Jak znaleźć pierwszy. Postęp arytmetyczny. Szczegółowa teoria z przykładami (2019)

Podczas nauki algebry w szkole średniej (9 klasa) jednym z ważnych tematów jest nauka ciągów liczbowych, do których zaliczają się postępy - geometryczny i arytmetyczny. W tym artykule przyjrzymy się postępowi arytmetycznemu i przykładom z rozwiązaniami.

Co to jest postęp arytmetyczny?

Aby to zrozumieć, należy zdefiniować omawianą progresję, a także podać podstawowe wzory, które będą później wykorzystywane przy rozwiązywaniu problemów.

Wiadomo, że w pewnym postępie algebraicznym pierwszy wyraz jest równy 6, a siódmy wyraz jest równy 18. Należy znaleźć różnicę i przywrócić ten ciąg do siódmego wyrazu.

Użyjmy wzoru do wyznaczenia nieznanego składnika: a n = (n - 1) * d + a 1 . Podstawiamy do niego znane dane z warunku, czyli liczby a 1 i a 7, mamy: 18 = 6 + 6 * d. Z tego wyrażenia można łatwo obliczyć różnicę: d = (18 - 6) /6 = 2. W ten sposób odpowiedzieliśmy na pierwszą część problemu.

Aby przywrócić ciąg do wyrazu 7, należy skorzystać z definicji postęp algebraiczny, czyli a 2 = za 1 + d, za 3 = za 2 + d i tak dalej. W efekcie przywracamy całą sekwencję: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , za 6 = 14 + 2 = 16, za 7 = 18.

Przykład nr 3: sporządzenie progresji

Skomplikujmy problem jeszcze bardziej. Teraz musimy odpowiedzieć na pytanie, jak znaleźć postęp arytmetyczny. Można podać następujący przykład: podano dwie liczby, na przykład - 4 i 5. Należy utworzyć ciąg algebraiczny, aby umieścić pomiędzy nimi jeszcze trzy wyrazy.

Zanim przystąpisz do rozwiązywania tego problemu, musisz zrozumieć, jakie miejsce w przyszłej progresji zajmą dane liczby. Ponieważ będą między nimi jeszcze trzy wyrazy, to a 1 = -4 i a 5 = 5. Po ustaleniu tego przechodzimy do problemu, który jest podobny do poprzedniego. Ponownie, dla n-tego członu używamy wzoru i otrzymujemy: a 5 = a 1 + 4 * d. Od: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. To, co tu otrzymaliśmy, nie jest całkowitą wartością różnicy, ale liczbą wymierną, więc wzory na postęp algebraiczny pozostają takie same.

Dodajmy teraz znalezioną różnicę do 1 i przywróćmy brakujące człony progresji. Otrzymujemy: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, co się pokrywało z warunkami problemu.

Przykład nr 4: pierwszy okres progresji

Kontynuujmy podawanie przykładów postęp arytmetyczny z rozwiązaniem. We wszystkich poprzednich zadaniach znana była pierwsza liczba ciągu algebraicznego. Rozważmy teraz problem innego typu: niech zostaną podane dwie liczby, gdzie a 15 = 50 i a 43 = 37. Należy dowiedzieć się, od której liczby zaczyna się ten ciąg.

Stosowane dotychczas wzory zakładają znajomość 1 i d. W opisie problemu nic nie wiadomo na temat tych liczb. Niemniej jednak dla każdego terminu zapiszemy wyrażenia, o których są dostępne informacje: a 15 = a 1 + 14 * d i a 43 = a 1 + 42 * d. Otrzymaliśmy dwa równania, w których są 2 nieznane wielkości (a 1 i d). Oznacza to, że problem sprowadza się do rozwiązania układu równań liniowych.

Najprostszym sposobem rozwiązania tego układu jest wyrażenie 1 w każdym równaniu, a następnie porównanie otrzymanych wyrażeń. Pierwsze równanie: a 1 = a 15 - 14 * d = 50 - 14 * d; drugie równanie: a 1 = a 43 - 42 * d = 37 - 42 * d. Przyrównując te wyrażenia otrzymujemy: 50 - 14 * d = 37 - 42 * d, skąd różnica d = (37 - 50) / (42 - 14) = - 0,464 (podawane są tylko 3 miejsca po przecinku).

Znając d, możesz użyć dowolnego z dwóch powyższych wyrażeń dla 1. Na przykład najpierw: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Jeśli masz wątpliwości co do uzyskanego wyniku, możesz to sprawdzić, na przykład określić 43. wyraz progresji, który jest określony w warunku. Otrzymujemy: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Niewielki błąd wynika z faktu, że w obliczeniach zastosowano zaokrąglenia do części tysięcznych.

Przykład nr 5: kwota

Przyjrzyjmy się teraz kilku przykładom z rozwiązaniami sumy postępu arytmetycznego.

Niech będzie podany ciąg liczbowy postaci: 1, 2, 3, 4, ...,. Jak obliczyć sumę 100 tych liczb?

Dzięki rozwojowi technologii komputerowej możliwe jest rozwiązanie tego problemu, czyli dodanie wszystkich liczb po kolei, co komputer zrobi, gdy tylko ktoś naciśnie klawisz Enter. Zadanie można jednak rozwiązać mentalnie, jeśli zwrócimy uwagę, że przedstawiony ciąg liczb jest ciągiem algebraicznym, a jego różnica jest równa 1. Stosując wzór na sumę otrzymujemy: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Co ciekawe, problem ten nazywa się „gaussowskim”, ponieważ na początku XVIII wieku słynny Niemiec, mając zaledwie 10 lat, potrafił go w głowie rozwiązać w ciągu kilku sekund. Chłopiec nie znał wzoru na sumę postępu algebraicznego, ale zauważył, że jeśli liczby na końcach ciągu dodamy parami, zawsze otrzymamy ten sam wynik, czyli 1 + 100 = 2 + 99 = 3 + 98 = ..., a ponieważ sumy te będą wynosić dokładnie 50 (100/2), to aby uzyskać poprawną odpowiedź, wystarczy pomnożyć 50 przez 101.

Przykład nr 6: suma wyrazów od n do m

Innym typowym przykładem sumy postępu arytmetycznego jest następujący: mając ciąg liczb: 3, 7, 11, 15, ..., musisz znaleźć, jaka będzie suma jego wyrazów od 8 do 14 .

Problem rozwiązuje się na dwa sposoby. Pierwsza z nich polega na odnalezieniu nieznanych wyrazów od 8 do 14, a następnie zsumowaniu ich po kolei. Ponieważ terminów jest niewiele, metoda ta nie jest dość pracochłonna. Niemniej jednak proponuje się rozwiązanie tego problemu za pomocą drugiej metody, która jest bardziej uniwersalna.

