Открытия, сделанные в большом адронном коллайдере. Зачем адронный коллайдер

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик

В этом вопросе (и ему подобных) любопытно появление слов «на самом деле» – как будто есть некая скрытая от непосвящённых суть, охраняемая «жрецами науки» от обывателей, тайна, которую нужно раскрыть. Однако при взгляде изнутри науки тайна исчезает и места этим словам нет – вопрос «зачем нужен адронный коллайдер» ничем принципиально не отличается от вопроса «зачем нужна линейка (или весы, или часы и т.д.)». То, что коллайдер – штука большая, дорогая и по любым меркам сложная – дела не меняет.

Наиболее близкой аналогией, позволяющей понять, «зачем это нужно», является, на мой взгляд, линза. Человечество знакомо со свойствами линз с незапамятных времён, однако только в середине прошлого тысячелетия было понято, что определённые комбинации линз могут быть использованы как приборы, позволяющие рассматривать очень маленькие либо очень далёкие объекты – речь идёт, конечно, о микроскопе и телескопе. Нет никаких сомнений, что вопрос, зачем всё это нужно, неоднократно задавался при появлении этих новых для современников конструкций. Однако он снялся с повестки дня сам собой, по мере того, как ширились области научного и прикладного применения и того, и другого устройства. Заметим, что, вообще говоря, это разные приборы – рассматривать звёзды в перевёрнутый микроскоп не получится. Большой адронный коллайдер же, парадоксальным образом, объединяет их в себе, и может с полным основанием рассматриваться как высшая достигнутая человечеством точка эволюции как микроскопов, так и телескопов за прошедшие века. Это утверждение может показаться странным, и, разумеется, его не следует понимать буквально – в ускорителе нет линз (по крайней мере, оптических). Но по сути дела это именно так. В своей «микроскопной» ипостаси коллайдер позволяет изучать структуру и свойства объектов на уровне 10-19 метров (напомню, что размер атома водорода – примерно 10-10 метра). Ещё интереснее обстоит дело в «телескопной» части. Каждый телескоп – самая настоящая машина времени, так как наблюдаемая в нём картина соответствует тому, каким был объект наблюдения в прошлом, а именно то время назад, которое необходимо электромагнитному излучению, чтобы дойти от этого объекта до наблюдателя. Это время может составлять восемь с небольшим минут в случае наблюдения Солнца с Земли и до миллиардов лет при наблюдении далёких квазаров. Внутри Большого адронного коллайдера создаются условия, которые существовали во Вселенной через ничтожную долю секунды после Большого взрыва. Таким образом, мы получаем возможность заглянуть в прошлое почти на 14 миллиардов лет, к самому началу нашего мира. Обычные земные и орбитальные телескопы (по крайней мере, те, которые регистрируют электромагнитное излучение), обретают «зрение» лишь после эры рекомбинации, когда Вселенная стала оптически прозрачной – это произошло по современным представлениям через 380 тысяч лет после Большого взрыва.

Дальше нам предстоит решать – что делать с этим знанием: как об устройстве материи на малых масштабах, так и об её свойствах при рождении Вселенной, и именно это в конечном итоге вернёт тайну, о которой шла речь в начале, и определит, зачем же коллайдер был нужен «на самом деле». Но это решение человека, коллайдер же, с помощью которого было получено это знание, останется всего лишь прибором – возможно, самой изощрённой системой «линз», которую когда-либо видел мир.

Большой адронный коллайдер (БАК) - это ускоритель заряженных частиц, с помощью которого физики смогут узнать о свойсвтах материи значительно больше, чем было известно раньше. Ускорители используются для получения заряженных элементарных частиц высоких энергий. В основе работы практически любого ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле напрямую совершает работу над частицей, то есть увеличивает её энергию, а магнитное поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Коллайдер (англ. collide - "сталкиваться") - ускоритель на встречных пучках, предназначенный для изучения продуктов их соударений. Позволяет придать элементарным частицам вещества высокую кинетическую энергию, направить их навстречу друг другу, чтобы произвести их столкновение.

Почему "большой адронный"

Большим коллайдер назван, собственно, из-за своих размеров. Длина основного кольца ускорителя составляет 26 659 м; адронным - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков.

Построен БАК в научно-исследовательском центре Европейского совета ядерных исследований (ЦЕРН), на границе Швейцарии и Франции, недалеко от Женевы. На сегодняшний день БАК является самой крупной экспериментальной установкой в мире. Руководителем этого масштабного проекта является британский физик Лин Эванс, а в строительстве и исследованиях принимали и принимают участие более 10 тыс. учёных и инженеров из более чем 100 стран.

