Jakiego wzoru używa się do obliczania postępu arytmetycznego? Suma pierwszych n-wyrazów ciągu arytmetycznego. Rozwiązywanie problemów z postępem arytmetycznym

Postępy arytmetyczne i geometryczne

Informacje teoretyczne

Informacje teoretyczne

Postęp arytmetyczny

Postęp geometryczny

Definicja

Postęp arytmetyczny jakiś to sekwencja, w której każdy członek, zaczynając od drugiego, jest równy poprzedniemu członowi dodanemu do tej samej liczby D (D- różnica w progresji)

Postęp geometryczny b n jest ciągiem liczb niezerowych, którego każdy wyraz, zaczynając od drugiego, jest równy wyrazowi poprzedniemu pomnożonemu przez tę samą liczbę Q (Q- mianownik progresji)

Formuła powtarzalności

Dla każdego naturalnego N
za n + 1 = za n + re

Dla każdego naturalnego N
b n + 1 = b n ∙ q, b n ≠ 0

Wzór n-ty wyraz

za n = za 1 + re (n – 1)

b n = b 1 ∙ q n - 1 , b n ≠ 0

Charakterystyczna właściwość
Suma pierwszych n wyrazów

Przykłady zadań z komentarzami

Ćwiczenie 1

W postępie arytmetycznym ( jakiś) 1 = -6, 2

Zgodnie ze wzorem n-tego wyrazu:

22 = 1+ re (22 - 1) = 1+ 21 d

Według warunku:

1= -6, zatem 22= -6 + 21 re .

Konieczne jest znalezienie różnicy progresji:

d = 2 – 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = - 48.

Odpowiedź : 22 = -48.

Zadanie 2

Znajdź piąty wyraz ciągu geometrycznego: -3; 6;....

Pierwsza metoda (stosując wzór na n-termin)

Zgodnie ze wzorem na n-ty wyraz ciągu geometrycznego:

b 5 = b 1 ∙ q 5 - 1 = b 1 ∙ q 4.

Ponieważ b 1 = -3,

Druga metoda (przy użyciu formuły rekurencyjnej)

Ponieważ mianownik progresji wynosi -2 (q = -2), to:

b 3 = 6 ∙ (-2) = -12;

b 4 = -12 ∙ (-2) = 24;

b 5 = 24 ∙ (-2) = -48.

Odpowiedź : b 5 = -48.

Zadanie 3

W postępie arytmetycznym ( a n) a 74 = 34; 76= 156. Znajdź siedemdziesiąty piąty wyraz tego ciągu.

Dla postępu arytmetycznego właściwość charakterystyczna ma postać .

Dlatego:

.

Podstawiamy dane do wzoru:

Odpowiedź: 95.

Zadanie 4

W postępie arytmetycznym ( za n) za n= 3n - 4. Znajdź sumę pierwszych siedemnastu wyrazów.

Aby znaleźć sumę pierwszych n wyrazów ciągu arytmetycznego, stosuje się dwa wzory:

.

Który jest w środku w tym przypadku wygodniejszy w użyciu?

Pod warunkiem znany jest wzór na n-ty wyraz pierwotnej progresji ( jakiś) jakiś= 3n - 4. Możesz znaleźć natychmiast i 1, I 16 bez znalezienia d. Dlatego zastosujemy pierwszą formułę.

Odpowiedź: 368.

Zadanie 5

W postępie arytmetycznym ( jakiś) 1 = -6; 2= -8. Znajdź dwudziesty drugi wyraz progresji.

Zgodnie ze wzorem n-tego wyrazu:

za 22 = za 1 + re (22 – 1) = 1+ 21d.

Według warunku, jeśli 1= -6, zatem 22= -6 + 21d . Konieczne jest znalezienie różnicy progresji:

d = 2 – 1 = -8 – (-6) = -2

22 = -6 + 21 ∙ (-2) = -48.

Odpowiedź : 22 = -48.

Zadanie 6

Zapisuje się kilka kolejnych wyrazów postępu geometrycznego:

Znajdź wyraz progresji oznaczony jako x.

