Основные этапы вирусологического исследования. Вирусологические исследования. Использование Time Machine

Вирусологические исследования в клинике инфекционных болезней приобретают все большее значение, что в первую очередь обусловлено ростом удельного веса инфекций вирусной природы, клиника которых не всегда типична. В то же время быстрые и надежные методы вирусологической диагностики разработаны не для всех инфекционных болезней, многие из них трудоемки, для их проведения нужны специальные условия, экспериментальные животные, питательные среды и подготовленный персонал. В настоящее время для диагностики вирусных инфекций используют 3 основных вида исследования.
1. Микроскопическое исследование заразного материала с целью выявления вирусного антигена или патогномоничных изменений в тканях. В диагностических целях прямое микроскопическое исследование инфекционного материала от больных используется при ограниченном числе вирусных инфекций (бешенстве, ветряной оспе, желтой лихорадке, герпесе и др.). Более широкое применение получил метод, основанный на обнаружении вирусного антигена с помощью флуоресцирующих антител. Метод иммунофлуоресценции может быть достоверным лишь при четком выполнении всех технических требований.
2. Вирусологические методы.
3. Серологические исследования для определения прироста титра антител в динамике болезни. Серологические методы исследования более доступны в лабораторных условиях.
Для этих исследований необходимо взятие сыворотки крови в острый период болезни и в период реконвалесценции (парные сыворотки). Пробы крови для серологических исследований берутся стерильно без антикоагулянтов и консервантов.
Основными этапами вирусологических исследований являются выделение вирусов, их идентификация, характеристика основных биологических свойств. Для выделения различных групп вирусов в настоящее время не существует единой методики. Это в первую очередь обусловлено многообразием их свойств и особенностями культивирования вне организма хозяина. Для исследования используют биосубстраты (смывы со слизистых оболочек, кровь и ее компоненты, спинномозговая жидкость, моча и испражнения, биоптаты органов и тканей или их кусочки, взятые при аутопсии), которые подвергают специальной обработке с последующим пассированием материала. Взятый для исследования материал должен храниться при температуре от -20 °С до -70 °С. В зависимости от предварительного диагноза обработка материала имеет свои особенности, но во всех случаях предполагается получение субстрата, максимально очищенного от примесей слизи, клеток органов и тканей или их фрагментов, бактерий. Это достигается гомогенизацией исследуемого материала в специальном аппарате или растиранием в фарфоровой ступке на холоде с кварцевым стеклом (кусочки органов и тканей) с добавлением стерильного охлажденного (+4 С) 0,9 %

раствора хлорида натрия до получения 10-30 % суспензии и последующим центрифугированием при 1500-3000 об/мин в течение 10-15 мин. Полученную таким образом надосадочную жидкость используют для проведения дальнейших исследований.
До интенсивного развития и внедрения в широкую практику метода культуры тканей и клеток применялось заражение экспериментальных животных или эмбрионов курицы. Эти методы применяются и в настоящее время. Выявление вирусов с использованием животных наиболее целесообразно в тех случаях, когда удается воспроизвести в эксперименте типичную картину инфекционного заболевания или отдельные его проявления. Так, возбудители группы арбовирусов и Коксаки могут быть выявлены при заражении в мозг мышей-сосунков, гриппа - при заражении куриных эмбрионов или интраназальном введении исследуемого материала мышам. В вирусологических лабораториях в последние годы наиболее широко стали применять метод культуры клеток и тканей, позволяющий выделять аденовирусы, герпес-вирусы, респираторно-синцитиальный вирус, миксовирусы и другие и уже на первых этапах исследования осуществлять этиологическую диагностику заболевания. Основанием для этого являются хорошо изученные цитологические особенности взаимодействия большинства вирусов и клеток. Так, заражение клеток HeLa, Нер-2 материалом, содержащим аденовирус 2-го типа, уже на 3-й сутки приводит к изменению характера роста клеточного монослоя и к появлению типичных клеток в виде виноградных гроздьев и т. д., хорошо определяемых в обычном световом микроскопе при малом увеличении.
Исключительное значение для этиологической диагностики инфекционного заболевания имеет стандартизация выделения вируса из исследуемого материала, что на данном этапе работы предполагает использование генетически чистых линейных животных с учетом их фенотипических (в первую очередь возрастных) особенностей. Это обусловлено прежде всего тем, что экспериментальные животные различных генетических линий и возраста в разной степени восприимчивы к вирусам. Так, при интрацеребральном заражении мышей нейротропным штаммом WSN вируса гриппа у животных линий BALB/c, A, CBA и беспородных чувствительность оказалась наибольшей, такая же закономерность установлена и в случаях интраназального введения исследуемого материала. Существенное значение для конечных результатов работы по выделению вирусов имеет предварительное обследование животных, куриных эмбрионов, культур клеток и тканей на предмет латентного вирусоносительства. Весьма широко используемые в лабораторной практике куриные эмбрионы могут быть заражены вирусами лейкоза птиц, птичьего энцефаломиелита, инфекционного синусита, пситтакоза, болезни Ньюкасла, возбудителями некоторых бактериальных инфекций (паратифы и др.), а также микоплазмой. Еще большее число бактериальных и особенно вирусных агентов способно спонтанно заражать культуру клеток и тканей и переживать в них. Их присутствие существенно влияет на оценку исследуемого материала. Некоторые виды микоплазм в культуре клеток
могут обусловливать гемагглютинацию и гемадсорбцию и даже образовывать под агаровым покрытием бляшки, сходные с образуемыми вирусами. Немаловажное значение имеет также загрязнение клеточных культур одного типа другими, наиболее часто это бывает связано с клетками HeLa и наблюдается при работе с различными типами культур в одной комнате, при плохой обработке лабораторной посуды и др. Наличие контаминации клеточных культур или заражение животных бактериальными агентами, как правило, проявляется достаточно четко (изменение характера роста монослоя клеток, свойств культуральной среды, гибель куриных эмбрионов или животных с определенной симптоматикой и т. д.) и особых затруднений при оценке результатов не представляет. Сложнее обстоит вопрос с латентными формами инфекции, где требуется применение серологических и других методов. Эти указания должны учитываться в работе врача-вирусолога, особенно при проведении этиологической диагностики неясных случаев заболевания.