Небольшой экскурс в историю

В конце 60-х годов прошлого века физиками была разработана так называемая Стандартная модель. Она объединяет три из четырёх фундаментальных взаимодействий - сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах общей теориии относительности. То есть, на сегодняшний день фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и стандартной моделью.

Считается, что стандартная модель должна быть частью некоторой более глубокой теории строения микромира, той частью, которая видна в экспериментах на коллайдерах при энергиях ниже примерно 1 ТэВ(тераэлектронвольт). Главная задача Большого адронного коллайдера - получить хотя бы первые намеки на то, что это за более глубокая теория.

В число основных задач коллайдера входит также открытие и подтверждение Бозона Хиггса. Это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 ТэВ, при увеличении которой частица распадается. При энергии в 7 ТэВ могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные.

Технические характеристики

Предполагается сталкивать в ускорителе протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5 ГэВ (5·109 электронвольт) на каждую пару сталкивающихся нуклонов.

Светимость БАК во время первых недель работы пробега была не более 1029 частиц/см²·с, тем не менее она продолжает постоянно повышаться. Целью является достижение номинальной светимости в 1,7·1034 частиц/см²·с, что по порядку величины соответствует светимостям BaBar (SLAC, США) и Belle(KEK, Япония).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер, под землёй на территории Франции и Швейцарии. Глубина залегания туннеля - от 50 до 175 метров, причём кольцо туннеля наклонено примерно на 1,4 % относительно поверхности земли. Для удержания, коррекции и фокусировки протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Магниты работают при температуре 1,9 K (−271 °C), что немного ниже температуры перехода гелия в сверхтекучее состояние.

Детекторы БАК

На БАК работают 4 основных и 3 вспомогательных детектора:

  • ALICE (A Large Ion Collider Experiment)
  • ATLAS (A Toroidal LHC ApparatuS)
  • CMS (Compact Muon Solenoid)
  • LHCb (The Large Hadron Collider beauty experiment)
  • TOTEM (TOTal Elastic and diffractive cross section Measurement)
  • LHCf (The Large Hadron Collider forward)
  • MoEDAL (Monopole and Exotics Detector At the LHC).

Первый из них настроен для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк.

Второй предназначен для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

CMS - один из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS (На рисунке - устройство CMS).


Самый внутренний слой - основанный на кремнии трекер. Трекер - самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле.

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае.

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц соленоидный магнит.

Пятый слой - мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие - в поисках новой физики.

О Большом адронном коллайдере можно рассказывать много и долго. Надеемся, что наша статья помогла разобраться в том, что же такое БАК и для чего он необходим учёным.

Еще несколько лет назад я понятия не имел что такое адронные коллайдеры, Бозон Хиггса и для чего тысячи ученых всего мира трудятся в огромном физическом кампусе на границе Швейцарии и Франции, закапывая в землю миллиарды долларов.
Затем для меня, как и многих других жителей планеты, стали привычными выражение Большой Адронный Коллайдер, знание о сталкивающихся в нем на скорости света элементарных частицах и об одном из величайших открытий последнего времени — Бозоне Хиггса.

И вот, в середине июня мне представилась возможность своими глазами увидеть то, о чем столько говорят и о чем бродит столько противоречивых слухов.
Это была не просто короткая экскурсия, а полноценный день, проведенный в крупнейшей в мире лаборатории ядерной физики — Церне. Здесь нам удалось и пообщаться с самими учеными-физиками, и увидеть массу интересного в этом научном кампусе, спуститься в святая-святых — Большой Адронный Коллайдер (а ведь когда он запущен и в нем проводятся испытания, какой-либо доступ извне к нему невозможен), побывать на заводе по производству гигантских магнитов для коллайдера, в центре Atlas, где ученые проводят анализ данных, полученных в коллайдере, тайком побывать в новейшем строящемся линейном коллайдере и даже, почти как в квесте, практически пройти по тернистому пути элементарной частицы, от конца к началу. И увидеть, откуда же все начинается…
Но обо всем этом в отдельных постах. Сегодня просто Большой Адронный Коллайдер.
Если это можно назвать просто мой мозг отказывается понять, КАК такое можно было сначала придумать, а затем построить.