Przy rozwiązywaniu skorzystamy ze wzoru na n-ty wyraz b n = b 1 ∙ q n - 1 Dla progresje geometryczne. Pierwszy termin progresji. Aby znaleźć mianownik postępu q, należy wziąć dowolny z podanych wyrazów postępu i podzielić przez poprzedni. W naszym przykładzie możemy brać i dzielić przez. Otrzymujemy, że q = 3. Zamiast n podstawiamy we wzorze liczbę 3, gdyż konieczne jest znalezienie trzeciego wyrazu danego ciągu geometrycznego.

Podstawiając znalezione wartości do wzoru, otrzymujemy:

.

Odpowiedź : .

Zadanie 7

Z postępów arytmetycznych podanych wzorem n-tego wyrazu wybierz ten, dla którego warunek jest spełniony 27 > 9:

Ponieważ podany warunek musi być spełniony dla 27. wyrazu progresji, w każdej z czterech progresji podstawimy 27 zamiast n. W czwartej progresji otrzymujemy:

.

Odpowiedź: 4.

Zadanie 8

W postępie arytmetycznym 1= 3, d = -1,5. Sprecyzować najwyższa wartość n dla którego zachodzi nierówność jakiś > -6.

Lub arytmetyka to rodzaj uporządkowanej sekwencji liczbowej, której właściwości są badane na szkolnym kursie algebry. W artykule szczegółowo omówiono kwestię znalezienia sumy postępu arytmetycznego.

Co to za postęp?

Zanim przejdziemy do pytania (jak znaleźć sumę ciągu arytmetycznego) warto zrozumieć, o czym mówimy.

Dowolny ciąg liczb rzeczywistych uzyskany przez dodanie (odjęcie) pewnej wartości od każdej poprzedniej liczby nazywany jest postępem algebraicznym (arytmetycznym). Definicja ta, przetłumaczona na język matematyczny, przyjmuje postać:

Tutaj i jest numerem seryjnym elementu rzędu a i. Zatem znając tylko jeden numer początkowy, możesz łatwo przywrócić całą serię. Parametr d we wzorze nazywany jest różnicą progresji.

Można łatwo wykazać, że dla rozpatrywanego szeregu liczb zachodzi równość:

za n = za 1 + re * (n - 1).

Oznacza to, że aby znaleźć wartość n-tego elementu w kolejności, należy dodać różnicę d do pierwszego elementu a 1 n-1 razy.

Jaka jest suma postępu arytmetycznego: wzór

Przed podaniem wzoru na wskazaną kwotę warto rozważyć prosty przypadek szczególny. Progresja jest podana liczby naturalne od 1 do 10, musisz znaleźć ich sumę. Ponieważ w ciągu (10) wyrazów jest niewiele, możliwe jest rozwiązanie problemu od razu, czyli zsumowanie wszystkich elementów po kolei.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Warto rozważyć jedną rzecz interesująca rzecz: ponieważ każdy wyraz różni się od następnego o tę samą wartość d = 1, to sumowanie w parach pierwszego z dziesiątym, drugiego z dziewiątym itd. da ten sam wynik. Naprawdę:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Jak widać tych sum jest tylko 5, czyli dokładnie dwa razy mniej niż liczba elementów szeregu. Następnie mnożąc liczbę sum (5) przez wynik każdej sumy (11), otrzymasz wynik uzyskany w pierwszym przykładzie.

Jeśli uogólnimy te argumenty, możemy zapisać następujące wyrażenie:

S n = n * (za 1 + za n) / 2.

Wyrażenie to pokazuje, że wcale nie jest konieczne sumowanie wszystkich elementów w rzędzie, wystarczy znać wartość pierwszego a 1 i ostatniego a n oraz Łączna warunki.

Uważa się, że Gauss jako pierwszy pomyślał o tej równości, gdy szukał rozwiązania danego problemu. nauczyciel szkoły zadanie: zsumuj pierwsze 100 liczb całkowitych.