Вирусологические методы исследования

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Вирусологические исследования - это исследования, предназначенные для выделения вирусов и изучения их свойств, а также установления этиологической связи вирусов с определенными заболеваниями.

Материал для исследования забирается в зависимости от места преимущественного вирусов в организме больного и от путей их выделения во внешнюю среду. Материал собирается в стерильную посуду, максимально быстро доставляется в лабораторию и сохраняется до исследования в замороженном виде или на льду. Перед использованием материал для выделения вирусов обрабатывается ( и ) для подавления посторонней микрофлоры и подвергается для удаления крупных частиц.

Выделение вирусов осуществляется путем заражения вируссодержащим материалом лабораторных животных, куриных эмбрионов, культуры тканей. Выбор способа выделения зависит от предполагаемого возбудителя заболевания. Так, культуры тканей (см.) используют при работе с вирусами, не патогенными для лабораторных животных, или когда в культуре тканей выявляются раньше, чем при инфицировании животных. Куриные эмбрионы заражают для выделения возбудителей , инфекционного паротита (в амниотическую и аллантоисную полости), (в желточный мешок), оспы (на хорионаллантоисную оболочку).

Из лабораторных животных для выделения вирусов наиболее часто используют белых мышей, затем кроликов, крыс, морских свинок, обезьян. Для арбовирусов наиболее эффективно введение вируссодержащего материала в головной или , для пневмотропных вирусов - на слизистую оболочку дыхательных путей, для вирусов оспы, - на скарифицированную роговицу.

Выделение вирусов наиболее эффективно в остром периоде заболевания. Существенным моментом в установлении вирусной природы заболевания являются результаты серологических исследований сывороток, взятых повторно от одного и того же больного в начале заболевания и в период реконвалесценции. Обнаружение антител к выделенным вирусам во второй сыворотке в титре в 4 и более раз больше, чем в первой, указывает на этиологическую связь вирусов с данным заболеванием.

Ранним и быстрым методом обнаружения вирусных антигенов является метод флюоресцирующих антител, основанный на специфической фиксации меченных флюорохромом антител на поверхности антигена. Антиген легко выявляется при люминесцентной микроскопии (см.) благодаря яркой флюоресценции адсорбированных на антигене антител. Методом флюоресцирующих антител исследуют мазки, взятые от больных, гистологические срезы пораженных тканей, препараты из культуры тканей. Для обнаружения элементарных телец (вирионов) применяют также (см.). Из других морфологических методов используют те, которые выявляют внутриклеточные вирусные включения в срезах пораженных органов и тканей. Обнаружение включений свидетельствует об инфекции и в ряде случаев способствует постановке диагноза вирусного заболевания. Для обнаружения вирусных антител в крови больных и для изучения антигенной структуры вирусов применяют различные . Реакцию нейтрализации применяют почти при всех вирусных инфекциях. Она основана на способности антител иммунной нейтрализовать инфекционные свойства вирусов при введении смеси в организм восприимчивых животных или в культуру тканей. Для определения индекса нейтрализации постоянную дозу сыворотки смешивают с различными разведениями вирусов, а для определения титра антител - различные разведения сыворотки с постоянной дозой вирусов. Контролем служит заражение животных (или культуры тканей) смесью вирусов с нормальной сывороткой или с физиологическим раствором. Реакцию нейтрализации ставят не только для выявления антител, но и для определения вида и типа вирусов.