Chodzi o to, aby otrzymać wzór na sumę postępu algebraicznego pomiędzy wyrazami m i n, gdzie n > m są liczbami całkowitymi. W obu przypadkach piszemy dwa wyrażenia na sumę:

  1. S m = m * (za m + za 1) / 2.
  2. S n = n * (za n + za 1) / 2.

Ponieważ n > m, oczywiste jest, że druga suma zawiera pierwszą. Ostatni wniosek oznacza, że ​​jeśli weźmiemy różnicę między tymi sumami i dodamy do niej człon a m (w przypadku wzięcia różnicy jest on odejmowany od sumy S n), otrzymamy niezbędną odpowiedź na zadanie. Mamy: S mn = S n - S m + a m = n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n/2 + a m * (1- m/2). Konieczne jest podstawienie w tym wyrażeniu wzorów na n i m. Następnie otrzymujemy: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = za 1 * (n - m + 1) + re * n * (n - 1) / 2 + re *(3 * m - m 2 - 2) / 2.

Otrzymany wzór jest nieco uciążliwy, jednak suma S mn zależy tylko od n, m, a 1 i d. W naszym przypadku a 1 = 3, d = 4, n = 14, m = 8. Podstawiając te liczby otrzymujemy: S mn = 301.

Jak widać z powyższych rozwiązań, wszystkie problemy opierają się na znajomości wyrażenia na n-ty wyraz i wzorze na sumę zbioru pierwszych wyrazów. Przed przystąpieniem do rozwiązywania któregokolwiek z tych problemów zaleca się uważne przeczytanie warunku, jasne zrozumienie tego, co musisz znaleźć, i dopiero wtedy przystąpienie do rozwiązania.

Kolejną wskazówką jest dążenie do prostoty, to znaczy, jeśli możesz odpowiedzieć na pytanie bez stosowania skomplikowanych obliczeń matematycznych, musisz właśnie to zrobić, ponieważ w tym przypadku prawdopodobieństwo popełnienia błędu jest mniejsze. Przykładowo na przykładzie ciągu arytmetycznego z rozwiązaniem nr 6 można by zatrzymać się na wzorze S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, oraz przerwa wspólne zadanie na osobne podzadania (w w tym przypadku najpierw znajdź terminy a n i a m).

Jeśli masz wątpliwości co do uzyskanego wyniku, zaleca się sprawdzenie go, tak jak to miało miejsce w niektórych podanych przykładach. Dowiedzieliśmy się, jak znaleźć postęp arytmetyczny. Jeśli się domyślisz, nie jest to takie trudne.

Jeśli dla każdej liczby naturalnej N dopasować liczbę rzeczywistą jakiś , to mówią, że jest dane sekwencja liczb :

A 1 , A 2 , A 3 , . . . , jakiś , . . . .

Zatem sekwencja liczb jest funkcją argumentu naturalnego.

Numer A 1 zwany pierwszy wyraz ciągu , numer A 2 drugi wyraz ciągu , numer A 3 trzeci i tak dalej. Numer jakiś zwany n-ty termin sekwencje i liczba naturalna Njego numer .

Od dwóch sąsiednich członków jakiś I jakiś +1 członek sekwencji jakiś +1 zwany późniejszy (w kierunku jakiś ), A jakiś poprzedni (w kierunku jakiś +1 ).

Aby zdefiniować ciąg, należy określić metodę, która pozwoli znaleźć element ciągu o dowolnym numerze.

Często kolejność jest określana za pomocą n-te formuły wyrazowe , czyli formuła pozwalająca określić element ciągu na podstawie jego numeru.

Na przykład,

Za pomocą wzoru można podać ciąg dodatnich liczb nieparzystych

jakiś= 2N- 1,

i kolejność naprzemienności 1 I -1 - formuła

B N = (-1)N +1 .

Można ustalić kolejność powtarzalna formuła, to znaczy formuła wyrażająca dowolny element sekwencji, zaczynając od niektórych, a kończąc na poprzednich (jednym lub większej liczbie) elementów.

Na przykład,

Jeśli A 1 = 1 , A jakiś +1 = jakiś + 5

A 1 = 1,

A 2 = A 1 + 5 = 1 + 5 = 6,

A 3 = A 2 + 5 = 6 + 5 = 11,

A 4 = A 3 + 5 = 11 + 5 = 16,

A 5 = A 4 + 5 = 16 + 5 = 21.

Jeśli 1= 1, 2 = 1, jakiś +2 = jakiś + jakiś +1 , następnie pierwszych siedmiu członków sekwencja liczb zainstaluj w następujący sposób:

1 = 1,

2 = 1,

3 = 1 + 2 = 1 + 1 = 2,

4 = 2 + 3 = 1 + 2 = 3,

5 = 3 + 4 = 2 + 3 = 5,

A 6 = A 4 + A 5 = 3 + 5 = 8,

A 7 = A 5 + A 6 = 5 + 8 = 13.

Sekwencje mogą być finał I nieskończony .

Sekwencja nazywa się ostateczny , jeśli ma skończoną liczbę członków. Sekwencja nazywa się nieskończony , jeśli ma nieskończenie wiele elementów.

Na przykład,

ciąg dwucyfrowy liczby naturalne:

10, 11, 12, 13, . . . , 98, 99

finał.

Sekwencja liczb pierwszych:

2, 3, 5, 7, 11, 13, . . .

nieskończony.

Sekwencja nazywa się wzrastający , jeśli każdy z jego członków, zaczynając od drugiego, jest większy od poprzedniego.

Sekwencja nazywa się malejące , jeśli każdy z jego członków, zaczynając od drugiego, jest mniejszy od poprzedniego.

Na przykład,

2, 4, 6, 8, . . . , 2N, . . . — ciąg rosnący;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /N, . . . — ciąg malejący.

Nazywa się ciąg, którego elementy nie zmniejszają się wraz ze wzrostem liczby lub odwrotnie monotonna sekwencja .

W szczególności ciągi monotoniczne to sekwencje rosnące i malejące.

Postęp arytmetyczny

Postęp arytmetyczny to ciąg, w którym każdy człon, zaczynając od drugiego, jest równy poprzedniemu, do którego dodawana jest ta sama liczba.

A 1 , A 2 , A 3 , . . . , jakiś, . . .

jest postępem arytmetycznym, jeśli dla dowolnej liczby naturalnej N warunek jest spełniony:

jakiś +1 = jakiś + D,

Gdzie D - pewna liczba.

Zatem różnica pomiędzy kolejnymi i poprzednimi wyrazami danego ciągu arytmetycznego jest zawsze stała:

2 - A 1 = 3 - A 2 = . . . = jakiś +1 - jakiś = D.

Numer D zwany różnica postępu arytmetycznego.

Aby zdefiniować postęp arytmetyczny, wystarczy wskazać jego pierwszy wyraz i różnicę.

Na przykład,

Jeśli A 1 = 3, D = 4 , wówczas znajdujemy pierwsze pięć wyrazów ciągu w następujący sposób:

1 =3,

2 = 1 + D = 3 + 4 = 7,

3 = 2 + D= 7 + 4 = 11,

4 = 3 + D= 11 + 4 = 15,

A 5 = A 4 + D= 15 + 4 = 19.

Dla postępu arytmetycznego z pierwszym wyrazem A 1 i różnica D jej N

jakiś = 1 + (N- 1)D.

Na przykład,

znajdź trzydziesty wyraz ciągu arytmetycznego

1, 4, 7, 10, . . .