Suma elementów od m do n: wzór

Wzór podany w poprzednim akapicie odpowiada na pytanie, jak znaleźć sumę ciągu arytmetycznego (pierwszych elementów), jednak często w problemach konieczne jest zsumowanie ciągu liczb w środku ciągu. Jak to zrobić?

Najłatwiej odpowiedzieć na to pytanie, rozważając następujący przykład: niech będzie konieczne znalezienie sumy wyrazów od m-tego do n-tego. Aby rozwiązać zadanie należy przedstawić zadany odcinek od m do n postępu w postaci nowego ciągu liczbowego. W takich m-ta reprezentacja termin a m będzie pierwszym, a n będzie ponumerowane n-(m-1). W takim przypadku, stosując standardowy wzór na sumę, otrzymamy następujące wyrażenie:

S m n = (n - m + 1) * (za m + za n) / 2.

Przykład użycia formuł

Wiedząc, jak znaleźć sumę ciągu arytmetycznego, warto rozważyć prosty przykład wykorzystania powyższych wzorów.

Poniżej podano sekwencja liczb, powinieneś znaleźć sumę jego wyrazów, zaczynając od 5 i kończąc na 12:

Podane liczby wskazują, że różnica d jest równa 3. Korzystając z wyrażenia na n-ty element, możesz znaleźć wartości 5. i 12. wyrazu progresji. Okazało się:

za 5 = za 1 + re * 4 = -4 + 3 * 4 = 8;

za 12 = za 1 + re * 11 = -4 + 3 * 11 = 29.

Znając wartości liczb na końcach danego postęp algebraiczny, a także wiedząc, jakie liczby w rzędzie zajmują, możesz skorzystać ze wzoru na kwotę uzyskaną w poprzednim akapicie. Okaże się:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Warto zauważyć, że wartość tę można uzyskać inaczej: najpierw znajdź sumę pierwszych 12 elementów, korzystając ze standardowego wzoru, następnie oblicz sumę pierwszych 4 elementów, korzystając z tego samego wzoru, a następnie odejmij drugą od pierwszej sumy.

Suma postępu arytmetycznego.

Suma postępu arytmetycznego jest rzeczą prostą. Zarówno w znaczeniu, jak i formule. Ale jest wiele zadań na ten temat. Od podstawowego po całkiem solidny.

Najpierw zrozumiemy znaczenie i formułę kwoty. I wtedy podejmiemy decyzję. Dla własnej przyjemności.) Znaczenie kwoty jest proste jak muu. Aby znaleźć sumę ciągu arytmetycznego, wystarczy dokładnie dodać wszystkie jego wyrazy. Jeśli tych terminów jest niewiele, możesz dodać je bez żadnych formuł. Ale jeśli jest tego dużo, albo bardzo dużo... dodawanie jest denerwujące.) W tym przypadku na ratunek przychodzi formuła.

Wzór na kwotę jest prosty:

Zastanówmy się, jakie litery są zawarte we wzorze. To wiele wyjaśni.

S n - suma postępu arytmetycznego. Wynik dodania wszyscy członkowie, z Pierwszy Przez ostatni. To jest ważne. Dokładnie się sumują Wszystko członków z rzędu, bez pomijania i pomijania. A dokładnie zaczynając od Pierwszy. W przypadku problemów takich jak znalezienie sumy wyrazów trzeciego i ósmego lub sumy wyrazów od piątego do dwudziestego bezpośrednie zastosowanie wzoru rozczaruje.)

1 - Pierwszy członek progresji. Tutaj wszystko jest jasne, to proste Pierwszy Numer wiersza.

jakiś- ostatni członek progresji. Ostatni numer serii. Niezbyt znana nazwa, ale zastosowana do kwoty jest bardzo odpowiednia. Wtedy zobaczysz sam.

N - numer ostatniego członka. Ważne jest, aby zrozumieć, że we wzorze jest to liczba pokrywa się z liczbą dodanych terminów.

