Мир, рожденный из ничего. Происхождение и эволюция Вселенной: теория Большого взрыва

Вопрос о происхождении Вселенной со всеми ее известными и пока неведомыми свойствами испокон веков волнует человека. Но только в XX веке, после обнаружения космологического расширения, вопрос об эволюции Вселенной стал понемногу проясняться. Последние научные данные позволили сделать вывод, что наша Вселенная родилась 15 миллиардов лет назад в результате Большого взрыва. Но что именно взорвалось в тот момент и что, собственно, существовало до Большого взрыва, по-прежнему оставалось загадкой. Созданная в конце XX века инфляционная теория появления нашего мира позволила существенно продвинуться в разрешении этих вопросов, и общая картина первых мгновений Вселенной сегодня уже неплохо прорисована, хотя многие проблемы еще ждут своего часа.

Научный взгляд на сотворение мира

До начала прошлого века было всего два взгляда на происхождение нашей Вселенной. Ученые полагали, что она вечна и неизменна, а богословы говорили, что Мир сотворен и у него будет конец. Двадцатый век, разрушив очень многое из того, что было создано в предыдущие тысячелетия, сумел дать свои ответы на большинство вопросов, занимавших умы ученых прошлого. И быть может, одним из величайших достижений ушедшего века является прояснение вопроса о том, как возникла Вселенная, в которой мы живем, и какие существуют гипотезы по поводу ее будущего.

Простой астрономический факт — расширение нашей Вселенной — привел к полному пересмотру всех космогонических концепций и разработке новой физики — физики возникающих и исчезающих миров. Всего 70 лет назад Эдвин Хаббл обнаружил, что свет от более далеких галактик «краснее» света от более близких. Причем скорость разбегания оказалась пропорциональна расстоянию от Земли (закон расширения Хаббла). Обнаружить это удалось благодаря эффекту Доплера (зависимости длины волны света от скорости источника света). Поскольку более далекие галактики кажутся более «красными», то предположили, что и удаляются они с большей скоростью. Кстати, разбегаются не звезды и даже не отдельные галактики, а скопления галактик. Ближайшие от нас звезды и галактики связаны друг с другом гравитационными силами и образуют устойчивые структуры. Причем в каком направлении ни посмотри, скопления галактик разбегаются от Земли с одинаковой скоростью, и может показаться, что наша Галактика является центром Вселенной, однако это не так. Где бы ни находился наблюдатель, он будет везде видеть все ту же картину — все галактики разбегаются от него.

Но такой разлет вещества обязан иметь начало. Значит, все галактики должны были родиться в одной точке. Расчеты показывают, что произошло это примерно 15 млрд. лет назад. В момент такого взрыва температура была очень большой, и должно было появиться очень много квантов света. Конечно, со временем все остывает, а кванты разлетаются по возникающему пространству, но отзвуки Большого взрыва должны были сохраниться до наших дней.

Первое подтверждение факта взрыва пришло в 1964 году, когда американские радиоастрономы Р. Вильсон и А. Пензиас обнаружили реликтовое электромагнитное излучение с температурой около 3° по шкале Кельвина (–270°С). Именно это открытие, неожиданное для ученых, убедило их в том, что Большой взрыв действительно имел место и поначалу Вселенная была очень горячей.

Теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией. Но, к сожалению, а может, и к счастью, она же поставила и ряд новых вопросов. В частности: Что было до Большого взрыва? Почему наше пространство имеет нулевую кривизну и верна геометрия Евклида, которую изучают в школе? Если теория Большого взрыва справедлива, то отчего нынешние размеры нашей Вселенной гораздо больше предсказываемого теорией 1 сантиметра? Почему Вселенная на удивление однородна, в то время как при любом взрыве вещество разлетается в разные стороны крайне неравномерно? Что привело к начальному нагреву Вселенной до невообразимой температуры более 10 13 К?

Все это указывало на то, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только четверть века назад благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление — сверх-быстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики — общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.

Суть инфляции

При попытке дать представление о сущности начального периода жизни Вселенной приходится оперировать такими сверхмалыми и сверхбольшими числами, что наше воображение с трудом их воспринимает. Попробуем воспользоваться некоей аналогией, чтобы понять суть процесса инфляции.

Представим себе покрытый снегом горный склон, в который вкраплены разнородные мелкие предметы — камешки, ветки и кусочки льда. Кто-то, находящийся на вершине этого склона, сделал небольшой снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, так как на него налипают новые слои снега со всеми включениями. И чем больше размер снежка, тем быстрее он будет увеличиваться. Очень скоро из маленького снежка он превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее со все более увеличивающейся скоростью. Достигнув дна, ком ударится о дно пропасти и его составные части разлетятся во все стороны (кстати, часть кинетической энергии кома при этом пойдет на нагрев окружающей среды и разлетающегося снега). Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего физикам пришлось ввести гипотетическое поле, которое было названо «инфлатонным» (от слова «инфляция»). Это поле заполняло собой все пространство (в нашем случае — снег на склоне). Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходило, пока случайно не образовалась однородная конфигурация этого поля размером более 10 -33 см. Что же касается наблюдаемой нами Вселенной, то она в первые мгновения своей жизни, по-видимому, имела размер 10 -27 см. Предполагается, что на таких масштабах уже справедливы основные законы физики, известные нам сегодня, поэтому можно предсказать дальнейшее поведение системы. Оказывается, что сразу после этого пространственная область, занятая флуктуацией (от лат. fluctuatio — «колебание», случайные отклонения наблюдаемых физических величин от их средних значений), начинает очень быстро увеличиваться в размерах, а инфлатонное поле стремится занять положение, в котором его энергия минимальна (снежный ком покатился). Такое расширение продолжается всего 10 -35 секунды, но этого времени оказывается достаточно для того, чтобы диаметр Вселенной возрос как минимум в 10 27 раз и к окончанию инфляционного периода наша Вселенная приобрела размер примерно 1 см. Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии — дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.

Гора, о которой говорилось выше,может иметь очень сложный рельеф—несколько разных минимумов, долины внизу и всякие холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы за счет флуктуаций поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Причем вселенные могут существенно отличаться друг от друга. Свойства нашей Вселенной удивительнейшим образом приспособлены к тому, чтобы в ней возникла разумная жизнь. Другим вселенным, возможно, повезло меньше.

Еще раз хотелось бы подчеркнуть, что описанный процесс рождения Вселенной «практически из ничего» опирается на строго научные расчеты. Тем не менее у всякого человека, впервые знакомящегося с инфляционным механизмом, описанным выше, возникает немало вопросов.

В ответ на каверзные вопросы

Сегодня наша Вселенная состоит из большого числа звезд, не говоря уж о скрытой массе. И может показаться, что полная энергия и масса Вселенной огромны. И совершенно непонятно, как это все могло поместиться в первоначальном объеме 10 -99 см 3 . Однако во Вселенной существует не только материя, но и гравитационное поле. Известно, что энергия последнего отрицательна и, как оказалось, в нашей Вселенной энергия гравитации в точности компенсирует энергию, заключенную в частицах, планетах, звездах и прочих массивных объектах. Таким образом, закон сохранения энергии прекрасно выполняется, и суммарная энергия и масса нашей Вселенной практически равны нулю. Именно это обстоятельство отчасти объясняет, почему зарождающаяся Вселенная тут же после появления не превратилась в огромную черную дыру. Ее суммарная масса была совершенно микроскопична, и вначале просто нечему было коллапсировать. И только на более поздних стадиях развития появились локальные сгустки материи, способные создавать вблизи себя такие гравитационные поля, из которых не может вырваться даже свет. Соответственно, и частиц, из которых «сделаны» звезды, на начальной стадии развития просто не существовало. Элементарные частицы начали рождаться в тот период развития Вселенной, когда инфлатонное поле достигло минимума потенциальной энергии и начался Большой взрыв.

