:

A) A 1 = 2, A 10 = 20. S 10 - ?

B) A 1 = –5, A 7 = 1. S 7 - ? [–14]

V) A 1 = –2, A 6 = –17. S 6 - ? [–57]

G) A 1 = –5, A 11 = 5. S 11 - ?

3. Görevi tamamlayın.

Verilen: ( BİR) - aritmetik ilerleme;

A 1 = 3, A 60 = 57.

Bulmak: S 60 .

Çözüm. Toplam formülünü kullanalım N aritmetik ilerlemenin ilk terimleri

Cevap: 1800.

Ek soru. Bu formül kullanılarak kaç tür farklı problem çözülebilir?

Cevap. Dört tür görev:

Tutarı bulun Sn;

Aritmetik ilerlemenin ilk terimini bulun A 1 ;

Bulmak N bir aritmetik ilerlemenin üçüncü terimi BİR;

Aritmetik ilerlemenin terim sayısını bulun.

4. Görevi tamamlayın: No. 369(b).

Aritmetik ilerlemenin ilk altmış teriminin toplamını bulun ( BİR), Eğer A 1 = –10,5, A 60 = 51,5.

Çözüm.

Cevap: 1230.

Ek soru. Formülü yazın N Bir aritmetik ilerlemenin üçüncü terimi.

Cevap: BİR = A 1 + D(N – 1).

5. Aritmetik ilerlemenin ilk dokuz teriminin formülünü hesaplayın ( bn),
Eğer B 1 = –17, D = 6.

Bir formül kullanarak hemen hesaplamak mümkün müdür?

Hayır, çünkü dokuzuncu terim bilinmiyor.

Nasıl bulunur?

Formüle göre N Bir aritmetik ilerlemenin üçüncü terimi.

Çözüm. B 9 = B 1 + 8D = –17 + 8∙6 = 31;

Cevap: 63.

Soru. İlerlemenin dokuzuncu terimini hesaplamadan toplamı bulmak mümkün müdür?

Sorunun formülasyonu

Sorun: toplam formülünü alma N Aritmetik ilerlemenin ilk terimleri, ilk terimini ve farkını bilme D.

(Bir öğrencinin tahtada formül üretmesi.)

371(a) numaralı soruyu yeni formül (2)'yi kullanarak çözelim:

Formülleri (2) sözlü olarak oluşturalım ( Görevlerin koşulları tahtaya yazılır).

(BİR

1. A 1 = 3, D = 4. S 4 - ?

2. A 1 = 2, D = –5. S 3 - ? [–9]

Öğrencilerden hangi soruların net olmadığını öğrenin.

Bağımsız iş

seçenek 1

Verilen: (BİR) - aritmetik ilerleme.

1. A 1 = –3, A 6 = 21. S 6 - ?

2. A 1 = 6, D = –3. S 4 - ?

seçenek 2

Verilen: (BİR) - aritmetik ilerleme.

1.A 1 = 2, A 8 = –23. S 8 - ? [–84]

2.A 1 = –7, D = 4. S 5 - ?

Öğrenciler defterlerini değiştirirler ve birbirlerinin çözümlerini kontrol ederler.

Bağımsız çalışmanın sonuçlarına dayanarak materyalin öğrenilmesini özetleyin.

İlk seviye

Aritmetik ilerleme. Ayrıntılı teoriörneklerle (2019)

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin birinci, hangisinin ikinci olduğunu vb. sonuncuya kadar söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki elimizde sayı dizisi, burada bitişik sayılar arasındaki fark aynı ve eşittir.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından tanıtıldı ve daha geniş anlamda sonsuz bir sayısal dizi olarak anlaşıldı. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya aritmetik ilerlemenin farkı denir ve gösterilir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
Dır-dir aritmetik ilerleme - b, c.
Değil aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini sırayla önceki değere eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - hadi hayata geçirelim Genel form ve şunu elde ederiz:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerleme özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Yani bir ilerleme teriminin önceki ve ardışık değerleri bilinen değerlerini bulmak için bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Efsaneye göre, tüm zamanların en büyük matematikçilerinden biri olan "matematikçilerin kralı" Karl Gauss'un kendisi için kolayca çıkarıldığı tek bir formülü bulmaya devam ediyor...

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu problemi sordu: “Tüm sayıların toplamını hesaplayın. doğal sayılar(diğer kaynaklara göre) kadar dahil.” Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözü pek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara daha yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Bunu denediniz mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç tane çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak, toplam toplamın şuna eşit olduğunu elde ederiz:
.
Dolayısıyla herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamının formülü şu şekilde olacaktır:

Bazı problemlerde n'inci terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendiniz hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının ve terimlerin toplamının eşit olduğunu buldu. Karar verdiğin şey bu mu?

Aslında aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, Eski Mısır'ı ve o zamanın en büyük inşaat projesini hayal edin - bir piramidin inşası... Resimde bunun bir tarafı gösteriliyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse bir duvar inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

İÇİNDE bu durumdaİlerleme şöyle görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Becerebildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, günlükçüler bunları, her üst katman bir öncekinden bir günlük daha az içerecek şekilde istifler. Duvar işçiliğinin temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Yanıtlar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. İlk tek sayı, son sayı.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir grup katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi - formülüyle yazılır; burada ilerlemedeki sayıların sayısı bulunur.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

ARİTMETİK İLERLEME. ORTALAMA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Üzerinde sayı bulunan sayıya dizinin th üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (burada ilk terim eşittir ve fark eşittir). Veya (, fark).