1 =1, D = 3,

30 = 1 + (30 - 1)d = 1 + 29· 3 = 88.

n-1 = 1 + (N- 2)D,

jakiś= 1 + (N- 1)D,

jakiś +1 = A 1 + II,

wtedy oczywiście

jakiś=
za n-1 + za n+1
2

Każdy element ciągu arytmetycznego, zaczynając od drugiego, jest równy średniej arytmetycznej poprzednich i kolejnych elementów.

liczby a, b i c są kolejnymi wyrazami pewnego postępu arytmetycznego wtedy i tylko wtedy, gdy jedna z nich jest równa średniej arytmetycznej dwóch pozostałych.

Na przykład,

jakiś = 2N- 7 , jest postępem arytmetycznym.

Skorzystajmy z powyższego stwierdzenia. Mamy:

jakiś = 2N- 7,

n-1 = 2(N- 1) - 7 = 2N- 9,

n+1 = 2(n+ 1) - 7 = 2N- 5.

Stąd,

za n+1 + za n-1
=
2N- 5 + 2N- 9
= 2N- 7 = jakiś,
2
2

Zauważ to N Wyraz dziewiątego ciągu arytmetycznego można znaleźć nie tylko poprzez A 1 , ale także wszelkie poprzednie k

jakiś = k + (N- k)D.

Na przykład,

Dla A 5 można zapisać

5 = 1 + 4D,

5 = 2 + 3D,

5 = 3 + 2D,

5 = 4 + D.

jakiś = nk + kd,

jakiś = n+k - kd,

wtedy oczywiście

jakiś=
A nie wiem + za n+k
2

każdy element ciągu arytmetycznego, zaczynając od drugiego, jest równy połowie sumy równo rozmieszczonych elementów tego postępu arytmetycznego.

Ponadto dla dowolnego postępu arytmetycznego zachodzi równość:

za m + za n = za k + za l,

m + n = k + l.

Na przykład,

w postępie arytmetycznym

1) A 10 = 28 = (25 + 31)/2 = (A 9 + A 11 )/2;

2) 28 = 10 = 3 + 7D= 7 + 7 3 = 7 + 21 = 28;

3) 10= 28 = (19 + 37)/2 = (7 + 13)/2;

4) za 2 + za 12 = za 5 + za 9, ponieważ

2 + 12= 4 + 34 = 38,

5 + 9 = 13 + 25 = 38.

S n= za 1 + za 2 + za 3 + . . .+ jakiś,

Pierwszy N wyrazy ciągu arytmetycznego są równe iloczynowi połowy sumy skrajnych wyrazów i liczby wyrazów:

Stąd w szczególności wynika, że ​​jeśli trzeba podsumować warunki

k, k +1 , . . . , jakiś,

wówczas poprzednia formuła zachowuje swoją strukturę:

Na przykład,

w postępie arytmetycznym 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Jeśli podany jest postęp arytmetyczny, to ilości A 1 , jakiś, D, N IS N połączone dwoma wzorami:

Dlatego jeśli znaczenia trzech z tych wielkości podaje się, następnie z tych wzorów wyznacza się odpowiednie wartości pozostałych dwóch wielkości, łącząc je w układ dwóch równań z dwiema niewiadomymi.

Postęp arytmetyczny jest ciągiem monotonicznym. W której:

  • Jeśli D > 0 , to rośnie;
  • Jeśli D < 0 , to maleje;
  • Jeśli D = 0 , to ciąg będzie stacjonarny.

Postęp geometryczny

Postęp geometryczny to ciąg, w którym każdy element, zaczynając od drugiego, jest równy poprzedniemu pomnożonemu przez tę samą liczbę.

B 1 , B 2 , B 3 , . . . , b n, . . .

jest postępem geometrycznym, jeśli dla dowolnej liczby naturalnej N warunek jest spełniony:

b n +1 = b n · Q,

Gdzie Q ≠ 0 - pewna liczba.

Zatem stosunek kolejnego wyrazu danego ciągu geometrycznego do poprzedniego jest liczbą stałą:

B 2 / B 1 = B 3 / B 2 = . . . = b n +1 / b n = Q.

Numer Q zwany mianownik postępu geometrycznego.

Aby zdefiniować postęp geometryczny, wystarczy wskazać jego pierwszy wyraz i mianownik.

Na przykład,

Jeśli B 1 = 1, Q = -3 , wówczas znajdujemy pierwsze pięć wyrazów ciągu w następujący sposób:

b 1 = 1,

b 2 = b 1 · Q = 1 · (-3) = -3,

b 3 = b 2 · Q= -3 · (-3) = 9,

b 4 = b 3 · Q= 9 · (-3) = -27,

B 5 = B 4 · Q= -27 · (-3) = 81.

B 1 i mianownik Q jej N Termin ten można znaleźć korzystając ze wzoru:

b n = B 1 · qn -1 .

Na przykład,

znajdź siódmy wyraz postępu geometrycznego 1, 2, 4, . . .

B 1 = 1, Q = 2,

B 7 = B 1 · Q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = B 1 · qn,

wtedy oczywiście

b n 2 = b n -1 · b n +1 ,

każdy element ciągu geometrycznego, zaczynając od drugiego, jest równy średniej geometrycznej (proporcjonalnej) elementów poprzedzających i kolejnych.

Ponieważ prawdą jest również sytuacja odwrotna, zachodzi następujące stwierdzenie:

liczby a, b i c są kolejnymi wyrazami pewnego postępu geometrycznego wtedy i tylko wtedy, gdy kwadrat jednej z nich jest równy iloczynowi dwóch pozostałych, to znaczy jedna z liczb jest średnią geometryczną dwóch pozostałych.

Na przykład,

Udowodnimy, że ciąg określony wzorem b n= -3 2 N , jest postępem geometrycznym. Skorzystajmy z powyższego stwierdzenia. Mamy:

b n= -3 2 N,

b n -1 = -3 2 N -1 ,

b n +1 = -3 2 N +1 .

Stąd,

b n 2 = (-3 2 N) 2 = (-3 2 N -1 ) · (-3 · 2 N +1 ) = b n -1 · b n +1 ,

co dowodzi pożądanego stwierdzenia.

Zauważ to N Termin ciągu geometrycznego można znaleźć nie tylko poprzez B 1 , ale także każdego poprzedniego członka b k , dla czego wystarczy skorzystać ze wzoru

b n = b k · qn - k.

Na przykład,

Dla B 5 można zapisać

b 5 = b 1 · Q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · Q.

b n = b k · qn - k,

b n = b n - k · q k,

wtedy oczywiście

b n 2 = b n - k· b n + k

kwadrat dowolnego wyrazu ciągu geometrycznego, zaczynając od drugiego, jest równy iloczynowi wyrazów tego ciągu w równej odległości od niego.

Ponadto dla dowolnego postępu geometrycznego prawdziwa jest równość:

b m· b n= b k· b l,

M+ N= k+ l.