Zdefiniujmy pojęcie ostatni członek jakiś. Podchwytliwe pytanie: który członek będzie ostatni jeśli podano nieskończony postęp arytmetyczny?)

Aby odpowiedzieć pewnie, trzeba zrozumieć elementarne znaczenie postępu arytmetycznego i… uważnie przeczytać zadanie!)

W zadaniu znalezienia sumy ciągu arytmetycznego zawsze pojawia się ostatni wyraz (bezpośrednio lub pośrednio), które należy ograniczyć. W przeciwnym razie ostateczna, konkretna kwota po prostu nie istnieje. Dla rozwiązania nie ma znaczenia, czy dany jest postęp: skończony czy nieskończony. Nie ma znaczenia, jak to zostanie podane: ciąg liczb, czy wzór na n-ty wyraz.

Najważniejsze jest zrozumienie, że formuła działa od pierwszego wyrazu progresji do wyrazu z liczbą N. Właściwie pełna nazwa formuły wygląda następująco: suma pierwszych n wyrazów ciągu arytmetycznego. Liczba tych pierwszych członków, tj. N, zależy wyłącznie od zadania. W zadaniu wszystkie te cenne informacje są często szyfrowane, tak… Ale nieważne, w poniższych przykładach ujawniamy te tajemnice.)

Przykłady zadań na sumie ciągu arytmetycznego.

Przede wszystkim, pomocna informacja:

Główną trudnością w zadaniach obejmujących sumę postępu arytmetycznego jest poprawna definicja elementy formuły.

Autorzy zadań szyfrują te właśnie elementy z nieograniczoną wyobraźnią.) Najważniejsze tutaj to nie bać się. Rozumiejąc istotę elementów, wystarczy je po prostu rozszyfrować. Przyjrzyjmy się szczegółowo kilku przykładom. Zacznijmy od zadania opartego na prawdziwym GIA.

1. Postęp arytmetyczny jest określony przez warunek: a n = 2n-3,5. Znajdź sumę pierwszych 10 wyrazów.

Dobra robota. Łatwe.) Co musimy wiedzieć, aby określić kwotę za pomocą wzoru? Pierwszy członek 1, ostatni termin jakiś, tak, numer ostatniego członka N.

Gdzie mogę zdobyć numer ostatniego członka? N? Tak, właśnie tam, pod warunkiem! Mówi: znajdź sumę pierwszych 10 członków. No właśnie, z jakim numerem to będzie? ostatni, dziesiąty członek?) Nie uwierzysz, jego liczba jest dziesiąta!) Dlatego zamiast jakiś Podstawimy do wzoru 10, i zamiast N- dziesięć. Powtarzam, liczba ostatniego członka pokrywa się z liczbą członków.

Pozostaje ustalić 1 I 10. Można to łatwo obliczyć, korzystając ze wzoru na n-ty wyraz podanego w opisie problemu. Nie wiesz jak to zrobić? Weź udział w poprzedniej lekcji, bez tego nie ma mowy.

1= 2 1 - 3,5 = -1,5

10=2·10 - 3,5 =16,5

S n = S 10.

Ustaliliśmy znaczenie wszystkich elementów wzoru na sumę postępu arytmetycznego. Pozostaje tylko je zastąpić i policzyć:

Otóż ​​to. Odpowiedź: 75.

Kolejne zadanie w oparciu o GIA. Trochę bardziej skomplikowane:

2. Biorąc pod uwagę postęp arytmetyczny (an), którego różnica wynosi 3,7; a1 =2,3. Znajdź sumę pierwszych 15 wyrazów.

Natychmiast zapisujemy formułę sumy:

Formuła ta pozwala nam znaleźć wartość dowolnego terminu na podstawie jego liczby. Szukamy prostego podstawienia:

za 15 = 2,3 + (15-1) 3,7 = 54,1

Pozostaje wstawić wszystkie elementy do wzoru na sumę ciągu arytmetycznego i obliczyć odpowiedź:

Odpowiedź: 423.