Formül n'inci terim

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin inci terimini bulmak için önceki dokuzunu hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu şimdi anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendin için karar ver:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark ne? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O zaman yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre büyük matematikçi Carl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesaplamıştı. İlk ve son sayıların toplamının eşit olduğunu, ikinci ve sondan bir önceki sayıların toplamının aynı olduğunu, sondan üçüncü ve 3'üncü sayıların toplamının aynı olduğunu vb. fark etti. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Hepsinin toplamını bulun çift ​​haneli sayılar, katları.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftada toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan bir buzdolabının altı yıl sonra ruble karşılığında satılması durumunda, buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Yanıtlar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca kat edilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

ARİTMETİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Eğer komşu terimleri biliniyorsa, bir ilerlemenin bir terimini kolayca bulmanızı sağlar; ilerlemedeki sayıların sayısı nerededir.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.

Ne asıl nokta formüller?

Bu formül bulmanızı sağlar herhangi NUMARASIYLA " N" .

Elbette ilk terimi de bilmeniz gerekir. 1 ve ilerleme farkı D, bu parametreler olmadan belirli bir ilerlemeyi yazamazsınız.

Bu formülü ezberlemek (veya not etmek) yeterli değildir. Bunun özünü anlamanız ve formülü çeşitli problemlere uygulamanız gerekir. Ve ayrıca doğru zamanda unutmamak gerekir, evet...) Nasıl unutma- Bilmiyorum. Ve burada nasıl hatırlanır Gerekirse size mutlaka tavsiyede bulunacağım. Dersi sonuna kadar tamamlayanlar için.)

Şimdi aritmetik ilerlemenin n'inci teriminin formülüne bakalım.

Genel olarak formül nedir? Bu arada okumadıysanız bir göz atın. Orada her şey basit. Ne olduğunu anlamaya devam ediyor n'inci dönem.

İlerleme genel olarak bir sayı dizisi olarak yazılabilir:

bir 1, bir 2, bir 3, bir 4, bir 5, .....

1- aritmetik ilerlemenin ilk terimini belirtir, 3- üçüncü üye, 4- dördüncü vb. Beşinci dönemle ilgileniyorsak diyelim ki çalışıyoruz. 5, eğer yüz yirminci - s 120.

Genel hatlarıyla nasıl tanımlayabiliriz? herhangi aritmetik ilerleme terimi, herhangi sayı? Çok basit! Bunun gibi:

BİR

İşte bu Bir aritmetik ilerlemenin n'inci terimi. N harfi tüm üye numaralarını aynı anda gizler: 1, 2, 3, 4 vb.

Peki böyle bir kayıt bize ne veriyor? Düşünün, sayı yerine mektup yazdılar...

Bu gösterim bize aritmetik ilerlemeyle çalışmak için güçlü bir araç sağlar. Gösterimi kullanma BİR, hızlı bir şekilde bulabiliriz herhangiüye herhangi aritmetik ilerleme. Ve bir sürü başka ilerleme problemini çözün. Daha fazlasını kendiniz göreceksiniz.

Aritmetik ilerlemenin n'inci terimi formülünde:

a n = a 1 + (n-1)d

1- aritmetik ilerlemenin ilk terimi;

N- üye numarası.

Formül, herhangi bir ilerlemenin temel parametrelerini birbirine bağlar: BİR ; bir 1; D Ve N. Tüm ilerleme sorunları bu parametreler etrafında döner.

N'inci terim formülü aynı zamanda belirli bir ilerlemeyi yazmak için de kullanılabilir. Örneğin problem, ilerlemenin koşul tarafından belirtildiğini söyleyebilir:

a n = 5 + (n-1) 2.

Böyle bir sorun çıkmaz sokak olabilir... Ne bir seri ne de bir fark vardır... Ama durumu formülle karşılaştırınca bu gidişatın ne olduğunu anlamak kolaydır. a 1 =5 ve d=2.

Hatta daha da kötüsü olabilir!) Aynı koşulu alırsak: a n = 5 + (n-1) 2, Evet, parantezleri açıp benzerlerini getirir misiniz? Yeni bir formül elde ediyoruz:

bir n = 3 + 2n.

Bu Sadece genel değil, belirli bir ilerleme için. İşte tuzak burada gizleniyor. Bazıları ilk terimin üç olduğunu düşünüyor. Gerçekte ilk terim beş olmasına rağmen... Biraz daha düşük, böyle değiştirilmiş bir formülle çalışacağız.

İlerleme problemlerinde başka bir gösterim daha var - bir n+1. Bu, tahmin ettiğiniz gibi ilerlemenin “n artı birinci” terimidir. Anlamı basit ve zararsızdır.) Bu, sayısı n sayısından bir büyük olan dizinin bir üyesidir. Örneğin, eğer bir problemde alırsak BİR o zaman beşinci dönem bir n+1 altıncı üye olacak. Vesaire.

Çoğu zaman atama bir n+1 yineleme formüllerinde bulunur. Bu korkutucu kelimeden korkmayın!) Bu sadece aritmetik ilerlemenin bir üyesini ifade etmenin bir yoludur bir önceki aracılığıyla. Tekrarlanan bir formül kullanılarak bize bu biçimde bir aritmetik ilerleme verildiğini varsayalım:

bir n+1 = bir n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Dördüncüden üçüncüye, beşinciden dördüncüye vb. Mesela yirminci terimi hemen nasıl sayabiliriz? 20? Ama mümkün değil!) 19. dönemi bulana kadar 20. dönemi sayamayız. Tekrarlayan formül ile n'inci terimin formülü arasındaki temel fark budur. Tekrarlanan işler yalnızca aracılığıyla öncesi terim ve n'inci terimin formülü Birinci ve izin verir hemen herhangi bir üyeyi numarasına göre bulun. Tüm sayı dizisini sırayla hesaplamadan.