Na przykład,

w postępie geometrycznym

1) B 6 2 = 32 2 = 1024 = 16 · 64 = B 5 · B 7 ;

2) 1024 = B 11 = B 6 · Q 5 = 32 · 2 5 = 1024;

3) B 6 2 = 32 2 = 1024 = 8 · 128 = B 4 · B 8 ;

4) B 2 · B 7 = B 4 · B 5 , ponieważ

B 2 · B 7 = 2 · 64 = 128,

B 4 · B 5 = 8 · 16 = 128.

S n= B 1 + B 2 + B 3 + . . . + b n

Pierwszy N elementy ciągu geometrycznego z mianownikiem Q 0 obliczane według wzoru:

I kiedy Q = 1 - zgodnie ze wzorem

S n= uwaga 1

Pamiętaj, że jeśli chcesz zsumować warunki

b k, b k +1 , . . . , b n,

wówczas stosuje się wzór:

S n- Sk -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - Q

Na przykład,

w postępie geometrycznym 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Jeśli podano postęp geometryczny, a następnie ilości B 1 , b n, Q, N I S n połączone dwoma wzorami:

Dlatego jeśli podane zostaną wartości dowolnych trzech z tych wielkości, wówczas z tych wzorów zostaną określone odpowiednie wartości pozostałych dwóch wielkości, połączone w układ dwóch równań z dwiema niewiadomymi.

Dla postępu geometrycznego z pierwszym wyrazem B 1 i mianownik Q mają miejsce następujące zdarzenia właściwości monotoniczności :

  • progresja wzrasta, jeśli spełniony jest jeden z poniższych warunków:

B 1 > 0 I Q> 1;

B 1 < 0 I 0 < Q< 1;

  • Progresja maleje, jeśli spełniony jest jeden z poniższych warunków:

B 1 > 0 I 0 < Q< 1;

B 1 < 0 I Q> 1.

Jeśli Q< 0 , to postęp geometryczny jest naprzemienny: jego wyrazy o liczbach nieparzystych mają ten sam znak, co pierwszy wyraz, a wyrazy o liczbach parzystych mają znak przeciwny. Jest oczywiste, że naprzemienny postęp geometryczny nie jest monotoniczny.

Produkt pierwszy N wyrazy postępu geometrycznego można obliczyć korzystając ze wzoru:

P. n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) N / 2 .

Na przykład,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Nieskończenie malejący postęp geometryczny

Nieskończenie malejący postęp geometryczny nazywany nieskończonym postępem geometrycznym, którego moduł mianownika jest mniejszy 1 , to jest

|Q| < 1 .

Należy zauważyć, że nieskończenie malejący postęp geometryczny może nie być sekwencją malejącą. Pasuje do okazji

1 < Q< 0 .

Przy takim mianowniku sekwencja jest naprzemienna. Na przykład,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Suma nieskończenie malejącego postępu geometrycznego podaj liczbę, do której suma pierwszych zbliża się bez ograniczeń N członkowie progresji o nieograniczonym zwiększeniu liczby N . Liczba ta jest zawsze skończona i wyrażana jest wzorem

S= B 1 + B 2 + B 3 + . . . = B 1
.
1 - Q

Na przykład,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Związek pomiędzy postępem arytmetycznym i geometrycznym

Postęp arytmetyczny i geometryczny są ze sobą ściśle powiązane. Spójrzmy tylko na dwa przykłady.

A 1 , A 2 , A 3 , . . . D , To

b.a 1 , b.a 2 , b.a 3 , . . . b d .

Na przykład,

1, 3, 5, . . . - postęp arytmetyczny z różnicą 2 I

7 1 , 7 3 , 7 5 , . . . - postęp geometryczny z mianownikiem 7 2 .

B 1 , B 2 , B 3 , . . . - postęp geometryczny z mianownikiem Q , To

zaloguj a b 1, zaloguj a b 2, zaloguj a b 3, . . . - postęp arytmetyczny z różnicą zaloguj sięQ .

Na przykład,

2, 12, 72, . . . - postęp geometryczny z mianownikiem 6 I

lg 2, lg 12, lg 72, . . . - postęp arytmetyczny z różnicą lg 6 .

Sekwencja numerów

Usiądźmy więc i zacznijmy pisać liczby. Na przykład:
Możesz wpisać dowolne liczby, a może być ich tyle, ile chcesz (w naszym przypadku są). Nieważne, ile liczb zapiszemy, zawsze możemy powiedzieć, która jest pierwsza, która druga i tak dalej, aż do ostatniej, czyli możemy je policzyć. Oto przykład ciągu liczbowego:

Sekwencja numerów
Na przykład dla naszej sekwencji:

Przypisany numer jest specyficzny tylko dla jednego numeru w sekwencji. Innymi słowy, w sekwencji nie ma trzech sekund. Druga liczba (podobnie jak ta) jest zawsze taka sama.
Liczbę zawierającą liczbę nazywamy th wyrazem ciągu.

Zwykle całą sekwencję nazywamy jakąś literą (na przykład), a każdy element tej sekwencji to ta sama litera z indeksem równym numerowi tego elementu: .

W naszym przypadku:

Załóżmy, że mamy ciąg liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa.
Na przykład:

itp.
Ten ciąg liczb nazywany jest postępem arytmetycznym.
Termin „postęp” został wprowadzony przez rzymskiego autora Boecjusza już w VI wieku i był rozumiany szerzej jako nieskończony ciąg liczbowy. Nazwa „arytmetyka” została przeniesiona z teorii proporcji ciągłych, którą studiowali starożytni Grecy.

Jest to ciąg liczb, którego każdy element jest równy poprzedniemu dodanemu do tej samej liczby. Liczba ta nazywana jest różnicą postępu arytmetycznego i jest oznaczona.

Spróbuj określić, które ciągi liczbowe są ciągiem arytmetycznym, a które nie:

A)
B)
C)
D)

Rozumiem? Porównajmy nasze odpowiedzi:
Jest postęp arytmetyczny - b, c.
Nie jest postęp arytmetyczny - a, d.

Wróćmy do zadanego ciągu () i spróbujmy znaleźć wartość jego th wyrazu. Istnieje dwa sposób, aby to znaleźć.

1. Metoda

Numer progresji możemy dodawać do poprzedniej wartości, aż dotrzemy do V wyrazu progresji. Dobrze, że nie mamy zbyt wiele do podsumowania – tylko trzy wartości:

Zatem termin opisywanego postępu arytmetycznego jest równy.

2. Metoda

Co by było, gdybyśmy musieli znaleźć wartość th wyrazu progresji? Sumowanie zajęłoby nam ponad godzinę i nie jest faktem, że przy dodawaniu liczb nie popełnialibyśmy błędów.
Oczywiście matematycy wymyślili sposób, dzięki któremu nie jest konieczne dodawanie różnicy postępu arytmetycznego do poprzedniej wartości. Przyjrzyj się bliżej narysowanemu obrazkowi... Z pewnością zauważyłeś już pewien wzór, a mianowicie:

Zobaczmy na przykład, z czego składa się wartość V wyrazu tego ciągu arytmetycznego:


Innymi słowy:

Spróbuj w ten sposób samodzielnie znaleźć wartość członka danego ciągu arytmetycznego.