Область, занятая инфлатонным полем, разрасталась со скоростью, существенно большей скорости света, однако это нисколько не противоречит теории относительности Эйнштейна. Быстрее света не могут двигаться лишь материальные тела, а в данном случае двигалась воображаемая, нематериальная граница той области, где рождалась Вселенная (примером сверхсветового движения является перемещение светового пятна по поверхности Луны при быстром вращении освещающего ее лазера).

Причем окружающая среда совсем не сопротивлялась расширению области пространства, охваченного все более быстро разрастающимся инфлатонным полем, поскольку ее как бы не существует для возникающего Мира. Общая теория относительности утверждает, что физическая картина, которую видит наблюдатель, зависит от того, где он находится и как движется. Так вот, описанная выше картина справедлива для «наблюдателя», находящегося внутри этой области. Причем этот наблюдатель никогда не узнает, что происходит вне той области пространства, где он находится. Другой «наблюдатель», смотрящий на эту область снаружи, никакого расширения вовсе не обнаружит. В лучшем случае он увидит лишь небольшую искорку, которая по его часам исчезнет почти мгновенно. Даже самое изощренное воображение отказывается воспринимать такую картину. И все-таки она, по-видимому, верна. По крайней мере, так считают современные ученые, черпая уверенность в уже открытых законах Природы, правильность которых многократно проверена.

Надо сказать, что это инфлатонное поле и сейчас продолжает существовать и флуктуировать. Но только мы, внутренние наблюдатели, не в состоянии этого увидеть — ведь для нас маленькая область превратилась в колоссальную Вселенную, границ которой не может достигнуть даже свет.

Итак, сразу после окончания инфляции гипотетический внутренний наблюдатель увидел бы Вселенную, заполненную энергией в виде материальных частиц и фотонов. Если всю энергию, которую мог бы измерить внутренний наблюдатель, перевести в массу частиц, то мы получим примерно 10 80 кг. Расстояния между частицами быстро увеличиваются из-за всеобщего расширения. Гравитационные силы притяжения между частицами уменьшают их скорость, поэтому расширение Вселенной после завершения инфляционного периода постепенно замедляется.

Эти опасные античастицы

Сразу после рождения Вселенная продолжала расти и охлаждаться. При этом охлаждение происходило в том числе и благодаря банальному расширению пространства. Электромагнитное излучение характеризуется длиной волны, которую можно связать с температурой — чем больше средняя длина волны излучения, тем меньше температура. Но если пространство расширяется, то будут увеличиваться и расстояние между двумя «горбами» волны, и, следовательно, ее длина. Значит, в расширяющемся пространстве и температура излучения должна уменьшаться. Что и подтверждает крайне низкая температура современного реликтового излучения.

По мере расширения меняется и состав материи, наполняющей наш мир. Кварки объединяются в протоны и нейтроны, и Вселенная оказывается заполненной уже знакомыми нам элементарными частицами — протонами, нейтронами, электронами, нейтрино и фотонами. Присутствуют также и античастицы. Свойства частиц и античастиц практически идентичны. Казалось бы, и количество их должно быть одинаковым сразу после инфляции. Но тогда все частицы и античастицы взаимно уничтожились бы и строительного материала для галактик и нас самих не осталось бы. И здесь нам опять повезло. Природа позаботилась о том, чтобы частиц было немного больше, чем античастиц. Именно благодаря этой небольшой разнице и существует наш мир. А реликтовое излучение — это как раз последствие аннигиляции (то есть взаимоуничтожения) частиц и античастиц. Конечно, на начальном этапе энергия излучения была очень велика, но благодаря расширению пространства и как следствие — охлаждению излучения эта энергия быстро убывала. Сейчас энергия реликтового излучения примерно в десять тысяч раз (10 4 раз) меньше энергии, заключенной в массивных элементарных частицах.

Постепенно температура Вселенной упала до 10 10 К. К этому моменту возраст Вселенной составлял примерно 1 минуту. Только теперь протоны и нейтроны смогли объединяться в ядра дейтерия, трития и гелия. Это происходило благодаря ядерным реакциям, которые люди уже хорошо изучили, взрывая термоядерные бомбы и эксплуатируя атомные реакторы на Земле. Поэтому можно уверенно предсказывать, сколько и каких элементов может появиться в таком ядерном котле. Оказалось, что наблюдаемое сейчас обилие легких элементов хорошо согласуется с расчетами. Это означает, что известные нам физические законы одинаковы во всей наблюдаемой части Вселенной и были таковыми уже в первые секунды после появления нашего мира. Причем около 98% существующего в природе гелия образовалось именно в первые секунды после Большого взрыва.

Зарождение галактик

Сразу после рождения Вселенная проходила инфляционный период развития — все расстояния стремительно увеличивались (с точки зрения внутреннего наблюдателя). Однако плотность энергии в разных точках пространства не может быть в точности одинаковой — какие-то неоднородности всегда присутствуют. Предположим, что в какой-то области энергия немного больше, чем в соседних. Но раз все размеры быстро растут, то и размер этой области тоже должен расти. После окончания инфляционного периода эта разросшаяся область будет иметь чуть больше частиц, чем окружающее ее пространство, да и ее температура будет немного выше.

Поняв неизбежность возникновения таких областей, сторонники инфляционной теории обратились к экспериментаторам: «необходимо обнаружить флуктуации температуры…» — констатировали они. И в 1992 году это пожелание было выполнено. Практически одновременно российский спутник «Реликт-1» и американский «COBE» обнаружили требуемые флуктуации температуры реликтового излучения. Как уже говорилось, современная Вселенная имеет температуру 2,7 К, а найденные учеными отклонения температуры от среднего составляли примерно 0,00003 К. Неудивительно, что такие отклонения трудно было обнаружить раньше. Так инфляционная теория получила еще одно подтверждение.

С открытием колебаний температуры появилась еще одна захватывающая возможность — объяснить принцип формирования галактики. Ведь чтобы гравитационные силы сжимали материю, необходим исходный зародыш — область с повышенной плотностью. Если материя распределена в пространстве равномерно, то гравитация, подобно Буриданову ослу, не знает, в каком направлении ей действовать. Но как раз области с избытком энергии и порождает инфляция. Теперь гравитационные силы знают, на что воздействовать, а именно, на более плотные области, созданные во время инфляционного периода. Под действием гравитации эти изначально чуть-чуть более плотные области будут сжиматься и именно из них в будущем образуются звезды и галактики.

Счастливое настоящее

Современный нам момент эволюции Вселенной крайне удачно приспособлен для жизни, и длиться он будет еще много миллиардов лет. Звезды будут рождаться и умирать, галактики вращаться и сталкиваться, а скопления галактик — улетать все дальше друг от друга. Поэтому времени для самосовершенствования у человечества предостаточно. Правда, само понятие «сейчас» для такой огромной Вселенной, как наша, плохо определено. Так, например, наблюдаемая астрономами жизнь квазаров, удаленных от Земли на 10—14 млрд. световых лет, отстоит от нашего «сейчас» как раз на те самые 10—14 млрд. лет.