Aritmetik ilerlemede tekrarlanan bir formülü düzenli bir formüle dönüştürmek kolaydır. Bir çift ardışık terimi sayın, farkı hesaplayın D, gerekirse ilk terimi bulun 1, formülü her zamanki biçiminde yazın ve onunla çalışın. Devlet Bilimler Akademisi'nde bu tür görevlerle sıklıkla karşılaşılmaktadır.

Bir aritmetik ilerlemenin n'inci terimi için formülün uygulanması.

Öncelikle formülün doğrudan uygulamasına bakalım. Önceki dersin sonunda bir sorun vardı:

Aritmetik ilerleme (a n) verilmiştir. a 1 =3 ve d=1/6 ise 121'i bulun.

Bu problem herhangi bir formül olmadan, sadece aritmetik ilerlemenin anlamına dayanarak çözülebilir. Ekle ve ekle... Bir veya iki saat.)

Ve formüle göre çözüm bir dakikadan az sürecek. Zamanlamasını ayarlayabilirsiniz.) Hadi karar verelim.

Koşullar formülün kullanılmasına ilişkin tüm verileri sağlar: a 1 =3, d=1/6. Neyin eşit olduğunu bulmaya devam ediyor N. Sorun değil! Bulmalıyız 121. O halde şunu yazıyoruz:

Lütfen dikkatini ver! Bir indeks yerine N belirli bir sayı ortaya çıktı: 121. Bu oldukça mantıklı.) Aritmetik ilerlemenin üyesiyle ilgileniyoruz yüz yirmi bir numara. Bu bizim olacak N. anlamı bu N= 121'i formülde parantez içinde değiştireceğiz. Tüm sayıları formülde yerine koyarız ve hesaplarız:

a 121 = 3 + (121-1) 1/6 = 3+20 = 23

Bu kadar. Beş yüz onuncu terimi ve bin üçüncü terimi de aynı hızla bulabiliriz. Onun yerine koyduk N" harfinin yanındaki dizinde istenilen sayı A" ve parantez içinde sayıyoruz.

Size şunu hatırlatmama izin verin: Bu formül bulmanızı sağlar herhangi aritmetik ilerleme terimi NUMARASIYLA " N" .

Sorunu daha kurnaz bir şekilde çözelim. Aşağıdaki sorunla karşılaşalım:

a 17 =-2 ise, aritmetik ilerlemenin ilk terimini (a n) bulun; d=-0,5.

Herhangi bir zorlukla karşılaşırsanız size ilk adımı anlatacağım. Aritmetik ilerlemenin n'inci teriminin formülünü yazın! Evet evet. Ellerinizle doğrudan not defterinize yazın:

a n = a 1 + (n-1)d

Ve şimdi formülün harflerine baktığımızda hangi verilere sahip olduğumuzu ve neyin eksik olduğunu anlıyoruz? Mevcut d=-0,5, on yedinci bir üye var... Öyle mi? Eğer böyle düşünürsen sorunu çözemezsin, evet...

Hala bir numaramız var N! Durumda 17 =-2 gizlenmiş iki parametre. Bu hem on yedinci terimin değeri (-2) hem de sayısıdır (17). Onlar. n=17. Bu "önemsiz şey" çoğu zaman kafanın yanından geçer ve o olmadan ("önemsiz" olmadan, kafa değil!) sorun çözülemez. Yine de... ve kafasız da.)

Artık verilerimizi aptalca bir şekilde formüle koyabiliriz:

a 17 = a 1 + (17-1)·(-0,5)

Oh evet, 17-2 olduğunu biliyoruz. Tamam, yerine koyalım:

-2 = a 1 + (17-1)·(-0,5)

Temelde hepsi bu. Geriye formülden aritmetik ilerlemenin ilk terimini ifade etmek ve hesaplamak kalıyor. Cevap şöyle olacaktır: 1 = 6.

Bir formül yazmak ve bilinen verileri basitçe yerine koymaktan oluşan bu teknik, basit görevlerde çok yardımcı olur. Elbette bir değişkeni formülden ifade edebilmeniz gerekiyor ama ne yapmalısınız? Bu beceri olmadan matematik hiç çalışılmayabilir...

Bir başka popüler bulmaca:

a 1 =2 ise, aritmetik ilerlemenin (a n) farkını bulun; 15 =12.

Biz ne yapıyoruz? Şaşıracaksınız, formülü yazıyoruz!)

a n = a 1 + (n-1)d

Bildiklerimizi düşünelim: a 1 =2; a 15 =12; ve (özellikle vurgulayacağım!) n=15. Bunu formülde değiştirmekten çekinmeyin:

12=2 + (15-1)d

Aritmetik yapıyoruz.)

12=2 + 14d

D=10/14 = 5/7

Bu doğru cevap.

Yani, görevler bir n, bir 1 Ve D karar verilmiş. Geriye kalan tek şey numarayı nasıl bulacağınızı öğrenmek:

99 sayısı aritmetik ilerlemenin (an) bir üyesidir; burada a 1 =12; d=3. Bu üyenin numarasını bulun.