2. Много лет назад эта картинка стала всемирно известной. Многие считают, что это и есть Большой Адронный в разрезе. На самом деле, это разрез одного из самых больших детекторов — CMS. Его диаметр составляет около 15 метров. Это не самый большой детектор. Диаметр Atlas-а около 22 метров.

3. Чтобы примерно понимать, что это вообще такое и насколько коллайдер большой, посмотрим на спутниковую карту.
Это предместье Женевы, совсем недалеко от Женевского озера. Именно здесь базируется огромный кампус ЦЕРНа, о котором я отдельно расскажу чуть позже, и под землей на различных глубинах располагается куча коллайдеров. Да-да. Он не один. Их десяток. Большой Адронный просто венчает эту структуру, образно говоря, завершая цепочку коллайдеров, по которым разгоняются элементарные частицы. Об этом тоже я расскажу отдельно, пройдя вместе с частицей от Большого (LHC) до самого первого, линейного Linac.
Диаметр кольца LHC составляет почти 27 километров и он залегает на глубине чуть более 100 метров (на рисунке самое большое кольцо).
В LHC есть четыре детектора — Alice, Atlas, LHCb и CMS. Мы спускались к детектору CMS.

4. Помимо этих четырех детекторов, все остальное пространство под землей представляет из себя тоннель, в котором располагается беспрерывная кишка из вот таких синих сегментов. Это магниты. Гигантские магниты, в которых создается сумасшедшее магнитное поле, в котором и двигаются со скоростью света элементарные частицы.
Всего их 1734.

5. Внутри магнит представляет из себя вот такую сложную структуру. Здесь масса всего, но самое основное — это две полые трубки внутри, в которых летают протонные пучки.
В четырех местах (в тех самых детекторах) эти трубки пересекаются и протонные пучки сталкиваются. В тех местах, где они сталкиваются, протоны разлетаются на различные частицы, что и фиксируют детекторы.
Это если вкратце говорить о том, что это за ерунда и как она работает.

6. Итак, 14 июня, утро, ЦЕРН. Мы приезжаем к малозаметному заборчику с воротами и небольшим зданием на территории.
Это вход в один из четырех детекторов Большого Адронного Коллайдера — CMS.
Здесь я хочу немного остановиться, чтобы рассказать о том, как нам вообще удалось сюда попасть и благодаря кому.
А всему «виной» Андрей, наш человек, который работает в ЦЕРНе, и благодаря которому наше посещение было не какой-то короткой скучной экскурсией, а невероятно интересным и наполненным огромным количеством информации.
Андрей (он в зеленой футболке) никогда не против гостей и всегда рад способствовать посещению этой Мекки ядерной физики.
Знаете, что интересно? Это пропускной режим в Коллайдере и в ЦЕРНе вообще.
Да, все по магнитной карте, но… сотрудник по своему пропуску имеет доступ на 95% территории и объектов.
И только те, где повышенный уровень радиационной опасности, нужен специальный доступ — это внутрь самого коллайдера.
А так — без проблем сотрудники передвигаются по территории.
На минуточку — здесь вложены миллиарды долларов и масса самого невероятного оборудования.
И тут же я вспоминаю какие-нибудь заброшенные объекты в Крыму, где все давно нафиг вырезано, но, тем не менее, все мегасекретно, снимать ни в коем случае нельзя, и объект невесть какой стратегический.
Просто здесь люди адекватно думают головой.

7. Так выглядит территория CMS. Никаких тебе понтов во внешней отделке и супер-тачек на парковке. А ведь могут себе позволить. Просто незачем.

8. ЦЕРН, как ведущий мировой научный центр в области физики, использует несколько различных направлений в части пиара. Один из них — так называемое «Tree».
В его рамках приглашаются школьные учителя по физике из разных стран и городов. Им здесь показывают и рассказывают. Затем учителя возвращаются в свои школы и рассказывают об увиденном ученикам. Какое-то количество учеников, вдохновившись рассказом, начинают с большим интересом заниматься физикой, затем идут в ВУЗы на физические специальности и в будущем, возможно, даже попадут сюда работать.
Но пока дети еще учатся в школе, у них тоже есть возможность побывать в ЦЕРНе и, конечно же, спуститься в Большой Адронный Коллайдер.
Несколько раз в месяц здесь проводятся специальные «дни открытых дверей» для одаренных детей из разных стран, влюбленных в физику.
Их отбирают те самые учителя, которые были в основе этого дерева и подают предложения в офис ЦЕРНа в Швейцарии.
Так совпало, что в день, когда мы приехали увидеть Большой Адронный Коллайдер, сюда приехала одна из таких групп из Украины — дети, воспитанники Малой Академии Наук, прошедшие сложный конкурс. Вместе с ними мы спустились на 100-метровую глубину, в самое сердце Коллайдера.