Сегодня ученые в состоянии объяснить большинство свойств нашей Вселенной, начиная с момента в 10 -42 секунды и до настоящего времени и даже далее. Они могут также проследить образование галактик и довольно уверенно предсказать будущее Вселенной. Тем не менее ряд «мелких» непонятностей еще остается. Это прежде всего — сущность скрытой массы (темной материи) и темной энергии. Кроме того, существует много моделей, объясняющих, почему наша Вселенная содержит гораздо больше частиц, чем античастиц, и хотелось бы определиться в конце концов с выбором одной правильной модели.

Как учит нас история науки, обычно именно «мелкие недоделки» и открывают дальнейшие пути развития, так что будущим поколениям ученых наверняка будет чем заняться. Кроме того, более глубокие вопросы тоже уже стоят на повестке дня физиков и математиков. Почему наше пространство трехмерно? Почему все константы в природе словно «подогнаны» так, чтобы возникла разумная жизнь? И что же такое гравитация? Ученые уже пытаются ответить и на эти вопросы.

Ну и конечно, оставим место для неожиданностей. Не надо забывать, что такие основополагающие открытия, как расширение Вселенной, наличие реликтовых фотонов и энергия вакуума, были сделаны, можно сказать, случайно и не ожидались ученым сообществом.

Энергия вакуума — происхождение и последствия

Что же ждет нашу Вселенную в дальнейшем? Еще несколько лет назад у теоретиков в этой связи имелись всего две возможности. Если плотность энергии во Вселенной мала, то она будет вечно расширяться и постепенно остывать. Если же плотность энергии больше некоторого критического значения, то стадия расширения сменится стадией сжатия. Вселенная будет сжиматься в размерах и нагреваться. Значит, одним из ключевых параметров, определяющим развитие Вселенной, является средняя плотность энергии. Так вот, астрофизические наблюдения, проводимые до 1998 года, говорили о том, что плотность энергии составляет примерно 30% от критического значения. А инфляционные модели предсказывали, что плотность энергии должна быть равна критической. Апологетов инфляционной теории это не очень смущало. Они отмахивались от оппонентов и говорили, что недостающие 70% «как-нибудь найдутся». И они действительно нашлись. Это большая победа теории инфляции, хотя найденная энергия оказалась такой странной, что вызвала больше вопросов, чем ответов.
Похоже, что искомая темная энергия — это энергия самого вакуума.

В представлении людей, не связанных с физикой, вакуум — «это когда ничего нет» — ни вещества, ни частиц, ни полей. Однако это не совсем так. Стандартное определение вакуума — это состояние, в котором отсутствуют частицы. Поскольку энергия заключена именно в частицах, то, как резонно полагали едва ли не все, включая и ученых, нет частиц — нет и энергии. Значит, энергия вакуума равна нулю. Вся эта благостная картина рухнула в 1998 году, когда астрономические наблюдения показали, что разбегание галактик немножко отклоняется от закона Хаббла. Вызванный этими наблюдениями у космологов шок длился недолго. Очень быстро стали публиковаться статьи с объяснением этого факта. Самым простым и естественным из них оказалась идея о существовании положительной энергии вакуума. Ведь вакуум, в конце концов, означает просто отсутствие частиц, но почему лишь частицы могут обладать энергией? Обнаруженная темная энергия оказалась распределенной в пространстве на удивление однородно. Подобную однородность трудно осуществить, ведь если бы эта энергия была заключена в каких-то неведомых частицах, гравитационное взаимодействие заставляло бы их собраться в грандиозные конгломераты, подобные галактикам. Поэтому энергия, спрятанная в пространстве-вакууме, очень изящно объясняет устроение нашего мира.

Однако возможны и другие, более экзотические, варианты мироустроения. Например, модель Квинтэссенции, элементы которой были предложены советским физиком А.Д. Долговым в 1985 году, предполагает, что мы все еще скатываемся с той самой горки, о которой говорилось в начале нашего повествования. Причем катимся мы уже очень долго, и конца этому процессу не видно. Необычное название, позаимствованное у Аристотеля, обозначает некую «новую сущность», призванную объяснить, почему мир устроен так, а не иначе.

Сегодня вариантов ответа на вопрос о будущем нашей Вселенной стало значительно больше. И они существенно зависят от того, какая теория, объясняющая скрытую энергию, является правильной. Предположим, что верно простейшее объяснение, при котором энергия вакуума положительна и не меняется со временем. В этом случае Вселенная уже никогда не сожмется и нам не грозит перегрев и Большой хлопок. Но за все хорошее приходится платить. В этом случае, как показывают расчеты, мы в будущем никогда не сможем достигнуть всех звезд. Более того, количество галактик, видимых с Земли, будет уменьшаться, и через 10—20 млрд. лет в распоряжении человечества останется всего несколько соседних галактик, включая нашу — Млечный Путь, а также соседнюю Андромеду. Человечество уже не сможет увеличиваться количественно, и тогда придется заняться своей качественной составляющей. В утешение можно сказать, что несколько сотен миллиардов звезд, которые будут нам доступны в столь отдаленном будущем, — это тоже немало.

Впрочем, понадобятся ли нам звезды? 20 миллиардов лет — большой срок. Ведь всего за несколько сот миллионов лет жизнь развилась от трилобитов до современного человека. Так что наши далекие потомки, возможно, будут по внешнему виду и возможностям отличаться от нас еще больше, чем мы от трилобитов. Что же сулит им еще более отдаленное будущее, по прогнозам современных ученых? Ясно, что звезды будут тем или иным способом «умирать», но будут образовываться и новые. Этот процесс тоже не бесконечен — примерно через 10 14 лет, по предположению ученых, во Вселенной останутся только слабосветящиеся объекты — белые и темные карлики, нейтронные звезды и черные дыры. Почти все они также погибнут через 10 37 лет, исчерпав все запасы своей энергии. К этому моменту останутся лишь черные дыры, поглотившие всю остальную материю. Что может разрушить черную дыру? Любые наши попытки сделать это лишь увеличивают ее массу. Но «ничто не вечно под Луной». Оказывается, черные дыры медленно, но излучают частицы. Значит, их масса постепенно уменьшается. Все черные дыры тоже должны исчезнуть примерно через 10 100 лет. После этого останутся лишь элементарные частицы, расстояние между которыми будет намного превосходить размеры современной Вселенной (примерно в 10 90 раз) — ведь все это время Вселенная расширялась! Ну и, конечно, останется энергия вакуума, которая будет абсолютно доминировать во Вселенной.

Кстати, свойства такого пространства впервые изучил В. де Ситтер еще в 1922 году. Так что нашим потомкам предстоит либо изменить физические законы Вселенной, либо перебраться в другие вселенные. Сейчас это кажется невероятным, но хочется верить в могущество человечества, как бы оно, человечество, ни выглядело в столь отдаленном будущем. Потому что времени у него предостаточно. Кстати, возможно, что уже и сейчас мы, сами того не ведая, создаем новые вселенные. Для того чтобы в очень маленькой области возникла новая вселенная, необходимо инициировать инфляционный процесс, который возможен только при высоких плотностях энергий. А ведь экспериментаторы уже давно создают такие области, сталкивая частицы на ускорителях… И хотя эти энергии еще очень далеки от инфляционных, вероятность создания вселенной на ускорителе уже не равна нулю. К сожалению, мы являемся тем самым «удаленным наблюдателем», для которого время жизни этой «рукотворной» вселенной слишком мало, и внедриться в нее и посмотреть, что там происходит, мы не можем...