Bildiğimiz miktarları n'inci terimin formülüne koyarız:

a n = 12 + (n-1) 3

İlk bakışta burada bilinmeyen iki büyüklük var: bir n ve n. Ancak BİR- bu bir sayı ile ilerlemenin bir üyesidir N...Ve ilerlemenin bu üyesini tanıyoruz! 99. Numarasını bilmiyoruz. N, Yani bulmanız gereken şey bu sayıdır. 99 ilerlemesinin terimini formülde değiştiririz:

99 = 12 + (n-1)3

Formülden ifade ediyoruz N, düşünürüz. Cevabını alıyoruz: n=30.

Şimdi de aynı konuyla ilgili bir problem ama daha yaratıcı):

117 sayısının aritmetik ilerlemenin (a n) bir üyesi olup olmadığını belirleyin:

-3,6; -2,4; -1,2 ...

Formülü tekrar yazalım. Ne, hiç parametre yok mu? Hım... Bize neden göz veriliyor?) İlerlemenin ilk dönemini görüyor muyuz? Görürüz. Bu -3.6. Güvenle yazabilirsiniz: 1 = -3,6. Fark D bir diziden belirleyebilir misiniz? Aritmetik ilerlemenin farkının ne olduğunu biliyorsanız bunu yapmak kolaydır:

d = -2,4 - (-3,6) = 1,2

Yani en basit şeyi yaptık. Geriye kalan tek şey bilinmeyen numarayla uğraşmak N ve anlaşılmaz sayı olan 117. Bir önceki problemde en azından verilen ilerlemenin terimi olduğu biliniyordu. Ama burada onu bile bilmiyoruz... Ne yapmalı!? Peki, nasıl olunur, nasıl olunur... Yaratıcı yeteneklerinizi açın!)

Biz sanmak sonuçta 117 bizim ilerleyişimizin bir üyesi. Bilinmeyen bir numarayla N. Ve tıpkı önceki problemde olduğu gibi bu sayıyı bulmaya çalışalım. Onlar. formülü yazıyoruz (evet, evet!) ve sayılarımızı değiştiriyoruz:

117 = -3,6 + (n-1) 1,2

Yine formülden ifade ediyoruzN, sayarız ve şunu elde ederiz:

Hata! Sayı ortaya çıktı kesirli! Yüz bir buçuk. Ve ilerlemelerdeki kesirli sayılar olamaz. Hangi sonuca varabiliriz? Evet! 117 numara değil ilerlememizin bir üyesi. Yüz birinci terim ile yüz ikinci terim arasında bir yerdedir. Sayı doğal çıkarsa, yani. pozitif bir tam sayı ise sayı, bulunan sayı ile ilerlemenin bir üyesi olacaktır. Ve bizim durumumuzda sorunun cevabı şöyle olacaktır: HAYIR.

GIA'nın gerçek versiyonunu temel alan bir görev:

Aritmetik ilerleme şu koşulla verilir:

a n = -4 + 6,8n

İlerlemenin birinci ve onuncu terimlerini bulun.

Burada ilerleme alışılmadık bir şekilde ayarlanıyor. Bir çeşit formül... Olur.) Ancak bu formül (yukarıda yazdığım gibi) - ayrıca bir aritmetik ilerlemenin n'inci teriminin formülü! O da izin veriyor ilerlemenin herhangi bir üyesini numarasına göre bulun.

İlk üyeyi arıyoruz. Düşünen kişi. ilk terimin eksi dört olması büyük bir yanılgıdır!) Çünkü problemdeki formül değiştirildi. Aritmetik ilerlemenin ilk terimi gizlenmiş. Sorun değil, şimdi bulacağız.)

Daha önceki problemlerde olduğu gibi yerine n=1 bu formüle:

a 1 = -4 + 6,8 1 = 2,8

Burada! İlk terim -4 değil 2,8!

Onuncu terimi de aynı şekilde arıyoruz:

a 10 = -4 + 6,8 10 = 64

Bu kadar.

Ve şimdi bu satırları okuyanlar için vaat edilen bonus.)

Diyelim ki, Devlet Sınavı veya Birleşik Devlet Sınavı'nın zor bir savaş durumunda, aritmetik ilerlemenin n'inci dönemi için yararlı formülü unuttunuz. Bir şey hatırlıyorum ama bir şekilde emin olamıyorum... Veya N orada veya n+1 veya n-1... Nasıl olunur?

Sakinlik! Bu formülün türetilmesi kolaydır. Çok katı bir şekilde değil ama güven için ve doğru karar kesinlikle yeterli!) Bir sonuca varmak için aritmetik ilerlemenin temel anlamını hatırlamak ve birkaç dakikanız olması yeterlidir. Sadece bir resim çizmeniz yeterli. Açıklık için.

Bir sayı doğrusu çizin ve ilkini işaretleyin. ikinci, üçüncü vb. üyeler. Ve farkı not ediyoruz Düyeler arasında. Bunun gibi:

Resme bakıyoruz ve düşünüyoruz: İkinci terim neye eşittir? Saniye bir D:

A 2 =a 1 + 1 D

Üçüncü terim nedir? Üçüncü terim ilk terimin artısına eşittir iki D.

A 3 =a 1 + 2 D

Anladın mı? Bazı kelimeleri kalın harflerle vurgulamam boşuna değil. Tamam, bir adım daha).

Dördüncü terim nedir? Dördüncü terim ilk terimin artısına eşittir üç D.