Czy obliczyłeś? Porównaj swoje notatki z odpowiedzią:

Zauważ, że otrzymałeś dokładnie tę samą liczbę, co w poprzedniej metodzie, gdy do poprzedniej wartości dodaliśmy po kolei wyrazy ciągu arytmetycznego.
Spróbujmy „odpersonalizować” tę formułę – wprowadźmy ją w życie forma ogólna i otrzymujemy:

Równanie postępu arytmetycznego.

Postęp arytmetyczny może być rosnący lub malejący.

Wzrastający- progresje, w których każda kolejna wartość wyrazów jest większa od poprzedniej.
Na przykład:

Malejąco- progresje, w których każda kolejna wartość wyrazów jest mniejsza od poprzedniej.
Na przykład:

Wyprowadzony wzór jest używany do obliczania wyrazów zarówno rosnących, jak i malejących ciągu arytmetycznego.
Sprawdźmy to w praktyce.
Dany jest postęp arytmetyczny składający się z następujących liczb: Sprawdźmy, jaka będzie liczba th tego ciągu arytmetycznego, jeśli do jej obliczenia skorzystamy z naszego wzoru:


Od tego czasu:

Jesteśmy zatem przekonani, że wzór działa zarówno w malejącym, jak i rosnącym postępie arytmetycznym.
Spróbuj samodzielnie znaleźć th i th wyraz tego ciągu arytmetycznego.

Porównajmy wyniki:

Właściwość postępu arytmetycznego

Skomplikujmy problem - wyprowadzimy własność postępu arytmetycznego.
Powiedzmy, że mamy następujący warunek:
- postęp arytmetyczny, znajdź wartość.
Spokojnie, mówisz i zaczynasz liczyć według znanego już wzoru:

Niech więc:

Całkowita racja. Okazuje się, że najpierw znajdujemy, potem dodajemy do pierwszej liczby i otrzymujemy to, czego szukamy. Jeśli postęp jest reprezentowany przez małe wartości, to nie ma w tym nic skomplikowanego, ale co jeśli w warunku podane zostaną liczby? Zgadzam się, istnieje możliwość popełnienia błędu w obliczeniach.
Zastanów się teraz, czy można rozwiązać to zadanie w jednym kroku, stosując dowolną formułę? Oczywiście, że tak i właśnie to postaramy się teraz przedstawić.

Oznaczmy wymagany wyraz ciągu arytmetycznego, gdyż wzór na jego znalezienie jest nam znany - jest to ten sam wzór, który wyprowadziliśmy na początku:
, Następnie:

  • poprzedni termin progresji to:
  • kolejny wyraz progresji to:

Podsumujmy poprzednie i kolejne terminy progresji:

Okazuje się, że sumą poprzednich i kolejnych wyrazów progresji jest podwójna wartość członu progresji znajdującego się pomiędzy nimi. Innymi słowy, aby znaleźć wartość składnika progresji ze znanymi wartościami poprzednimi i kolejnymi, należy je dodać i podzielić przez.

Zgadza się, mamy ten sam numer. Zabezpieczmy materiał. Oblicz wartość progresji samodzielnie, nie jest to wcale trudne.

Dobrze zrobiony! O progresji wiesz prawie wszystko! Pozostaje znaleźć tylko jedną formułę, którą według legendy z łatwością wydedukował jeden z największych matematyków wszechczasów, „król matematyków” - Karl Gauss...

Kiedy Carl Gauss miał 9 lat, nauczyciel, zajęty sprawdzaniem prac uczniów w innych klasach, postawił na zajęciach następujące zadanie: „Obliczyć sumę wszystkich liczb naturalnych od do (według innych źródeł do) włącznie”. Wyobraźcie sobie zdziwienie nauczyciela, gdy jeden z jego uczniów (był to Karl Gauss) minutę później podał poprawną odpowiedź na zadanie, podczas gdy większość kolegów śmiałka po długich obliczeniach otrzymała błędny wynik…

Młody Carl Gauss zauważył pewien wzór, który i Ty możesz łatwo zauważyć.
Załóżmy, że mamy postęp arytmetyczny składający się z -tych wyrazów: Musimy znaleźć sumę tych wyrazów postępu arytmetycznego. Oczywiście możemy ręcznie zsumować wszystkie wartości, ale co jeśli zadanie wymaga znalezienia sumy jej wyrazów, tak jak szukał Gauss?

Przedstawmy dany nam postęp. Przyjrzyj się bliżej wyróżnionym liczbom i spróbuj wykonać na nich różne operacje matematyczne.


Próbowałeś tego? Co zauważyłeś? Prawidłowy! Ich sumy są równe


A teraz powiedz mi, ile takich par jest w sumie w podanej nam progresji? Oczywiście dokładnie połowa wszystkich liczb.
Z faktu, że suma dwóch wyrazów ciągu arytmetycznego jest równa i pary podobne są równe, otrzymujemy, że suma całkowita jest równa:
.
Zatem wzór na sumę pierwszych wyrazów dowolnego postępu arytmetycznego będzie następujący:

W niektórych problemach nie znamy terminu „th”, ale znamy różnicę w postępie. Spróbuj zastąpić wzór tego wyrazu wzorem na sumę.
Co dostałeś?

Dobrze zrobiony! Wróćmy teraz do problemu, który został zadany Carlowi Gaussowi: obliczcie sami, jaka jest suma liczb zaczynających się od th, a suma liczb zaczynających się od th.

Ile dostałeś?
Gauss stwierdził, że suma wyrazów jest równa i suma wyrazów. Czy tak zdecydowałeś?

W rzeczywistości wzór na sumę wyrazów postępu arytmetycznego został udowodniony przez starożytnego greckiego naukowca Diofantusa już w III wieku i przez cały ten czas dowcipni ludzie w pełni korzystali z właściwości postępu arytmetycznego.
Wyobraźmy sobie na przykład starożytny Egipt i największy projekt budowlany tamtych czasów - budowę piramidy... Zdjęcie przedstawia jedną jej stronę.

Gdzie tu jest postęp, mówisz? Przyjrzyj się uważnie i znajdź wzór w liczbie bloków piasku w każdym rzędzie ściany piramidy.


Dlaczego nie postęp arytmetyczny? Oblicz, ile bloków potrzeba do zbudowania jednej ściany, jeśli u podstawy ułożone zostaną cegły blokowe. Mam nadzieję, że nie będziesz liczyć, przesuwając palcem po monitorze, pamiętasz ostatnią formułę i wszystko, co mówiliśmy o postępie arytmetycznym?

W tym przypadku progresja wygląda następująco: .
Różnica postępu arytmetycznego.
Liczba wyrazów postępu arytmetycznego.
Podstawmy nasze dane do ostatnich wzorów (obliczmy liczbę bloków na 2 sposoby).

Metoda 1.

Metoda 2.