Возможные сценарии развития нашего мира
1. Пульсирующая модель Вселенной, при которой вслед за периодом расширения наступает период сжатия и все заканчивается Большим хлопком
2. Вселенная со строго подогнанной средней плотностью, в точности равной критической. В этом случае наш мир Евклидов, и его расширение все время замедляется
3. Равномерно расширяющаяся по инерции Вселенная. Именно в пользу такой открытой модели мира до последнего времени свидетельствовали данные о подсчете средней плотности нашей Вселенной
4. Мир, расширяющийся со все нарастающей скоростью. Новейшие экспериментальные данные и теоретические изыскания говорят о том, что Вселенная разлетается все быстрее, и несмотря на евклидовость нашего мира, большая часть галактик в будущем будет нам недоступна. И виновата в столь странном устроении мира та самая темная энергия, которую сегодня связали с некоей внутренней энергией вакуума, заполняющего все пространство

Сергей Рубин, доктор физико-математических наук

Астрономия

Астрофизика., и. радиоастрономия

Марчевский В.А., кандидат физико-математических наук

ВОЗМОЖНЫЙ ВАРИАНТ РАЗВИТИЯ ВСЕЛЕННОЙ

Введение

До сих пор рассматривались только два варианта развития Вселенной: открытая и закрытая модели ее. По нашему же мнению вполне имеет право на существование еще одна версия, если конечно подтвердятся экспериментально предположения, высказанные в работе о существовании ощутимого стока энергии в вакуум. Тогда можно считать, что Вселенная не является независимой физической системой, и, следовательно, можно рассмотреть третий вариант. Чем мы и займемся.

1. Условие устойчивого динамического распределения вещества в Метагалактике

Предположим, что Вселенная первоначально расширялась из одного общего центра. При этом наступил такой момент, что силы, вызывавшие это расширение, перестали действовать, дальнейшее движение продолжалось за счёт инерционных сил. Такой момент обязательно должен был наступить, иначе мы не имели бы «закона Хаббла».

Чтобы элемент объема единичной массы на однородной сфере радиуса г мог покинуть ее, сумма его потенциальной и кинетической энергий должна равняться нулю, то есть

4 Р з V2 3прг 4 2

ПрСг, здесь V - скорость элемента объема единичной массы, р - средняя

плотность сферы, G - гравитационная постоянная. Это уравнение можно переписать несколько в другом виде:

V = Нг, Н = 2 (1)

здесь Н - постоянная Хаббла. Назовем такое положение динамическим и устойчивым для элемента.

2. Возможные распределения вещества в Метагалактике

В действительности объекты, находящиеся на произвольно выбранном расстоянии г от центра, в момент прекращения действия сил расширения могли иметь скорости как больше, так и меньше, чем те, которые требовались согласно условию (1).

Объекты, имеющие скорости больше чем (1), переходили на поверхности других, более удаленных от центра сфер до тех пор, пока их скорости не начинали удовлетворять условию (1). За счет того, что более быстрые объекты покидали сферу радиуса Г, средняя плотность ее уменьшалась, и для объектов, имеющих скорости меньше чем (1), также появлялась возможность удовлетворить соотношению (1). Таким образом, по истечении миллиардов лет (если это перераспределение уже закончилось), все объекты должны были распределиться в пространстве согласно соотношению (1).

Необходимо отметить, что наблюдаются в настоящее время объекты, которые могут временно покинуть это устойчивое динамическое распределение, например, взрывающиеся галактики. После взрыва части приобретают добавочные скорости. Для примера рассмотрим

положение, когда одна часть получает дополнительный импульс по направлению от центра Метагалактики, а другая - к центру. Тогда к ним можно применить предыдущие рассуждения и показать, что они займут динамически стабильные места ближе и дальше от центра Метагалактики по отношению к тому положению, которое занимала бы не взорвавшаяся галактика.

Как известно, соотношение (1) можно использовать для всех объектов, скорости которых много меньше скорости света. Во всех остальных случаях нужно учитывать теорию относительности А. Эйнштейна. Мы этого делать не будем. Обратим внимание на то, что из-за ограничения скорости реальных объектов величиной скорости света должна существовать граница Метагалактики.

3. Предполагаемый вариант развития Вселенной

С точки зрения поведения Метагалактики вблизи границы рассмотрим две возможности, одна из которых по нашему мнению может быть реализована:

1. Если скорости объектов внутри Метагалактики и вблизи границы таковы, что их потенциальные и кинетические энергии равны, то вся Метагалактика должна расширяться неограниченно.

2. Если же скорости объектов только вблизи границы меньше указанных выше величин, тогда через какое-то конечное время они должны затормозиться и начать движение вспять к центру Метагалактики, меняя по мере продвижения к центру величину потенциальной энергии той сферы, границу которой они пересекают. Следовательно, они будут увлекать за собой объекты, которые находятся за поверхностью этой сферы. Тогда и должно начаться квазисжатие Метагалактики, не единовременно по всему объему, как предполагается сейчас, а от внешней границы к центру, постепенно заставляя менять направления своего движения все новые и новые объекты. Важно, что центральную точку они будут проходить в разное время.

Хочется обратить внимание на одну возможность, если в начале этого процесса некоторые единичные объекты вблизи границы Метагалактики имели скорости такие, что их кинетическая энергия была больше или равна потенциальной, то они должны были преодолеть эту границу. Такие одиночные объекты могут наблюдаться за ее границей, причем, чем больше времени прошло с момента пересечения ими границы, тем дальше от нее они должны находиться. Наблюдая их, можно оценить и время, когда они пересекли границу, и находимся ли мы на первом цикле расширения Вселенной или нет?

Процесс движения вещества при этом должен иметь периодический характер. Как было показано в работе , современные оценки плотности Вселенной соответствуют закрытой модели, тогда из закона сохранения энергии следует, что объекты, подлетающие к центру Метагалактики и увеличивающие за счет потенциальной энергии свою скорость, соблюдая центральную симметрию, улетят от него. Картина расширения Вселенной повторится, только в течение определенного промежутка времени будет существовать встречное движение объектов: к центру и от центра Метагалактики. И как следствие этого, будет существовать вероятность того, что в результате неупругих столкновений малой части из них уменьшится их кинетическая энергия за счет превращений в другие виды энергии.

Такой колебательный процесс должен происходить периодически, проходя при этом стадию первоначального динамического и равновесного состояния: условие распределения в пространстве вещества согласно (1) в Метагалактике. При этом существует вероятность того, что небольшая часть галактик вблизи границы может приобрести скорости, достаточные для того, чтобы преодолеть эту границу и покинуть Метагалактику. С течением времени из-за такого процесса и возможности столкновений при встречных движениях предельный радиус периодических колебаний Метагалактики может уменьшиться. Такой сценарий

периодического расширения и квазисжатия Метагалактики вполне реален. Тогда самые интересные результаты можно получить, наблюдая границу Метагалактики.