Nawiasem mówiąc, jeśli w formule sumy zamiast jakiś Po prostu zastępujemy wzór n-tym wyrazem i otrzymujemy:

Przedstawmy podobne i uzyskajmy nowy wzór na sumę wyrazów ciągu arytmetycznego:

Jak widać, nie jest to tutaj wymagane n-ty termin jakiś. W niektórych problemach ta formuła bardzo pomaga, tak... Pamiętasz tę formułę. Możesz też po prostu wyświetlić go we właściwym czasie, jak tutaj. W końcu zawsze trzeba pamiętać wzór na sumę i wzór na n-ty wyraz.)

Teraz zadanie w formie krótkiego szyfrowania):

3. Znajdź sumę wszystkich dodatnich liczby dwucyfrowe, wielokrotność trzech.

Wow! Ani Twój pierwszy członek, ani ostatni, ani żaden postęp... Jak żyć!?

Trzeba będzie pomyśleć z głową i wyciągnąć z warunku wszystkie elementy sumy postępu arytmetycznego. Wiemy, co to są liczby dwucyfrowe. Składają się z dwóch liczb.) Jaka będzie liczba dwucyfrowa Pierwszy? 10, prawdopodobnie.) A Ostatnia rzecz liczba dwucyfrowa? 99, oczywiście! Za nim pójdą trzycyfrowe...

Wielokrotność trzech... Hm... To są liczby podzielne przez trzy, proszę! Dziesięć nie jest podzielne przez trzy, 11 nie jest podzielne... 12... jest podzielne! Zatem coś się pojawia. Można już zapisać szereg zgodnie z warunkami zadania:

12, 15, 18, 21, ... 96, 99.

Czy ten szereg będzie postępem arytmetycznym? Z pewnością! Każdy termin różni się od poprzedniego ściśle trzema. Jeśli dodasz 2 lub 4 do terminu, powiedzmy, wynik, tj. nowa liczba nie jest już podzielna przez 3. Możesz od razu określić różnicę ciągu arytmetycznego: d = 3. Przyda się!)

Możemy więc spokojnie zapisać niektóre parametry progresji:

Jaki będzie numer? N ostatni członek? Każdy, kto uważa, że ​​99 to fatalna pomyłka... Liczby zawsze idą w rzędzie, ale nasi członkowie przeskakują powyżej trzech. Nie pasują.

Istnieją tutaj dwa rozwiązania. Jednym ze sposobów jest superpracowitość. Możesz zapisać progresję, całą serię liczb i policzyć palcem liczbę członków.) Drugi sposób jest dla myślących. Trzeba zapamiętać wzór na n-ty wyraz. Jeśli zastosujemy wzór do naszego problemu, okaże się, że 99 jest trzydziestym wyrazem progresji. Te. n = 30.

Spójrzmy na wzór na sumę postępu arytmetycznego:

Patrzymy i cieszymy się.) Wyciągnęliśmy z zestawienia problemu wszystko, co niezbędne do obliczenia kwoty:

1= 12.

30= 99.

S n = S 30.

Pozostaje tylko elementarna arytmetyka. Podstawiamy liczby do wzoru i obliczamy:

Odpowiedź: 1665

Inny rodzaj popularnej łamigłówki:

4. Biorąc pod uwagę postęp arytmetyczny:

-21,5; -20; -18,5; -17; ...

Znajdź sumę wyrazów od dwudziestego do trzydziestu czterech.

Patrzymy na wzór na kwotę i... denerwujemy się.) Wzór, przypomnę, oblicza kwotę od pierwszego członek. A w zadaniu musisz obliczyć sumę od dwudziestego... Formuła nie będzie działać.

Można oczywiście całą progresję rozpisać w serii i dodać wyrazy od 20 do 34. Ale… to jakoś głupie i zajmuje dużo czasu, prawda?)