A teraz możesz obliczyć na monitorze: porównaj uzyskane wartości z liczbą bloków znajdujących się w naszej piramidzie. Rozumiem? Dobra robota, opanowałeś sumę n-tych wyrazów ciągu arytmetycznego.
Oczywiście nie można zbudować piramidy z klocków u podstawy, ale z? Spróbuj obliczyć, ile cegieł piaskowych potrzeba do zbudowania ściany w tym stanie.
Czy udało Ci się?
Prawidłowa odpowiedź to bloki:

Szkolenie

Zadania:

  1. Masza robi formę na lato. Z każdym dniem zwiększa liczbę przysiadów o. Ile razy Masza będzie robić przysiady w ciągu tygodnia, jeśli robiła przysiady na pierwszej sesji treningowej?
  2. Jaka jest suma wszystkich liczb nieparzystych zawartych w.
  3. Podczas przechowywania kłód loggery układają je w taki sposób, że każda górna warstwa zawiera o jedną kłodę mniej niż poprzednia. Ile kłód znajduje się w jednym murze, jeśli fundamentem muru są kłody?

Odpowiedzi:

  1. Zdefiniujmy parametry postępu arytmetycznego. W tym przypadku
    (tygodnie = dni).

    Odpowiedź: Za dwa tygodnie Masza powinna robić przysiady raz dziennie.

  2. Pierwsza liczba nieparzysta, ostatnia liczba.
    Różnica postępu arytmetycznego.
    Liczba liczb nieparzystych jest równa połowie, sprawdźmy jednak ten fakt korzystając ze wzoru na znalezienie VII wyrazu ciągu arytmetycznego:

    Liczby zawierają liczby nieparzyste.
    Podstawmy dostępne dane do wzoru:

    Odpowiedź: Suma wszystkich liczb nieparzystych zawartych w jest równa.

  3. Przypomnijmy sobie problem z piramidami. W naszym przypadku a , ponieważ każda górna warstwa jest zmniejszona o jeden log, to w sumie mamy kilka warstw.
    Podstawiamy dane do wzoru:

    Odpowiedź: W murze znajdują się kłody.

Podsumujmy to

  1. - ciąg liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa. Może rosnąć lub maleć.
  2. Znalezienie formuły Piąty wyraz ciągu arytmetycznego zapisuje się wzorem - , gdzie jest liczba liczb w ciągu.
  3. Własność członków ciągu arytmetycznego- - gdzie jest liczbą numerów w toku.
  4. Suma wyrazów postępu arytmetycznego można znaleźć na dwa sposoby:

    , gdzie jest liczbą wartości.

PROGRESJA ARYTMETYCZNA. ŚREDNI POZIOM

Sekwencja numerów

Usiądźmy i zacznijmy pisać liczby. Na przykład:

Możesz wpisać dowolne liczby, a może być ich tyle, ile chcesz. Ale zawsze możemy powiedzieć, który jest pierwszy, który drugi i tak dalej, to znaczy możemy je policzyć. To jest przykład ciągu liczbowego.

Sekwencja numerów to zbiór liczb, z których każdej można przypisać unikalny numer.

Innymi słowy, każdą liczbę można powiązać z pewną liczbą naturalną i to niepowtarzalną. I nie przypiszemy tego numeru żadnemu innemu numerowi z tego zestawu.

Liczbę z liczbą nazywamy th członkiem ciągu.

Zwykle całą sekwencję nazywamy jakąś literą (na przykład), a każdy element tej sekwencji to ta sama litera z indeksem równym numerowi tego elementu: .

Jest to bardzo wygodne, jeśli th-ty wyraz ciągu można określić za pomocą jakiegoś wzoru. Na przykład formuła

ustawia kolejność:

A formuła jest następującą sekwencją:

Na przykład postęp arytmetyczny jest ciągiem (pierwszy wyraz jest tutaj równy, a różnica jest). Lub (, różnica).

formuła n-tego terminu

Nazywamy formułą rekurencyjną, w której aby znaleźć th wyraz, trzeba znać poprzednie lub kilka poprzednich:

Aby znaleźć na przykład dziewiąty wyraz progresji za pomocą tego wzoru, będziemy musieli obliczyć poprzednie dziewięć. Na przykład pozwól. Następnie:

Czy teraz jest jasne, jaka jest formuła?

W każdym wierszu dodajemy, pomnożyliśmy przez jakąś liczbę. Który? Bardzo proste: jest to numer bieżącego członka minus:

Teraz jest o wiele wygodniej, prawda? Sprawdzamy:

Zdecyduj sam:

W postępie arytmetycznym znajdź wzór na n-ty wyraz i znajdź setny wyraz.

Rozwiązanie:

Pierwszy wyraz jest równy. Jaka jest różnica? Oto co:

(Dlatego nazywa się to różnicą, bo jest równe różnicy kolejnych wyrazów postępu).

Zatem formuła:

Wtedy setny wyraz jest równy:

Jaka jest suma wszystkich liczb naturalnych od do?

Według legendy wielki matematyk Carl Gauss już jako 9-letni chłopiec obliczył tę kwotę w kilka minut. Zauważył, że suma pierwszej i ostatniej liczby jest równa, suma drugiej i przedostatniej jest taka sama, suma trzeciej i trzeciej od końca jest taka sama i tak dalej. Ile jest w sumie takich par? Zgadza się, to znaczy dokładnie połowa liczby wszystkich liczb. Więc,

Ogólny wzór na sumę pierwszych wyrazów dowolnego postępu arytmetycznego będzie następujący:

Przykład:
Znajdź sumę wszystkich liczby dwucyfrowe, wielokrotności.

Rozwiązanie:

Pierwsza taka liczba to ta. Każdą kolejną liczbę uzyskujemy poprzez dodanie do poprzedniej liczby. Zatem interesujące nas liczby tworzą ciąg arytmetyczny z pierwszym wyrazem i różnicą.

Formuła wyrazu VII dla tej progresji:

Ile wyrazów jest w progresji, jeśli wszystkie muszą być dwucyfrowe?

Bardzo łatwe: .

Ostatni termin progresji będzie równy. Następnie suma:

Odpowiedź: .

Teraz zdecyduj sam:

  1. Każdego dnia sportowiec przebiega więcej metrów niż poprzedniego dnia. Ile kilometrów przebiegnie w ciągu tygodnia, jeśli pierwszego dnia przebiegł km?
  2. Rowerzysta pokonuje każdego dnia więcej kilometrów niż poprzedniego dnia. Pierwszego dnia przejechał km. Ile dni musi podróżować, aby pokonać kilometr? Ile kilometrów przejedzie ostatniego dnia swojej podróży?
  3. Cena lodówki w sklepie spada co roku o tę samą kwotę. Oblicz, o ile cena lodówki spadała każdego roku, jeśli wystawiona na sprzedaż za ruble, sześć lat później została sprzedana za ruble.

Odpowiedzi:

  1. Najważniejsze jest tu rozpoznanie postępu arytmetycznego i określenie jego parametrów. W tym przypadku (tygodnie = dni). Musisz określić sumę pierwszych wyrazów tej progresji:
    .
    Odpowiedź:
  2. Tutaj jest podane: , należy znaleźć.
    Oczywiście musisz użyć tego samego wzoru na sumę, co w poprzednim zadaniu:
    .
    Zastąp wartości:

    Katalog główny najwyraźniej nie pasuje, więc odpowiedź brzmi.
    Obliczmy drogę przebytą ostatniego dnia, korzystając ze wzoru na wyraz:
    (km).
    Odpowiedź:

  3. Dany: . Znajdować: .
    To nie może być prostsze:
    (pocierać).
    Odpowiedź:

PROGRESJA ARYTMETYCZNA. KRÓTKO O NAJWAŻNIEJSZYCH RZECZACH

Jest to ciąg liczb, w którym różnica między sąsiednimi liczbami jest taka sama i równa.