До сих пор никто не искал границу Метагалактики, ее и не находили. Вполне возможно, что на роль маяков границы вполне подходят наблюдаемые астрономами квазары. В работах обращается внимание на то, что «собственная плотность (квазаров) возрастает с ростом Z много быстрее, чем (1 + Z)3 при 0 < Z <1 , и резко спадает при Z < 2 . «Хочется процитировать еще одну работу : «Е. Ни и ее коллеги из Гавайского университета обнаружили самую далекую из наблюдаемых когда-либо галактик. Галактика НТМ6А видна благодаря усилению ее изображения гравитационной линзой - скоплением галактик Abel 370, находящихся на луче зрения. До сих пор самым далеким из известных объектов был квазар Z = 6,28 . Галактика НТМ6А имеет Z = 6,56, и поэтому видна только в ИК-диапазоне». Если это действительно единичные объекты за границей Метагалактики, то тогда существует большая вероятность того, что мы живем в периодическом мире.

Заключение

Природа экономна, она не всегда выдумывает новые формы а часто использует уже готовые. Так и наша модель Вселенной очень похожа на шаровое скопление. Известно, что они очень устойчивы и живут достаточно долго, следовательно, и наша Вселенная может существовать продолжительный отрезок времени, не проходя фазы сжатия в точку. Этот срок в десятки, а возможно, и в сотни раз больше, чем один цикл от расширения до сжатия в закрытой модели Вселенной.

В настоящее время очень заметна отсталость наблюдательной астрономии в области метагалактических расстояний. Это связано с тем, что до сих пор существует и используется только один единственный метод для оценки этих расстояний, основанный на эффекте Доплера и законе Хаббла. И пока это отставание не будет ликвидировано, теоретические разработки могут уйти достаточно далеко от реальной картины мира.

Список литера туры

1. Марчевский В.А. Имеется ли во Вселенной хотя бы один ощутимый сток энергии в вакуум? Актуальные проблемы современной науки, № 1, 2006.

2. Марчевский В.А. Реально ли ускоренное расширение Вселенной? в этом же номере.

3. Schmidt M., Ар. J., 151, 393, 1968, Ар. J., 162, 371, 1970.

4. Новости физики в сети Internet. УФН, 172, 4, 2002.

Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут . Стоимость одной статьи — 150 рублей .

Пoхожие научные работыпо теме «Науковедение»

  • Реально ли ускоренное расширение Вселенной?

    МАРЧЕВСКИЙ В.А. - 2006 г.

  • Определение физической формы существования Мира и оценка существенных параметров Мира и вакуума

    МАРЧЕВСКИЙ В.А. - 2008 г.

Федеральное агентство по образованию

ГОУ ВПО «УГТУ-УПИ имени первого Президента России Б.Н. Ельцина»

Институт образовательных информационных технологий

Факультет дистанционного образования


Реферат

на тему: Эволюция Вселенной, её различные модели

по дисциплине: Концепции современного естествознания


Екатеринбург


Введение


Что есть Вселенная, Земля, Луна, Солнце, звезды? Где начало и где конец Вселенной, как долго она существует, из чего состоит и где границы ее познания? Изучение Вселенной, даже только известной нам её части, является грандиозной задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений.

Проблема возникновения Вселенной занимала людей еще до появления современной науки. В основе интереса лежит - желание дойти до первопричины всего сущего. В библии, например, указана даже точная дата сотворения мира - 5 тысяч лет до нашей эры. Историческое обоснование этой даты может быть в том, что она примерно соответствует последнему ледниковому периоду - 10 тысяч лет до нашей эры. В 5 веке нашей эры автор «Христианской науки» Блаженный Августин указывал, что до возникновения Вселенной понятие времени лишено смысла, что удивительным образом совпадает с представлениями современной науки. Августин писал, что Бог создал и Вселенную, и время, поэтому до рождения Вселенной времени не было. Почему же тогда Вселенная возникла в какой - то определенный момент времени? Древние греки: Платон, Аристотель считали, что мир неизменен и существует вечно, но лишь иногда в нем случаются катастрофы, которые отбрасывают человечество назад.

Целью данной работы является анализ различных моделей существования и эволюции Вселенной, в том числе и сценариев развития Солнечной системы, чьей составной частью является наша планета Земля.


Глава 1. Состав Вселенной и её размеры


Видимая часть Вселенной состоит из сотен миллиардов галактик, и в каждой галактике десятки миллиардов звезд. На каждого обитателя Земли приходится по миллиарду звезд, что значительно расширяет возможности маленького принца Экзюпери, который скромно довольствовался всего одной планетой. Звезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Но это лишь видимая часть Вселенной.

Звездная система, в составе которой как рядовая звезда находится наше Солнце, называется Млечный путь. Число звезд в Галактике порядка 1012 (триллиона). Млечный путь, светлая серебристая полоса звезд, опоясывает всё небо, составляя основную часть нашей Галактики. Солнечная система не находится в центре Галактики. В центре Галактики расположено ядро диаметром 1000-2000 пк - гигантское уплотненное скопление звезд. В состав ядра входит много красных гигантов и короткопериодических цефеид (крупные скопления звезд).

Звезды верхней части главной последовательности, а особенно сверхгиганты и классические цефеиды, составляют более молодое население. Оно располагается дальше от центра и образует сравнительно тонкий слой или диск. Среди звезд этого диска находится пылевая материя и облака газа. Субкарлики и гиганты образуют вокруг ядра и диска Галактики сферическую систему.

Науке известна природа лишь 5 % вещества, из которого состоит Вселенная. Эти 5 % (4 %обычная материя - планеты, туманности и т.п., 1 % звезды и галактики) мы видим вокруг и сами из него сделаны. Остальное - великая тайна, а именно 70 % тёмная энергия (недавно открытая форма антигравитации), а 25 % тёмная материя (невидимые частицы с неизвестными свойствами) и5 % видимое вещество (см. рис 1).

Масса нашей Галактики оценивается сейчас разными способами, она равна приблизительно 2*1011 масс Солнца (масса Солнца равна 2*1030 кг), причем 1/1000 ее заключена в межзвездном газе и пыли. Масса галактики в Андромеде почти такова же, а масса галактики в Треугольнике оценивается в 20 раз меньше. Поперечник нашей галактики составляет 100000 световых лет. Путем кропотливой работы московский астроном В.В. Кукарин в 1944 г. нашел указания на спиральную структуру Галактики, причем оказалось, что мы живем в пространстве между двумя спиральными ветвями, бедном звездами. В некоторых местах на небе в телескоп, а кое-где даже невооруженным глазом можно различить тесные группы звезд, связанные взаимным тяготением, или звездные скопления.


Глава 2. Модели эволюции Вселенной


Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем. Поэтому не будет ошибкой сказать, что любая наука, так или иначе, изучает Вселенную, точнее, тем или иные её стороны. Химия изучает мир молекул, физика - мир атомов и элементарных частиц, биология - явления живой природы. Но существует научная дисциплина, объектом исследования которой служит сама Вселенная. Это особая отрасль астрономии, так называемая космология. Космология - учение о Вселенной в целом.

С развитием кибернетики в различных областях научных исследованиях приобрели большую популярность методики моделирования. Построение различных моделей относится к одному из важных путей познания объективно существующего мира. Объекты, явления и процессы, происходящие во Вселенной, очень сложны. Моделирование позволяет выделить наиболее существенные, характерные черты этих процессов.

С развитием науки, все полнее раскрывающей физические процессы, происходящие в окружающем нас мире, большинство ученых постепенно перешло к материалистическим представлениям о бесконечности Вселенной. Здесь огромное значение имело открытие И. Ньютоном (1643 - 1727) закона всемирного тяготения, опубликованного в 1687 г.