9. Слава с нашими бейджами-пропусками.
Обязательные элементы работающих здесь физиков — шлем с фонарем и ботинки с металлической пластиной на носке (чтобы при падении груза уберечь пальцы ног)

10. Одаренные дети, увлеченные физикой. Через несколько минут сбудется их места — они спустятся в Большой Адронный Коллайдер

11. Рабочие играют в домино отдыхают перед очередной сменой под землей

12. Контрольно-управляющий центр CMS. Сюда стекаются первичные данные от основных датчиков, характеризующих функционирование системы.
Во время работы коллайдера, здесь круглосуточно работает команда из 8 человек.

13. Нужно сказать, что в настоящий момент Большой Адронный остановлен на два года для выполнения программы ремонта и модернизации коллайдера.
Дело в том, что 4 года назад на нем произошла авария, после которой коллайдер так и не работал на полную мощность (об аварии я расскажу в следующем посте).
После модернизации, которая закончится в 2014 году, он должен работать на еще большей мощности.
Если бы коллайдер сейчас работал, побывать в нем нам бы точно не удалось

14. На специальном техническом лифте мы спускаемся на глубину более 100 метров, где расположен Коллайдер.
Лифт является единственным средством спасения персонала в случае чрезвычайной ситуации, т.к. лестниц здесь нет. То есть это самое безопасное место в CMS.
По инструкции, в случае тревоги, весь персонал должен немедленно направляться к лифту.
Здесь создается избыточной давление, чтобы в случае задымления дым не попал внутрь и люди не получили отравление.

15. Борис переживает, чтобы не было задымления

16. На глубине. Здесь все пронизано коммуникациями

17. Бесконечные километры проводов и кабелей для передачи данных

18. Здесь огромное количество труб. Так называемая криогеника. Дело в том, что внутри магнитов для охлаждения используется гелий. Также необходимо охлаждение других систем, а также гидравлика.

19. В залах обработки данных, расположенных в детекторе расположен находится огромное число серверов.
Они объединены в так называемые триггеры невероятной производительности.
Например, первый триггер за 3 миллисекунды из 40 000 000 событий должен отобрать около 400 и передать их на второй триггер — высшего уровня.

20. Оптоволоконное безумие.
Компьютерные залы расположены выше детектора, т.к. здесь совсем небольшое магнитное поле, не препятствующие работе электроники.
В самом детекторе сбор данных осуществлять бы не удалось.

21. Глобальный триггер. Он состоит из 200 компьютеров

22. Какой там Apple? Dell !!!

23. Серверные шкафы надежно заперты

24. Забавный рисунок на одном из рабочих мест операторов.

25. В конце 2012 года в Большом Адронном Коллайдере в результате эксперимента таки был открыт Бозон Хиггса, и это событие широко отмечалось работниками ЦЕРНа.
Бутылки от шампанского после празднования не выбросили специально, считая, что это только начало великих дел

26. На подходе к самому детектору везде таблички, предупреждающие о радиационной опасности

26. У всех сотрудников Коллайдера есть персональные дозиметры, которые они обязаны поднести к считывающему устройству и зафиксировать свое нахождение.
Дозиметр накапливает уровень радиации и в случае приближения к граничной дозе, информирует сотрудника, а также он-лайн передает данные на пост управления, предупреждая о том, что около коллайдера находится человек, который в опасности

27. Перед самым детектором система доступа высшего уровня.
Войти можно, приложим персональную карту, дозиметр и пройдя сканирование сетчатки глаза

28. Что я и делаю

29. И вот он — детектор. Небольшое жало внутри — это что-то похожее на патрон для дрели, в котором расположены те огромные магниты, которые сейчас казались бы совсем маленькими. В настоящий момент магниты отсутствуют, т.к. проходит модернизация

30. В рабочем состоянии детектор соединен и выглядит единым целым

31. Вес детектора — 15 тысяч тонн. Здесь создается невероятное по силе магнитное поле.

32. Сравните размеры детектора с людьми и техникой, работающими внизу

33. Кабеля синего цвета — питание, красные — данные

34. Интересно, что во время работы Большой Адронный потребляет в час 180 мегаватт электроэнергии.

35. Текущие работы по обслуживанию датчиков

36. Многочисленные датчики

37. И питание к ним… обратно возвращается оптоволокно

38. Взгляд невероятно умного человека.