Postęp arytmetyczny może być rosnący () i malejący ().

Na przykład:

Wzór na znalezienie n-tego wyrazu ciągu arytmetycznego

jest zapisywany wzorem, gdzie jest liczbą numerów w toku.

Własność członków ciągu arytmetycznego

Pozwala łatwo znaleźć wyraz ciągu, jeśli znane są wyrazy sąsiadujące z nim - gdzie jest liczba liczb w ciągu.

Suma wyrazów postępu arytmetycznego

Istnieją dwa sposoby znalezienia kwoty:

Gdzie jest liczba wartości.

Gdzie jest liczba wartości.

No cóż, temat się skończył. Jeśli czytasz te słowa, oznacza to, że jesteś bardzo fajny.

Bo tylko 5% ludzi jest w stanie samodzielnie coś opanować. A jeśli przeczytasz do końca, to jesteś w tych 5%!

Teraz najważniejsza rzecz.

Zrozumiełeś teorię na ten temat. I powtarzam, to... to jest po prostu super! Już jesteś lepszy od zdecydowanej większości Twoich rówieśników.

Problem w tym, że to może nie wystarczyć...

Po co?

Aby odnieść sukces zdanie jednolitego egzaminu państwowego, o przyjęcie na studia z ograniczonym budżetem i, co najważniejsze, na całe życie.

Nie będę Cię do niczego przekonywał, powiem tylko jedno...

Osoby, które otrzymały Dobra edukacja, zarabiają znacznie więcej niż ci, którzy ich nie otrzymali. To jest statystyka.

Ale to nie jest najważniejsze.

Najważniejsze, że są BARDZIEJ SZCZĘŚLIWI (są takie badania). Być może dlatego, że otwiera się przed nimi o wiele więcej możliwości i życie staje się jaśniejsze? nie wiem...

Ale pomyśl samodzielnie...

Czego potrzeba, aby na egzaminie Unified State Exam wypaść lepiej od innych i ostatecznie… być szczęśliwszym?

Zdobądź rękę, rozwiązując problemy z tego tematu.

Podczas egzaminu nie będziesz proszony o zadawanie teorii.

Będziesz potrzebować rozwiązywać problemy z czasem.

A jeśli ich nie rozwiązałeś (DUŻO!), na pewno popełnisz gdzieś głupi błąd lub po prostu nie będziesz miał czasu.

To jak w sporcie – trzeba to powtarzać wiele razy, żeby na pewno wygrać.

Znajdź kolekcję gdziekolwiek chcesz, koniecznie z rozwiązaniami, szczegółowa analiza i decyduj, decyduj, decyduj!

Możesz skorzystać z naszych zadań (opcjonalnie) i oczywiście je polecamy.

Aby lepiej radzić sobie z naszymi zadaniami, musisz pomóc przedłużyć żywotność podręcznika YouClever, który aktualnie czytasz.

Jak? Istnieją dwie opcje:

  1. Odblokuj wszystkie ukryte zadania w tym artykule - 299 rubli.
  2. Odblokuj dostęp do wszystkich ukrytych zadań we wszystkich 99 artykułach podręcznika - 499 rubli.

Tak, w naszym podręczniku mamy 99 takich artykułów i dostęp do wszystkich zadań oraz wszystkich ukrytych w nich tekstów można od razu otworzyć.

Dostęp do wszystkich ukrytych zadań jest zapewniony przez CAŁY okres istnienia witryny.

Podsumowując...

Jeśli nie podobają Ci się nasze zadania, znajdź inne. Tylko nie poprzestawaj na teorii.

„Rozumiem” i „Umiem rozwiązać” to zupełnie różne umiejętności. Potrzebujesz obu.

Znajdź problemy i rozwiąż je!

Wiele osób słyszało o postępie arytmetycznym, ale nie każdy ma dobre pojęcie o tym, czym jest. W tym artykule podamy odpowiednią definicję, a także rozważymy pytanie, jak znaleźć różnicę postępu arytmetycznego i podamy szereg przykładów.

Definicja matematyczna

Jeśli więc mówimy o postępie arytmetycznym lub algebraicznym (pojęcia te definiują to samo), to oznacza to, że istnieje pewien szereg liczbowy, który spełnia następujące prawo: każde dwie sąsiednie liczby w szeregu różnią się tą samą wartością. Matematycznie jest to zapisane w ten sposób:

Tutaj n oznacza numer elementu a n w ciągu, a liczba d jest różnicą postępu (jej nazwa wynika z przedstawionego wzoru).

Na co wskazuje znajomość różnicy d? O tym, jak „daleko” sąsiednie liczby są od siebie. Jednakże znajomość d jest warunkiem koniecznym, ale niewystarczającym do ustalenia (przywrócenia) całej progresji. Konieczne jest poznanie jeszcze jednej liczby, którą może być absolutnie dowolny element rozważanego szeregu, na przykład 4, a10, ale z reguły używają pierwszej liczby, czyli 1.

Wzory na wyznaczanie elementów progresji

Generalnie powyższe informacje są już wystarczające, aby przejść do rozwiązania specyficzne zadania. Zanim jednak zostanie podany postęp arytmetyczny, a konieczne będzie znalezienie jego różnicy, przedstawimy kilka przydatnych wzorów, ułatwiających w ten sposób dalszy proces rozwiązywania problemów.

Łatwo pokazać, że dowolny element ciągu o numerze n można znaleźć w następujący sposób:

za n = za 1 + (n - 1) * re

Rzeczywiście każdy może sprawdzić ten wzór za pomocą prostego wyszukiwania: jeśli podstawisz n = 1, otrzymasz pierwszy element, jeśli podstawisz n = 2, wówczas wyrażenie poda sumę pierwszej liczby i różnicę i tak dalej.

Warunki wielu problemów są tak skonstruowane, że mając znaną parę liczb, której liczby również podane są w ciągu, trzeba zrekonstruować cały szereg liczbowy (znaleźć różnicę i pierwszy element). Teraz rozwiążemy ten problem w ogólnej formie.

Niech więc zostaną dane dwa elementy o liczbach n i m. Korzystając ze wzoru otrzymanego powyżej, można utworzyć układ dwóch równań:

za n = za 1 + (n - 1) * re;

za m = za 1 + (m - 1) * re

Aby znaleźć nieznane ilości, używamy znanych prosta sztuczka rozwiązania takiego układu: odejmij parami lewą i prawą stronę, równość pozostanie ważna. Mamy:

za n = za 1 + (n - 1) * re;

za n - za m = (n - 1) * re - (m - 1) * d = d * (n - m)

Zatem wykluczyliśmy jedną niewiadomą (a 1). Teraz możemy napisać końcowe wyrażenie określające d:

d = (a n - a m) / (n - m), gdzie n > m

Otrzymaliśmy bardzo prosty wzór: aby obliczyć różnicę d zgodnie z warunkami zadania, wystarczy przyjąć stosunek różnic między samymi elementami i ich numer seryjny. Warto zwrócić uwagę na jedno ważny punkt uwaga: różnice uwzględniane są pomiędzy „najwyższymi” i „najniższymi” członkami, czyli n > m („najwyższy” oznacza ten położony dalej od początku ciągu, jego wartość bezwzględna może być większa lub mniejsza od element „młodszy”).