Одним из важных следствий этого закона явилось утверждение, что в конечной Вселенной все ее вещество за ограниченный промежуток времени должно стянуться в единую тесную систему, тогда как в бесконечной Вселенной вещество под действием тяготения собирается в некоторых ограниченных объемах (по тогдашним представлениям - в звездах), равномерно заполняющих Вселенную.

Большое значение для развития современных представлений о строении и развитии Вселенной имеет общая теория относительности, созданная А. Эйнштейном (1879 - 1955). Она обобщает теорию тяготения Ньютона на большие массы и скорости движения, сравнимые со скоростью света. Действительно, в галактиках сосредоточена колоссальная масса вещества, а скорости далеких галактик и квазаров сравнимы со скоростью света.

Одним из значительных следствий общей теории относительности является вывод о непрерывном движении вещества во Вселенной - нестационарности Вселенной. Этот вывод был получен в 20-х годах нашего столетия советским математиком А.А. Фридманом (1888 - 1925). Он показал, что в зависимости от средней плотности вещество Вселенная должна либо расширяться, либо сжиматься. В будущем расширение Вселенной сменится сжатием, а при средней плотности равной или меньшей критической расширение не прекратится. Два последних варианта активно рассматривались астрофизиками, причем в 80 - годы в них было включено невообразимо быстрое расширение Вселенной (инфляция), происшедшее в первые мгновения Большого взрыва.

Теория Александра Фридмана, в отличие от Эйнштейна, считавшего Вселенную стабильной и неизменной, наиболее полно описывает модель её возникновения и развития. Взгляды Фридмана заложили основу для дальнейшего изучения процессов, происходящих во Вселенной.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины - один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А. Гамова образовался всоеобраэный космологический котел с температурой порядка трей миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца - отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва».

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудники Дльфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространённости тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных (с температурой ниже абсолютного нуля) вырожденных частиц - протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий - горячей и холодной и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

В конце 60-х годов группа американских ученых во главе с Р. Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л. Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см.

Примечательно, что будущие лауреаты Нобелевском премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны, для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории - о нейтронном составе «космического яйца» и горячем состоянии молодой Вселенной - проверку временем «выдержала «только «последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

«Морозильный» сценарий разработали американские физики Фред Адамс и Грегори Лафлин еще до открытия ускоренного расширения Вселенной - в 1997 году (модель строится на базе стандартной модели). Согласно их модели, история нашей Вселенной насчитывает четыре эры:

Звездная эра (началась через сотни миллионов лет после Большого взрыва, во Вселенной стали возникать первые звезды и началась интенсивная генерация энергии за счет ядерного синтеза в звездных недрах. Эти процессы продолжаются и сейчас. Ученые вычислили, когда Вселенной исполнится 1014 лет в космическом пространстве не останется свободного водорода, и звезды закончат свое существование).

Эра вырождения охватывает промежуток 1015 - 1037 лет, от сверкающих светил остались нейтронные звезды и белые карлики, копятся черные дыры, которые усиленно растут, произойдет распад ядерного вещества, протоны будут распадаться на позитроны, фотоны, нейтрино и в итоге обычное вещество в составе планет и белых карликов начнет превращаться в излучение.

Эра черных дыр приходится на промежуток времени 1038 - 10100. В это время исчезнут все протоны и нейтроны (барионы) и единственными макрообъектами во Вселенной останутся черные дыры и они вскоре испарятся в излучение и исчезнут во взрывах.

Темная эра наступит когда возраст мироздания превысит 10100 лет. Из материи останутся лишь кванты электромагнитного излучения почти 0 температуры и стабильные лептоны (нейтрино, электроны и позитроны).

Модель «раздувающейся Вселенной» была предложена в 2003 году Р. Калдвеллом, М. Камионковски и Вейнбергом. Расширение Вселенной не дает объяснений в моделях «горячей Вселенной». Возрастающее увеличение темной энергии (вакуум) приведет к вселенскому антиколлапсу. Скорость расширения пространства возрастет до такой степени, что разорвет галактики, т.е. здесь решающее значение приобрела антигравитация, удаление всех пунктов одновременно. Распадутся планетные системы, планеты теряют связь с Солнцем. Разрушаются звезды и планеты. Химические соединения распадаются на атомы, но и атомы теряют стабильность, ядра не могут удерживать электроны. Но все это в далеком будущем.

Существует модель, согласно которой финал гибели Вселенной может произойти и завтра. Впервые он был предложен московским физиком М.Б. Волошиным, И.Ю. Кобзаревым и Л.Б. Окунем в 1975 году. В данной теории учитывается особенность вакуума. В нем отсутствуют реальные частицы, однако постоянно рождаются и исчезают их виртуальные аналоги. В любой момент может произойти туннелирование вакуума из одного состояния в другое, и останется в итоге пространство - время и материя с совершенно иными свойствами (или ничего).

Энергия вакуума учитывается в теории инфляционного расширения новорожденной Вселенной.

Инфляционная модель Вселенной - гипотеза <#"justify">Сценарий №4 Гигантское Солнце

В конце своего развития огромное красное Солнце поглотит Землю, которая превратиться в выжженную пустыню.

Когда-то Солнце выглядело совсем иначе, чем сегодня. Спустя миллиарды лет оно вновь изменит свой облик. Однако эти изменения незаметны в масштабах человеческого времени. Тем не менее, у Солнца есть свой собственный жизненный цикл - образование из облака межзвездного вещества, затем период более или менее спокойного существования, а потом неминуемая смерть.

Через пять миллиардов лет Солнце израсходует весь водород, перейдет на гелий и станет больше сегодняшнего на 75 процентов.

Пройдут еще несколько миллиардов лет, и новое Солнце поглотит Меркурий и Венеру - планеты, ближе всего расположенные к центру Солнечной системы. А Земля, плавающая в раскаленной атмосфере Солнца, сойдет со своей орбиты и в конце концов по спирали погрузится в горнило огромной звезды. Возможно, что Марсу повезет, и примерно на миллиард лет там установится климат, пригодный для зарождения жизни или для ее восстановления, если верно, что она там уже существовала несколько миллиардов лет назад.

Сценарий №5 Конец всей солнечной системы

Обледеневшие планеты Солнечной системы будут летать во мраке вокруг белого карлика-Солнца.

Ужасное расширение, которое произойдет с Солнцем в стадии красного гиганта, опустит занавес на сцене земной жизни. Но это не станет последним актом его существования. В таком состоянии Солнце будет находиться еще миллиард лет. Оно станет питаться гелием, а затем начнет сжигать другие - все более тяжелые - элементы, расположенные на большей глубине, в ядре светила, пожирая слой за слоем, уменьшаясь, как луковица. Когда очередь дойдет до железа, процесс термоядерного синтеза с выделением энергии остановиться. Впрочем, превращение элементов в недрах звезды будет продолжаться, и довольно активно, но теперь уже оно будет происходить с поглощением энергии.

Во время этих последовательных термоядерных реакций будут возникать периоды нестабильности Солнца, во время которых его светимость будет меняться, придавая ему вид переменной звезды типа пульсирующих звезд - цефеид. В финальном периоде смена фаз будет ускоряться, каждая последующая будет короче предыдущей. И все же, в отличие от звезд с большей массой, Солнце не закончит жизнь мгновенно, то есть путем взрыва. Самые верхние слои «отшелушатся» в космос, образовав там планетарную туманность.