A 4 =a 1 + 3 D

Boşlukların sayısının, yani. D, Her zaman Aradığınız üye sayısından bir eksik N. Yani sayıya n, boşluk sayısı irade n-1. Bu nedenle formül şu şekilde olacaktır (değişiklikler olmadan!):

a n = a 1 + (n-1)d

Genel olarak görsel resimler matematikteki birçok problemin çözümünde oldukça faydalıdır. Resimleri ihmal etmeyin. Ancak bir resim çizmek zorsa, o zaman... sadece bir formül!) Ek olarak, n'inci terimin formülü, matematiğin tüm güçlü cephaneliğini çözüme - denklemler, eşitsizlikler, sistemler vb. - bağlamanıza olanak tanır. Denkleme resim ekleyemezsiniz...

Bağımsız çözüm için görevler.

Isıtmak:

1. Aritmetik ilerlemede (a n) a 2 =3; a 5 =5,1. 3'ü bulun.

İpucu: Resme göre sorun 20 saniyede çözülebilir... Formüle göre daha zor çıkıyor. Ancak formüle hakim olmak için daha kullanışlıdır.) Bölüm 555'te bu sorun hem resim hem de formül kullanılarak çözülmektedir. Farkı Hisset!)

Ve bu artık bir ısınma değil.)

2. Aritmetik ilerlemede (an) a 85 =19,1; a 236 =49, 3. a 3'ü bulun.

Ne, resim çizmek istemiyor musun?) Elbette! Formüle göre daha iyi, evet...

3. Aritmetik ilerleme şu koşulla verilir:a 1 = -5,5; a n+1 = a n +0,5. Bu ilerlemenin yüz yirmi beşinci terimini bulun.

Bu görevde ilerleme yinelenen bir şekilde belirtilir. Ama yüz yirmi beşinci döneme kadar sayarsak... Herkes böyle bir başarıya sahip değildir.) Ama n'inci dönemin formülü herkesin gücündedir!

4. Aritmetik ilerleme (a n) verildiğinde:

-148; -143,8; -139,6; -135,4, .....

İlerlemenin en küçük pozitif teriminin sayısını bulun.

5. Görev 4'ün koşullarına göre ilerlemenin en küçük pozitif ve en büyük negatif terimlerinin toplamını bulun.

6. Artan aritmetik ilerlemenin beşinci ve on ikinci terimlerinin çarpımı -2,5'e, üçüncü ve on birinci terimlerin toplamı ise sıfıra eşittir. 14'ü bulun.

En kolay iş değil evet...) "Parmak ucu" yöntemi burada işe yaramayacak. Formüller yazmanız ve denklemleri çözmeniz gerekecek.

Cevaplar (karışıklık içinde):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Olmuş? Bu iyi!)

Her şey yolunda gitmiyor mu? Olur. Bu arada son görevde ince bir nokta var. Sorunu okurken dikkatli olunması gerekecektir. Ve mantık.

Tüm bu sorunların çözümü Bölüm 555'te ayrıntılı olarak tartışılmaktadır. Dördüncüsü için fantezi unsuru, altıncısı için ince nokta ve n'inci terimin formülünü içeren herhangi bir problemin çözümüne yönelik genel yaklaşımlar - her şey anlatılmıştır. Ben tavsiye ediyorum.

Bu siteyi beğendiyseniz...

Bu arada, sizin için birkaç ilginç sitem daha var.)

Örnek çözerek pratik yapabilir ve seviyenizi öğrenebilirsiniz. Anında doğrulama ile test etme. Hadi öğrenelim - ilgiyle!)

Fonksiyonlar ve türevler hakkında bilgi sahibi olabilirsiniz.

İlk seviye

Aritmetik ilerleme. Örneklerle ayrıntılı teori (2019)

Numara dizisi

O halde oturup bazı sayıları yazmaya başlayalım. Örneğin:
Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir (bizim durumumuzda vardır). Ne kadar sayı yazarsak yazalım her zaman hangisinin birinci, hangisinin ikinci olduğunu vb. sonuncuya kadar söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir:

Numara dizisi
Örneğin dizimiz için:

Atanan numara, dizideki yalnızca bir numaraya özeldir. Yani dizide üç saniyelik sayı yok. İkinci sayı (inci sayı gibi) her zaman aynıdır.
Üzerinde sayı bulunan sayıya dizinin inci terimi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Bizim durumumuzda:

Diyelim ki komşu sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizimiz var.
Örneğin:

vesaire.
Bu sayı dizisine aritmetik ilerleme denir.
"İlerleme" terimi, 6. yüzyılda Romalı yazar Boethius tarafından tanıtıldı ve daha geniş anlamda sonsuz bir sayısal dizi olarak anlaşıldı. "Aritmetik" adı, eski Yunanlılar tarafından incelenen sürekli oranlar teorisinden aktarılmıştır.

Bu, her bir üyesi aynı sayıya eklenen bir öncekine eşit olan bir sayı dizisidir. Bu sayıya aritmetik ilerlemenin farkı denir ve gösterilir.

Hangi sayı dizilerinin aritmetik ilerleme olduğunu, hangilerinin olmadığını belirlemeye çalışın:

A)
B)
C)
D)

Anladım? Cevaplarımızı karşılaştıralım:
Dır-dir aritmetik ilerleme - b, c.
Değil aritmetik ilerleme - a, d.

Verilen ilerlemeye () dönelim ve onun inci teriminin değerini bulmaya çalışalım. Var iki onu bulmanın yolu.

1. Yöntem

İlerlemenin 3. dönemine ulaşana kadar ilerleme sayısını önceki değere ekleyebiliriz. Özetleyecek çok fazla şeyimiz olmaması iyi bir şey; yalnızca üç değer:

Yani açıklanan aritmetik ilerlemenin inci terimi eşittir.