Wyrażenie na różnicę d postępu należy na początku rozwiązania zadania podstawić do dowolnego równania, aby otrzymać wartość pierwszego wyrazu.

W dobie rozwoju technologii komputerowej wiele uczniów próbuje znaleźć rozwiązania swoich zadań w Internecie, dlatego często pojawiają się pytania tego typu: znajdź różnicę w postępie arytmetycznym online. Na takie żądanie wyszukiwarka zwróci szereg stron internetowych, przechodząc do których konieczne będzie wprowadzenie danych znanych z warunku (mogą to być albo dwa terminy progresji, albo suma określonej ich liczby ) i natychmiast otrzymaj odpowiedź. Jednak takie podejście do rozwiązania problemu jest bezproduktywne z punktu widzenia rozwoju ucznia i zrozumienia istoty powierzonego mu zadania.

Rozwiązanie bez użycia wzorów

Rozwiążmy pierwsze zadanie nie korzystając z podanych wzorów. Niech będą dane elementy szeregu: a6 = 3, a9 = 18. Znajdź różnicę ciągu arytmetycznego.

Znane elementy stoją blisko siebie w rzędzie. Ile razy należy dodać różnicę d do najmniejszej, aby otrzymać największą? Trzy razy (za pierwszym razem dodając d otrzymamy element 7, za drugim razem - za ósmym, wreszcie za trzecim razem - dziewiąty). Jaką liczbę należy dodać trzy razy do trzech, aby otrzymać 18? To jest liczba pięć. Naprawdę:

Zatem nieznana różnica d = 5.

Oczywiście rozwiązanie można było przeprowadzić stosując odpowiednią formułę, ale nie zrobiono tego celowo. Szczegółowe wyjaśnienie rozwiązania problemu powinno być jasne i jasne świecący przykład Co to jest postęp arytmetyczny?

Zadanie podobne do poprzedniego

Rozwiążmy teraz podobny problem, ale zmieńmy dane wejściowe. Zatem powinieneś znaleźć, czy a3 = 2, a9 = 19.

Oczywiście możesz ponownie zastosować metodę rozwiązania „z głową”. Ponieważ jednak podano elementy szeregu, które są od siebie stosunkowo oddalone, metoda ta nie będzie do końca wygodna. Ale użycie otrzymanej formuły szybko doprowadzi nas do odpowiedzi:

d = (za 9 - za 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 ≈ 2,83

Tutaj zaokrągliliśmy ostateczną liczbę. Stopień, w jakim to zaokrąglenie doprowadziło do błędu, można ocenić sprawdzając wynik:

za 9 = za 3 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 + 2,83 = 18,98

Wynik ten różni się jedynie o 0,1% od wartości podanej w warunku. Dlatego też zaokrąglenie zastosowane do setnych części można uznać za udany wybór.

Problemy ze stosowaniem wzoru na wyraz

Rozważmy klasyczny przykład problemu wyznaczania nieznanej d: znajdź różnicę ciągu arytmetycznego, jeśli a1 = 12, a5 = 40.

Gdy dane są dwie liczby o nieznanym ciągu algebraicznym i jedna z nich jest elementem a 1, to nie trzeba długo zastanawiać się, tylko należy od razu zastosować wzór na wyraz a n. W tym przypadku mamy:

za 5 = za 1 + re * (5 - 1) => d = (za 5 - za 1) / 4 = (40 - 12) / 4 = 7

Dokładną liczbę otrzymaliśmy przy dzieleniu, więc nie ma sensu sprawdzać poprawności obliczonego wyniku, jak to zrobiono w poprzednim akapicie.

Rozwiążmy inny podobny problem: musimy znaleźć różnicę ciągu arytmetycznego, jeśli a1 = 16, a8 = 37.

Stosujemy podejście podobne do poprzedniego i otrzymujemy:

za 8 = za 1 + re * (8 - 1) => re = (za 8 - za 1) / 7 = (37 - 16) / 7 = 3

Co jeszcze warto wiedzieć o postępie arytmetycznym?

Oprócz problemów ze znalezieniem nieznanej różnicy lub poszczególnych elementów, często konieczne jest rozwiązanie problemów sumy pierwszych wyrazów ciągu. Omówienie tych zadań wykracza jednak poza zakres artykułu, jednak dla kompletności prezentowanych informacji ogólna formuła dla sumy n liczb w szeregu:

∑ n ja = 1 (za ja) = n * (za 1 + za n) / 2

Koncepcja ciągu liczbowego zakłada, że ​​każdej liczbie naturalnej odpowiada pewna wartość rzeczywista. Taka seria liczb może być dowolna lub mieć określone właściwości - progresję. W tym drugim przypadku każdy kolejny element (element) ciągu można obliczyć na podstawie poprzedniego.

Postęp arytmetyczny to ciąg wartości liczbowych, w którym sąsiadujące z nim elementy różnią się od siebie tą samą liczbą (wszystkie elementy szeregu, począwszy od drugiego, mają podobną właściwość). Ten numer– różnica pomiędzy wyrazami poprzednim i kolejnymi jest stała i nazywana jest różnicą progresji.

Różnica w postępie: definicja

Rozważmy ciąg składający się z j wartości A = a(1), a(2), a(3), a(4) ... a(j), j należy do zbioru liczb naturalnych N. Arytmetyka progresja według definicji to ciąg, w którym a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = re. Wartość d jest pożądaną różnicą tego postępu.

d = a(j) – a(j-1).

Atrakcja:

  • Postęp rosnący, w którym to przypadku d > 0. Przykład: 4, 8, 12, 16, 20, ...
  • Postęp malejący, następnie d< 0. Пример: 18, 13, 8, 3, -2, …

Progresja różnicowa i jej elementy arbitralne

Jeżeli znane są 2 dowolne wyrazy ciągu (i-ty, k-ty), to różnicę dla danego ciągu można wyznaczyć na podstawie zależności:

a(i) = a(k) + (i – k)*d, co oznacza d = (a(i) – a(k))/(i-k).

Różnica w progresji i jej pierwszym terminie

To wyrażenie pomoże określić nieznaną wartość tylko w przypadkach, gdy znany jest numer elementu sekwencji.

Różnica progresji i jej suma

Suma progresji jest sumą jej warunków. Aby obliczyć całkowitą wartość jego pierwszych j elementów, należy skorzystać z odpowiedniego wzoru:

S(j) =((a(1) + a(j))/2)*j, ale ponieważ a(j) = a(1) + d(j – 1), wtedy S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a ust. 1 + d(– 1))/2)*j.