39. Полтора часа под землей пролетает, как пять минут… Поднявшись обратно на бренную землю, невольно задумываешься… КАК это можно сделать.
И ЗАЧЕМ они это делают….

Определение большого адронного коллайдера звучит так: БАК является ускорителем заряженных частиц, и создан он с целью разгона тяжелых ионов и протонов свинца, и исследования тех процессов, которые происходят при их столкновении. Но зачем это нужно? Таит ли в себе это какую-то опасность? В этой статье мы и будем отвечать на эти вопросы, и попробуем понять, зачем нужен большой адронный коллайдер.

Что собой представляет БАК

Большой адронный коллайдер – это огромнейший тоннель кольцеобразной формы. Он похож на большую трубу, которая разгоняет частицы. Находится БАК под территорией Швейцарии и Франции, на глубине 100 метров. Ученые всего мира принимали участие в его создании.

Цель его постройки:

  • Найти бозон Хиггса. Это механизм, который наделяет частицы массой.
  • Изучение кварков – это фундаментальные частицы, которые входят в состав адронов. Поэтому и название коллайдера «адронный».

Многие думают, что БАК является единственным ускорителем в мире. Но это далеко не так. Начиная с 50-х годов 20 века в мире построен не один десяток подобных коллайдеров. Но большой адронный коллайдер считается самым масштабным сооружением, длина его составляет 25,5 км. Кроме этого, в него входит еще один ускоритель, меньший по размеру.

СМИ о БАК

В СМИ, еще с начала создания коллайдера, появилось огромное количество статей об опасности и дороговизне ускорителя. Основная масса людей считает, что деньги потрачены зря, они не могут понять, зачем тратить столько средств и сил на поиски какой-то частицы.

  • Большой адронный коллайдер не является самым дорогим научным проектом в истории.
  • Основная цель этой работы - бозон Хиггса, для открытия которого и созданадронный коллайдер. Результаты этого открытия принесут человечеству множество революционных технологий. Ведь изобретение сотового телефона тоже когда-то было встречено негативно.

Принцип работы БАК

Рассмотрим, как выглядит работа адронного коллайдера. Он на больших скоростях сталкивает пучки частиц, а затем следит за их последующим взаимодействием и поведением. Как правило, на вспомогательном кольце сначала разгоняется один пучок частиц, а уже после этого он отправляется в кольцо основное.

Внутри коллайдера частицы удерживают множество сильнейших магнитов. Так как столкновение частиц происходит за доли секунды, то их перемещение фиксируют высокоточные приборы.

Организацией, которая осуществляет работу коллайдера, является ЦЕРН. Именно она, 4 июля 2012 года, после огромных денежных вложений и трудов, официально объявила о том, что бозон Хиггса таки найден.

Зачем БАК нужен

Теперь необходимо понять, что же дает БАК обычным людям, зачем адронный коллайдер нужен.

Открытия, связанные с бозоном Хиггса и изучение кварков, могут привести в перспективе к новой волне научно-технического прогресса.

  • Грубо говоря, масса является энергией в состоянии покоя, а значит, в будущем есть возможность преобразовать материю в энергию. И, следовательно, не будет проблем с энергией и появится возможность межзвездных путешествий.
  • В будущем изучение квантовой гравитации позволит управлять гравитацией.
  • Это дает возможность подробнее изучить М-теорию, которая утверждает, что в мироздание входит 11 измерений. Это изучение позволит глубже понять строение Вселенной.

О надуманной опасности адронного коллайдера

Как правило, люди боятся всего нового. Опасения у них вызывает и адронный коллайдер. Опасность же его надумана и разжигается в СМИ людьми, не имеющими естественно-научного образования.

  • В БАК сталкиваются адроны, а не бозоны, как пишут некоторые журналисты, пугая людей.
  • Подобные приборы работают уже много десятилетий и приносят не вред, а пользу науке.
  • Предположение о столкновении протонов с высокими энергиями, в результате которых могут возникнуть черные дыры, опровергается квантовой теорией гравитации.
  • В черную дыру может коллапсировать только звезда в 3 раза тяжелее солнца. Так как в солнечной системе таких масс нет, то и черной дыре неоткуда возникнуть.
  • Из-за той глубины, на которой находится коллайдер под землей, его излучение не представляет опасности.

Мы узнали, что такое БАК и для чего нужен адронный коллайдер и поняли, что опасаться его не стоит, а лучше ждать открытий, которые сулят нам большой технический прогресс.