2. Yöntem

İlerlemenin inci teriminin değerini bulmamız gerekirse ne olur? Toplama işlemi bir saatten fazla zaman alır ve sayıları toplarken hata yapmayacağımız da bir gerçek değil.
Elbette matematikçiler, aritmetik ilerlemenin farkını önceki değere eklemenin gerekli olmadığı bir yol bulmuşlardır. Çizilen resme daha yakından bakın... Elbette belli bir modeli zaten fark etmişsinizdir, yani:

Örneğin bu aritmetik ilerlemenin . teriminin değerinin nelerden oluştuğuna bakalım:


Başka bir deyişle:

Belirli bir aritmetik ilerlemenin bir üyesinin değerini bu şekilde kendiniz bulmaya çalışın.

Hesapladın mı? Notlarınızı cevapla karşılaştırın:

Aritmetik ilerlemenin terimlerini sırayla önceki değere eklediğimizde, önceki yöntemdekiyle tamamen aynı sayıyı elde ettiğinizi lütfen unutmayın.
Bu formülü "kişisellikten arındırmaya" çalışalım - genel forma koyalım ve şunu elde edelim:

Aritmetik ilerleme denklemi.

Aritmetik ilerlemeler artan veya azalan olabilir.

Artan- terimlerin her bir sonraki değerinin bir öncekinden daha büyük olduğu ilerlemeler.
Örneğin:

Azalan- terimlerin her bir sonraki değerinin bir öncekinden daha küçük olduğu ilerlemeler.
Örneğin:

Türetilen formül, bir aritmetik ilerlemenin hem artan hem de azalan terimlerinin hesaplanmasında kullanılır.
Bunu pratikte kontrol edelim.
Bize aşağıdaki sayılardan oluşan bir aritmetik ilerleme veriliyor: Hesaplamak için formülümüzü kullanırsak, bu aritmetik ilerlemenin inci sayısının ne olacağını kontrol edelim:


O zamandan beri:

Dolayısıyla formülün hem azalan hem de artan aritmetik ilerlemede çalıştığına inanıyoruz.
Bu aritmetik ilerlemenin inci ve inci terimlerini kendiniz bulmaya çalışın.

Sonuçları karşılaştıralım:

Aritmetik ilerleme özelliği

Sorunu karmaşıklaştıralım - aritmetik ilerlemenin özelliğini türeteceğiz.
Diyelim ki bize aşağıdaki koşul verildi:
- aritmetik ilerleme, değeri bulun.
Kolay, deyin ve zaten bildiğiniz formüle göre saymaya başlayın:

Haydi o zaman:

Kesinlikle doğru. Önce bulduğumuz, sonra onu ilk sayıya eklediğimiz ve aradığımız şeyi elde ettiğimiz ortaya çıktı. İlerleme küçük değerlerle temsil ediliyorsa, o zaman bunda karmaşık bir şey yoktur, peki ya durumda bize sayılar verilirse? Katılıyorum, hesaplamalarda hata yapma olasılığı var.
Şimdi bu sorunu herhangi bir formülü kullanarak tek adımda çözmenin mümkün olup olmadığını düşünün. Elbette evet ve şimdi bunu ortaya çıkarmaya çalışacağız.

Aritmetik ilerlemenin gerekli terimini, onu bulma formülünü bildiğimiz gibi gösterelim - bu, başlangıçta türettiğimiz formülün aynısıdır:
, Daha sonra:

  • ilerlemenin önceki dönemi:
  • ilerlemenin bir sonraki dönemi:

İlerlemenin önceki ve sonraki terimlerini özetleyelim:

İlerlemenin önceki ve sonraki terimlerinin toplamının, aralarında bulunan ilerleme teriminin çift değeri olduğu ortaya çıktı. Yani bir ilerleme teriminin önceki ve ardışık değerleri bilinen değerlerini bulmak için bunları toplayıp bölmeniz gerekir.

Doğru, aynı numarayı aldık. Malzemeyi güvence altına alalım. İlerlemenin değerini kendiniz hesaplayın, hiç de zor değil.

Tebrikler! İlerleme hakkında neredeyse her şeyi biliyorsunuz! Efsaneye göre, tüm zamanların en büyük matematikçilerinden biri olan "matematikçilerin kralı" Karl Gauss'un kendisi için kolayca çıkarıldığı tek bir formülü bulmaya devam ediyor...

Carl Gauss 9 yaşındayken, diğer sınıflardaki öğrencilerin çalışmalarını kontrol etmekle meşgul olan bir öğretmen sınıfta şu görevi verdi: "Diğer kaynaklara göre dahil olana kadar tüm doğal sayıların toplamını hesapla." Öğrencilerinden biri (bu Karl Gauss'tu) bir dakika sonra göreve doğru cevabı verirken, gözü pek sınıf arkadaşlarının çoğu uzun hesaplamalardan sonra yanlış sonucu aldığında öğretmenin ne kadar şaşırdığını bir düşünün...

Genç Carl Gauss, sizin de kolayca fark edebileceğiniz belli bir modeli fark etti.
Diyelim ki -'inci terimlerden oluşan bir aritmetik ilerlememiz var: Aritmetik ilerlemenin bu terimlerinin toplamını bulmamız gerekiyor. Elbette tüm değerleri manuel olarak toplayabiliriz, ancak ya görev Gauss'un aradığı gibi terimlerin toplamını bulmayı gerektiriyorsa?

Bize verilen ilerlemeyi tasvir edelim. Vurgulanan sayılara daha yakından bakın ve onlarla çeşitli matematiksel işlemler gerçekleştirmeye çalışın.