В центре солнечной планетарной туманности останется холодное ядро из водорода, гелия, углерода, кислорода и других - более тяжелых - элементов. Его объем будет, сравним с объемом Земли, а плотность в миллионы раз превысит плотность воды (иными словами, масса кубического сантиметра такого вещества будет измеряться тоннами!)

Остывая миллиарды лет, оно охладится до температуры 4000 Кельвинов, и в его веществе начнется процесс кристаллизации.

Вокруг маленького белого Солнца будут вращаться реликты уцелевших планет, скорее всего, это будут Марс, Юпитер и Сатурн, холодные кольца которого испаряться во время фазы красного гиганта. И наступит вечная ночь, во время которой будет так же темно, как сегодня на Земле в полнолуние, а Солнце будет выглядеть ненамного ярче других звезд.

Сценарий №6 Конец млечного пути в черной дыре

Черная дыра, находящаяся в центре Галактики поглотит в свою воронку все звезды Млечного Пути.

Если наблюдать за Млечным Путем и другими далекими галактиками, сразу броситься в глаза очевидная разница: в нашей звездной системе царит относительное спокойствие, тогда как многие другие галактики живут в непрерывной активности.

Выбросы газов, области высокой интенсивности формирования звезд, мощные потоки радиоволн, рентгеновских и гамма лучей, высвобождение огромного количества энергии - все это придает галактикам вид близких звезд, тогда как на самом деле они находятся от нас на расстоянии миллиардов световых лет.

Одна из гипотез объясняет неистовую активность этих звездных систем находящимися в их центрах гигантскими черными дырами, масса которых составляет десятки миллионов солнечных масс.

Существование подобного космического мега пылесоса, который невозможно увидеть непосредственно, подтверждают наблюдаемые астрономами вихревые явления и высочайшие перепады температур, возникающие в ходе всасывания вещества в черную дыру и сопровождающиеся выбросами энергии и газа.

Астрофизики, наблюдая центр нашей Вселенной в различных диапазонах радиоволн, инфракрасного и рентгеновского излучения, а также гамма лучей и собрав массу данных, предложили, что в центре Млечного Пути существует черная дыра.

Ученые предположили, что в центре Млечного Пути существует повышенная концентрация вещества, масса которой превышает солнечную примерно в два миллиона раз, но количество света, доходящего оттуда до нас, непропорционально мало. Кстати, именно по этой причине некоторые ученые сомневаются, что в центре Млечного Пути действительно расположилась огромная черная дыра. Но, с другой стороны, столь громоздкие образования, ведущие себя относительно спокойно, найдены не только в нашей, но и в других внешне нормальных галактиках, например, в туманности Андромеды и ее спутнике M32, недавно изученных с помощью космического телескопа «Хаббл».

Возможно, черная дыра образовалась в результате столкновения с другими галактиками в те далекие времена, когда Вселенная имела еще маленькие размеры. Но что произойдет при встрече ее с другими галактиками, если она когда-нибудь пробудиться от сна? Ответ неутешителен: черная дыра втянет в себя всю нашу Галактику.

В этом случае Млечный Путь ожидает незавидная судьба - сначала он превратиться в водоворот звезд и газа, а затем - в мизерную по размеру область с бесконечно большой плотностью.


Заключение


Вселенная эволюционирует, бурные процессы происходили в прошлом, происходят сейчас, и будут происходить в будущем. Мир становится все сложнее, усложняются и появляются новые теории. И наука не стоит на месте, появляются новые взгляды, гипотезы, учения, поскольку «природа не раскрывает свои тайны раз и навсегда» (Л.А. Сенека).

Если нашей Вселенной грозит смерть, то, может быть появится возможность в будущем перелететь до другой Вселенной. Из общей теории относительности следует возможность существования пространственно-временных тоннелей и перехода в другие Вселенные.

Мы знаем строение Вселенной в огромном объеме пространства, для пересечения которого свету требуются миллиарды лет. Но пытливая мысль человека стремится проникнуть дальше. Что лежит за границами наблюдаемой области мира? Бесконечна ли Вселенная по объему? И её расширение - почему оно началось и будет ли оно всегда продолжаться в будущем? А каково происхождение «скрытой» массы? И наконец, как зародилась разумная жизнь во Вселенной? Есть ли она ещё где-нибудь кроме нашей планеты? Окончательные и полные ответы на эти вопросы пока отсутствуют. Вселенная неисчерпаема. Неутомима и жажда знания, заставляющая людей задавать всё новые и новые вопросы о мире и настойчиво искать ответы на них.


Список использованной литературы


1.Воронцов - Вельяминов Б.А. Очерки о Вселенной. М.,1980. - 672 с.

2.Ксанфомалити Л. Темная Вселенная // Наука и жизнь 2005№5. 58-69 с.

.Левин А. Судьбы мироздания // Популярная механика 2006 №9 40-46 с.

.Левитан Е.П. Эволюционирующая Вселенная. М.: Просвещение., 1993г. 159 с.

.Перель Ю.Г. Развитие представлений о Вселенной М.,1958. 352 с.

.Сурдин В.Г. Дарвин и эволюция Вселенной //Экология и жизнь 2009 №3 4-10 с.

.Шкловский П.С. Вселенная, жизнь, разум М.: Наука 1987. - 320с.

9.

.

.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.


Благодаря инстинкту выживания человечество и наша цивилизация существуют уже тысячи лет. Хотя в течение нескольких последних десятилетий научные сообщества все чаще беспокоятся по поводу возможных глобальных катастроф – событий с высоким коэффициентом риска, способные не только нанести вред планете, но и уничтожить на ней жизнь.


Эра черных дыр описана в книге профессора Фреда Адамса «The Five Ages of the Universe», как век, в котором организованная материя останется только в форме черных дыр. Постепенно они благодаря квантовым процессам радиационной активности избавятся от поглощённой ими материи. К концу упомянутой эры останутся только низкоэнергетические протоны, электроны и нейтроны. Другими словами, можно попрощаться с нашей красивой голубой планетой.


По мнению многих религиозных течений, которые выдвигают разнообразные гипотезы, приближается конец света (судный день, второе пришествие Иисуса Христа, пришествие Антихриста). В одном все согласны: конец света наступит неизбежно. Ученые опровергают большинство гипотез, но тоже согласны, что это может случиться.



Когда вспоминаешь о периодах правления таких диктаторов, как Гитлер, Сталин, Саддам, Ким Чен Ын и других классических политических диктаторских режимах, то легко предположить, что такой сценарий тоже можно рассматривать началом конца цивилизации.


В результате еще одного сценария конца света, придуманные человеком нанороботы выйдут из-под контроля и уничтожат человечество.


Многие ученые обеспокоены тем, что чрезвычайно мощное гамма-излучение соседних галактик, в результате очень сильного взрыва, может стать причиной гибели нашей планеты. Эта гипотеза помогает объяснить так званый парадокс Ферми, который свидетельствует о том, что, кроме нас, других технологически развитых цивилизаций во Вселенной нет, так как гамма-лучи, возможно, уничтожили все.


Это спорный вопрос, но многие считают, что в результате деятельности человечества, возникшее глобальное потепление станет тем фактором, который можно рассматривать, как причину изменения климата и гибели жизни на нашей планете.