Istnieje bardziej eleganckie rozwiązanie. Podzielmy naszą serię na dwie części. Pierwsza część będzie od pierwszego semestru do XIX. Druga część - od dwudziestu do trzydziestu czterech. Oczywiste jest, że jeśli obliczymy sumę wyrazów pierwszej części S 1-19, dodajmy to do sumy wyrazów drugiej części S 20-34, otrzymujemy sumę progresji od pierwszego do trzydziestego czwartego wyrazu S 1-34. Lubię to:

S 1-19 + S 20-34 = S 1-34

Z tego widzimy, że znajdujemy sumę S 20-34 można wykonać poprzez proste odejmowanie

S 20-34 = S 1-34 - S 1-19

Uwzględniane są obie kwoty po prawej stronie od pierwszego członek, tj. standardowy wzór na sumę ma do nich całkiem zastosowanie. Zacznijmy?

Wyodrębniamy parametry progresji ze stwierdzenia problemu:

d = 1,5.

1= -21,5.

Aby obliczyć sumę pierwszych 19 i pierwszych 34 wyrazów, będziemy potrzebować 19 i 34 wyrazów. Obliczamy je korzystając ze wzoru na n-ty wyraz, jak w zadaniu 2:

19= -21,5 +(19-1) 1,5 = 5,5

34= -21,5 +(34-1) 1,5 = 28

Nic nie zostało. Od sumy 34 wyrazów odejmij sumę 19 wyrazów:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Odpowiedź: 262,5

Jedna ważna uwaga! Istnieje bardzo przydatna sztuczka, która pozwala rozwiązać ten problem. Zamiast bezpośrednich obliczeń czego potrzebujesz (S 20-34), liczyliśmy coś, co wydawałoby się nie potrzebne – S 1-19. A potem ustalili S 20-34, odrzucając niepotrzebne z pełnego wyniku. Ten rodzaj „zwodu za pomocą uszu” często ratuje cię przed niegodziwymi problemami).

Na tej lekcji przyjrzeliśmy się problemom, dla których wystarczy zrozumieć znaczenie sumy postępu arytmetycznego. Cóż, musisz znać kilka formuł.)

Praktyczne porady:

Przy rozwiązywaniu dowolnego problemu dotyczącego sumy postępu arytmetycznego zalecam natychmiastowe wypisanie dwóch głównych wzorów z tego tematu.

Wzór na n-ty wyraz:

Te formuły od razu podpowiedzą Ci, czego szukać i w jakim kierunku myśleć, aby rozwiązać problem. Pomaga.

A teraz zadania do samodzielnego rozwiązania.

5. Znajdź sumę wszystkich liczb dwucyfrowych, które nie są podzielne przez trzy.

Super?) Podpowiedź jest ukryta w notatce do zadania 4. Cóż, zadanie 3 pomoże.

6. Postęp arytmetyczny wyraża warunek: a 1 = -5,5; za n+1 = za n +0,5. Znajdź sumę pierwszych 24 wyrazów.

Niezwykłe?) To powtarzająca się formuła. Przeczytałeś o tym w poprzedniej lekcji. Nie ignoruj ​​​​linku, takie problemy często występują w Państwowej Akademii Nauk.

7. Vasya zaoszczędziła pieniądze na wakacje. Aż 4550 rubli! I postanowiłem podarować mojej ulubionej osobie (sobie) kilka dni szczęścia). Żyj pięknie, nie odmawiając sobie niczego. Wydaj 500 rubli pierwszego dnia, a każdego kolejnego dnia wydawaj o 50 rubli więcej niż poprzedni! Dopóki nie skończą się pieniądze. Ile dni szczęścia miała Wasia?

Czy to trudne?) Pomocny będzie dodatkowy wzór z zadania 2.

Odpowiedzi (w nieładzie): 7, 3240, 6.

Jeśli podoba Ci się ta strona...

Przy okazji, mam dla Ciebie jeszcze kilka ciekawych stron.)

Możesz poćwiczyć rozwiązywanie przykładów i sprawdzić swój poziom. Testowanie z natychmiastową weryfikacją. Uczmy się - z zainteresowaniem!)

Można zapoznać się z funkcjami i pochodnymi.