Bunu denediniz mi? Ne fark ettin? Sağ! Toplamları eşittir


Şimdi söyleyin bana, bize verilen ilerlemede toplamda böyle kaç tane çift var? Tabii ki, tüm sayıların tam yarısı.
Bir aritmetik ilerlemenin iki teriminin toplamının eşit ve benzer çiftlerin eşit olduğu gerçeğine dayanarak, toplam toplamın şuna eşit olduğunu elde ederiz:
.
Dolayısıyla herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamının formülü şu şekilde olacaktır:

Bazı problemlerde n'inci terimi bilmiyoruz ama ilerlemenin farkını biliyoruz. Üçüncü terimin formülünü toplam formülünde değiştirmeye çalışın.
Ne aldın?

Tebrikler! Şimdi Carl Gauss'a sorulan probleme dönelim: th'den başlayan sayıların toplamının ve th'den başlayan sayıların toplamının neye eşit olduğunu kendiniz hesaplayın.

Ne kadar aldın?
Gauss, terimlerin toplamının ve terimlerin toplamının eşit olduğunu buldu. Karar verdiğin şey bu mu?

Aslında aritmetik ilerlemenin terimlerinin toplamına ilişkin formül, 3. yüzyılda antik Yunan bilim adamı Diophantus tarafından kanıtlandı ve bu süre boyunca esprili insanlar aritmetik ilerlemenin özelliklerinden tam olarak yararlandılar.
Örneğin, Eski Mısır'ı ve o zamanın en büyük inşaat projesini hayal edin - bir piramidin inşası... Resimde bunun bir tarafı gösteriliyor.

Buradaki ilerleme nerede diyorsunuz? Dikkatlice bakın ve piramit duvarının her sırasındaki kum bloklarının sayısında bir desen bulun.


Neden aritmetik bir ilerleme olmasın? Tabana blok tuğlalar yerleştirilirse bir duvar inşa etmek için kaç blok gerektiğini hesaplayın. Umarım parmağınızı ekranda hareket ettirirken saymazsınız, son formülü ve aritmetik ilerleme hakkında söylediğimiz her şeyi hatırlıyor musunuz?

Bu durumda ilerleme şu şekilde görünür: .
Aritmetik ilerleme farkı.
Aritmetik ilerlemenin terim sayısı.
Verilerimizi son formüllere yerleştirelim (blok sayısını 2 şekilde hesaplayalım).

Yöntem 1.

Yöntem 2.

Artık monitörde hesaplayabilirsiniz: Elde edilen değerleri piramidimizdeki blok sayısıyla karşılaştırın. Anladım? Tebrikler, aritmetik ilerlemenin n'inci terimlerinin toplamını öğrendiniz.
Elbette tabandaki bloklardan bir piramit inşa edemezsiniz, ama nereden? Bu durumda bir duvar inşa etmek için kaç tane kum tuğlaya ihtiyaç duyulduğunu hesaplamaya çalışın.
Becerebildin mi?
Doğru cevap bloklardır:

Eğitim

Görevler:

  1. Masha yaz için forma giriyor. Her gün squat sayısını artırıyor. Masha ilk antrenmanda squat yaptıysa haftada kaç kez squat yapacak?
  2. İçerisindeki tüm tek sayıların toplamı kaçtır?
  3. Günlükleri saklarken, günlükçüler bunları, her üst katman bir öncekinden bir günlük daha az içerecek şekilde istifler. Duvar işçiliğinin temeli kütüklerden oluşuyorsa, bir duvarda kaç kütük vardır?

Yanıtlar:

  1. Aritmetik ilerlemenin parametrelerini tanımlayalım. Bu durumda
    (haftalar = günler).

    Cevap:İki hafta içinde Masha'nın günde bir kez ağız kavgası yapması gerekiyor.

  2. İlk tek sayı, son sayı.
    Aritmetik ilerleme farkı.
    Tek sayıların sayısı yarıdır, ancak aritmetik ilerlemenin inci terimini bulma formülünü kullanarak bu gerçeği kontrol edelim:

    Sayılar tek sayılar içerir.
    Mevcut verileri formülde değiştirelim:

    Cevap:İçerisindeki tüm tek sayıların toplamı eşittir.

  3. Piramitlerle ilgili sorunu hatırlayalım. Bizim durumumuz için a , her üst katman bir log azaltıldığı için toplamda bir grup katman vardır, yani.
    Verileri formülde yerine koyalım:

    Cevap: Duvarda kütükler var.

Özetleyelim

  1. - Bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisi. Artabilir veya azalabilir.
  2. Formül bulma Aritmetik ilerlemenin inci terimi - formülüyle yazılır; burada ilerlemedeki sayıların sayısı bulunur.
  3. Aritmetik ilerlemenin üyelerinin mülkiyeti- - ilerleyen sayıların sayısı nerede.
  4. Bir aritmetik ilerlemenin terimlerinin toplamı iki şekilde bulunabilir:

    değerlerin sayısı nerede.

ARİTMETİK İLERLEME. ORTALAMA SEVİYE

Numara dizisi

Oturup bazı sayıları yazmaya başlayalım. Örneğin:

Herhangi bir sayı yazabilirsiniz ve istediğiniz kadar sayı olabilir. Ama hangisinin birinci, hangisinin ikinci olduğunu her zaman söyleyebiliriz, yani onları numaralandırabiliriz. Bu bir sayı dizisi örneğidir.

Numara dizisi her birine benzersiz bir numara atanabilen bir sayı kümesidir.