Солнце периодически выбрасывает в космос раскаленные радиоактивные облака газа, которые угрожают магнитному полю Земли, так как являются чрезвычайно мощными и достигают Земли всего за несколько часов. По словам некоторых ученых, в результате вреда, который человек приносит своей планете, неконтролируемые коронарные выбросы Солнца однажды уничтожат планету.


Теория Большого взрыва – это еще одна сомнительная космологическая гипотеза, согласно которой материя Вселенной, начиная от звезд, галактик до атомов и других частиц, которые появились в результате этого взрыва, таким же способом и исчезнут в будущем.


Большое сжатие является еще одной научной гипотезой конца нашего существования. В его результате Вселенная сожмется и взорвется. Большой взрыв породил её, а Большое сжатие уничтожит.


«Генетическое загрязнение» - сомнительный термин, используемый для объяснения бесконтрольного использования генной инженерии, которая вмешивается в мир природы. Вмешиваться в гены нежелательно, так как создав однажды новые организмы, можно безвозвратно нанести вред существующим. В результате спонтанных мутаций могут появиться нежелательные доминирующие виды.


Еще одним риском для жизни человечества можно считать глобальные эпидемии, которые смогут очень быстро распространяться воздушно-капельным путем и убить людей всего за несколько часов до того, как человечество найдёт эффективное лекарство.


Как бы выглядела планета, если бы человечество внезапно исчезло с лица земли, как динозавры? К внезапному вымиранию человечества могут привести несколько причин. Например, все мужчины станут геями и прекратится репродукция человечества.


Существуют два сценария развития будущего Вселенной, и оба ведут к ее гибели. Некоторые ученые говорят, что Вселенная взорвется, а другие – замерзнет. Так или иначе, но оба сценария абсолютно неоптимистичны.


Все чаще и чаще звучит угроза перенаселения планеты. Многие эксперты утверждают, что к 2050 году это станет самой большой проблемой для нас. Дело в том, что человечество будет настолько многочисленным, что не будет хватать различных жизнеобеспечивающих ресурсов, например, воды и нефти. В результате, получаем голод, засухи, болезни и бесконечные войны между странами.


Чрезмерное потребление уже в 2015 году считается одним из рисков. Так как люди потребляют намного больше, чем природа может регенерировать. Проявлениями чрезмерного потребления являются огромные выловы рыбы и чрезмерное потребление мяса. Это же касается и овощей, и фруктов.


Альберт Эйнштейн был одним из первых, кто предрек конец света в результате Третьей мировой войны. Он говорил, что не знает, какое оружие человечество будет использовать во время Третьей, но в Четвертую мировую войну человечество будет воевать камнями и дубинками.


Гибель цивилизации – это самый реалистический сценарий из тех, которые прогнозируют гибель человечества. Примером можно считать судьбу цивилизации Майя или Византийской империи. Все то же может случиться и со всем человечеством в будущем.


Ядерный холокост и апокалипсис относятся к самым реальным рискам, которые могут привести к гибели человечества. Это может произойти, так как в мире накопилось огромное количество ядерного оружия.


Новый мировой порядок может быть установлен одной из тайных организаций, которые существуют сегодня (Иллюминаты, Масоны, Сионисты и т.д.). Сегодня они находятся под контролем общества, но могут в будущем стать более могущественными и своими догмами и действиями привести человечество к рабству и служению злу.


Суть мальтузианской катастрофы по Томасу Мальту, автору «Опыт закона о народонаселении» (1798), в том, что в будущем численность населения обгонит рост и возможности аграрного сектора экономики и стабильности. После чего произойдет упадок и уменьшение численности населения, и начнутся бедствия.


Эта теория существует еще с античности и большинство (если не все) видели бесчисленные фильмы, в которых одним солнечным днем некая инопланетная цивилизация завоюет планету и попытается уничтожить жизнь на ней. В ближайшем будущем это не случится, но возможно произойдет когда-нибудь.


Трансгуманизм – это международное культурное и интеллектуальное течение нескольких последних лет, целью которого есть понимание великой роли технологий в трансформациях и улучшения качества материальной, физической и умственной сфер жизни человека. Хотя звучит великолепно, но в результате информационной и технологической революции человечество может пострадать.


Специалисты используют понятие «технологическая сингулярность», описывая гипотетический сценарий, в результате которого быстрый технологический прогресс сыграет злую шутку с человечеством, которое создаст искусственный интеллект и погибнет, потеряв над клонами и роботами контроль.


Понятие «взаимное гарантированное уничтожение» относится к глобальному использованию оружия с целью массовых уничтожений людей и планеты. Это реальный сценарий, если оценить сегодняшнюю политическую и военную ситуацию в мире.


Те, кто смотрел фильм «Умри, но не сейчас», знают, что кинетическая бомбардировка сможет уничтожить жизнь на планете. Если вы не видели фильм, тогда представьте разработку космического оружия, которое может уничтожить все, что есть на Земле за пару секунд. Страшно? Страшно. А ведь учёные даже подсчитали вероятность до тысячных процента.

Будущее Вселенной – один из основных вопросов космологии, ответ на который зависит, в первую очередь, от таких характеристик и свойств Вселенной как ее масса, энергия, средняя плотность, а также скорость расширения.

Что мы знаем о Вселенной?

Для начала следует определить само понятие «Вселенная», которое имеет место быть как в астрономии, так и философии. В области астрономии Вселенной называют Метагалактикой или просто астрономической Вселенной. Однако, с теоретической точки зрения, которая учитывается большинством моделей и сценариев развития Вселенной, она представляет собой колоссальную систему, выходящую за пределы возможного наблюдения.

Одним из важнейших свойств Вселенной, которое было открыто относительно недавно – это практически однородное и изотропное расширение, которое также оказалось ускоренным. В зависимости от продолжительности этого расширения история Вселенной может принять один из двух предполагаемых сценариев.

В первом случае расширение будет продолжаться до бесконечности, вместе с этим средняя плотность вещества во Вселенной будет стремительно падать, приближаясь к нулю. Коротко говоря, вся начнется с распада скоплений галактик, а закончится делением протона на кварки.

Второй сценарий учитывает постулаты общей теории относительности (ОТО), которая гласит о том, что при значительном росте плотности вещества искривляется пространство-время. Если расширение все же начнет замедляться, то вероятнее всего в какой-то момент оно обернется сжатием. Тогда Вселенная начнет сжиматься, а средняя плотность ее вещества – стремительно расти. При таком ходе событий, согласно ОТО, пространство-время будет постепенно искривляться до тех пор, пока Вселенная не замкнется сама на себе, вроде поверхности обычной сферы, но с большим количеством измерений, чем мы привыкли себе представлять.

Космологические эпохи Вселенной

В попытках предсказать дальнейшую судьбу астрономической Вселенной, ученые разделили ее существование на следующие этапы:


Несмотря на то, что вещество Вселенной постепенно аннигилирует, само пространство может эволюционировать по четырем гипотетическим сценариям:

  1. Если со временем расширение Вселенной замедлится, а после — обернется в сжатие, то конечным этапом ее жизни станет Большое сжатие. В результате чего все вещество коллапсирует и вернется в изначальное свое состояние – сингулярность.
  2. Иной сценарий — средняя плотность вещества Вселенной точно определена и является таковой, что расширение постепенно замедляется.
  3. Наиболее вероятная, в силу современных результатов наблюдений, модель. Подразумевает равномерное расширение Вселенной, по инерции.
  4. Стремительный рост скорости расширения Вселенной, который приведет наш мир к так называемому .