Başka bir deyişle, her sayı belirli bir doğal sayıyla ve benzersiz bir sayıyla ilişkilendirilebilir. Ve bu sayıyı bu setteki başka bir sayıya atamayacağız.

Üzerinde sayı bulunan sayıya dizinin th üyesi denir.

Genellikle dizinin tamamını bir harfle (örneğin,) çağırırız ve bu dizinin her üyesi, bu üyenin numarasına eşit bir indeksle aynı harftir: .

Dizinin inci teriminin bir formülle belirtilmesi çok uygundur. Örneğin, formül

sırayı ayarlar:

Ve formül aşağıdaki dizidir:

Örneğin, aritmetik ilerleme bir dizidir (burada ilk terim eşittir ve fark eşittir). Veya (, fark).

Formül n'inci terim

Terimi bulmak için önceki veya birkaç önceki terimi bilmeniz gereken bir formüle yinelenen diyoruz:

Örneğin bu formülü kullanarak ilerlemenin inci terimini bulmak için önceki dokuzunu hesaplamamız gerekecek. Mesela izin ver. Daha sonra:

Peki formülün ne olduğu şimdi anlaşıldı mı?

Her satıra eklediğimiz sayıyı bir sayıyla çarpıyoruz. Hangisi? Çok basit: bu mevcut üyenin sayısından eksi:

Artık çok daha uygun, değil mi? Kontrol ediyoruz:

Kendin için karar ver:

Aritmetik ilerlemede n'inci terimin formülünü ve yüzüncü terimi bulun.

Çözüm:

İlk terim eşittir. Fark ne? İşte şu:

(İlerlemenin ardışık terimlerinin farkına eşit olması nedeniyle buna fark denmesinin nedeni budur).

Yani formül:

O zaman yüzüncü terim şuna eşittir:

'den 'e kadar olan tüm doğal sayıların toplamı nedir?

Efsaneye göre büyük matematikçi Carl Gauss, 9 yaşında bir çocukken bu miktarı birkaç dakika içinde hesaplamıştı. İlk ve son sayıların toplamının eşit olduğunu, ikinci ve sondan bir önceki sayıların toplamının aynı olduğunu, sondan üçüncü ve 3'üncü sayıların toplamının aynı olduğunu vb. fark etti. Toplamda bu tür çiftlerden kaç tane var? Bu doğru, tüm sayıların tam yarısı kadar. Bu yüzden,

Herhangi bir aritmetik ilerlemenin ilk terimlerinin toplamı için genel formül şöyle olacaktır:

Örnek:
Tüm iki basamaklı katların toplamını bulun.

Çözüm:

Bu türden ilk sayı şudur. Sonraki her sayı, bir önceki sayıya eklenerek elde edilir. Böylece ilgilendiğimiz sayılar ilk terimi ve farkıyla aritmetik bir ilerleme oluşturur.

Bu ilerlemenin inci teriminin formülü:

Hepsinin iki basamaklı olması gerekiyorsa ilerlemede kaç terim vardır?

Çok kolay: .

İlerlemenin son terimi eşit olacaktır. Sonra toplam:

Cevap: .

Şimdi kendiniz karar verin:

  1. Sporcu her gün bir önceki güne göre daha fazla metre koşar. İlk gün m km koşarsa haftada toplam kaç kilometre koşacaktır?
  2. Bir bisikletçi her gün bir önceki güne göre daha fazla kilometre kat eder. İlk gün km yol kat etti. Bir kilometreyi kat etmek için kaç gün yol alması gerekiyor? Yolculuğunun son gününde kaç kilometre yol kat edecek?
  3. Bir mağazadaki buzdolabının fiyatı her yıl aynı miktarda düşüyor. Ruble karşılığında satışa sunulan bir buzdolabının altı yıl sonra ruble karşılığında satılması durumunda, buzdolabının fiyatının her yıl ne kadar düştüğünü belirleyin.

Yanıtlar:

  1. Burada en önemli şey aritmetik ilerlemeyi tanımak ve parametrelerini belirlemektir. Bu durumda (haftalar = günler). Bu ilerlemenin ilk terimlerinin toplamını belirlemeniz gerekir:
    .
    Cevap:
  2. Burada verilmiştir: , bulunmalıdır.
    Açıkçası, önceki problemdekiyle aynı toplam formülünü kullanmanız gerekir:
    .
    Değerleri değiştirin:

    Kök açıkça uymuyor, dolayısıyla cevap şu.
    Son gün boyunca kat edilen yolu, inci terimin formülünü kullanarak hesaplayalım:
    (km).
    Cevap:

  3. Verilen: . Bulmak: .
    Daha basit olamazdı:
    (ovmak).
    Cevap:

ARİTMETİK İLERLEME. ANA ŞEYLER HAKKINDA KISACA

Bu, bitişik sayılar arasındaki farkın aynı ve eşit olduğu bir sayı dizisidir.

Aritmetik ilerleme artan () ve azalan () olabilir.

Örneğin:

Aritmetik ilerlemenin n'inci terimini bulma formülü

artan sayıların sayısı olan formülle yazılır.

Aritmetik ilerlemenin üyelerinin mülkiyeti

Eğer komşu terimleri biliniyorsa, bir ilerlemenin bir terimini kolayca bulmanızı sağlar; ilerlemedeki sayıların sayısı nerededir.

Aritmetik ilerlemenin terimlerinin toplamı

Tutarı bulmanın iki yolu vardır:

Değerlerin sayısı nerede.

Değerlerin sayısı nerede.