Реакция связывания комплемента [например, Борде - Жангу реакция (см.)] используется для выявления как вирусных антигенов, так и антител. В первом случае в реакции взаимодействуют заведомо известная иммунная сыворотка и материал, в котором предполагается наличие антигенов: сыворотка крови, носоглоточные смывы, экстракты тканей инфицированного организма. Во втором случае - заведомо известный антиген (диагностикум) и сыворотка больного или реконвалесцента.

РСК используется для диагностики заболеваний, вызываемых вирусами гриппа, оспы, аденовирусами и арбовирусами.

В лабораторной диагностике вирусных инфекций имеются три основных подхода

1) непосредственное исследование материала на наличие вирусного антигена или нуклеиновых кислот;

2) изоляция и идентификация вируса из клинического материала;

Прямые методы диагностики клинического материала

Прямые методы – это методы, которые позволяют обнаружить вирус, вирусный антиген или вирусную нуклеиновую кислоту (НК) непосредственно в клиническом материале, то есть являются наиболее быстрыми (2–24 ч).

Электронная микроскопия (ЭМ). С помощью этого метода можно обнаружить собственно вирус.

иммунная электронная микроскопия (ИЭМ), при которой применяются специфические антитела к вирусам. В результате взаимодействия антител с вирусами образуются комплексы, которые после негативного контрастирования легче обнаруживаются.

Реакция иммунофлюоресценции (РИФ). Метод основан на использовании антител, связанных с красителем

Метод РИФ широко применяется для быстрой расшифровки этиологии острых респираторных вирусных инфекций при анализе мазков-отпечатков со слизистой оболочки верхних дыхательных путей .

Иммуноферментный анализ (ИФА). Иммуноферментные методы определения вирусных антигенов в принципе сходны с РИФ, но основываются на мечении антител ферментами, а не красителями.

Радиоиммунный анализ (РИА). Метод основан на метке антител радиоизотопами, что обеспечивало высокую чувствительность в определении вирусного антигена.

Молекулярные методы. Первоначально классическим методом выявления вирусного генома считался высокоспецифичный метод гибридизации НК, но в настоящее время все шире используется выделение геномов вируса с помощью полимеразной цепной реакции (ПЦР).

Молекулярная гибридизация нуклеиновых кислот. Метод основан на гибридизации комплементарных нитей ДНК или РНК с образованием двунитевых структур и на выявлении их

ПЦР основана на принципе естественной репликации ДНК. Суть метода заключается в многократном повторении циклов синтеза (амплификации) вирусспецифической последовательности ДНК с помощью термостабильной Taq ДНК-полимеразы и двух специфических затравок – так называемых праймеров.

Цитологические методы в настоящее время имеют ограниченное диагностическое значение, но при ряде инфекций по-прежнему должны применяться. Исследуются материалы аутопсии, биопсии, мазки, которые после соответствующей обработки окрашиваются и анализируются под микроскопом.



Для успешного выделения вирусов клинический материал должен быть взят в соответствии с патогенезом предполагаемого заболевания и в наиболее ранние сроки.

Как правило, берутся:

– при респираторных инфекциях – носоглоточный смыв;

– при энтеровирусных инфекциях – смыв и фекалии (рео-, энтеровирусы);

– при поражениях кожи и слизистых оболочек – соскобы, содержимое пузырьков (герпес, ветряная оспа);

– при экзантемных инфекциях – смывы (корь, краснуха);

– при арбовирусных инфекциях – кровь, спинномозговая жидкость.

Для выделения вирусов используют культуры клеток, лабораторных животных, эмбрионы кур. Процесс длительный, иногда требующий проведения нескольких пассажей, прежде чем вирус будет обнаружен и идентифицирован с помощью одного или нескольких методов – в реакции нейтрализации (РН), РИФ, ИФА или ПЦР.

Серодиагностика

Серологическая диагностика, основанная на реакции антиген – антитело, может быть использована для определения как тех, так и других, и играет роль в определении этиологии вирусной инфекции даже при отрицательных результатах выделения вируса.

РСК является одной из традиционных серологических реакций и используется для диагностики многих вирусных инфекций. В реакции принимают участие две системы: антитела сыворотки больного + стандартный вирус и эритроциты барана + антитела к ним, а также оттитрованный комплемент. При соответствии антител и вируса этот комплекс связывает комплемент и лизиса бараньих эритроцитов не происходит (положительная реакция). При отрицательной РСК комплемент способствует лизису эритроцитов. Недостатком метода является его недостаточно высокая чувствительность и трудность стандартизации реагентов.ИФ метод также, как ИФА, применяется для определения антител в сыворотке.

Исследования для диагностики заболеваний с вирусной природой. Это необходимо, чтобы идентифицировать вирус, изучить его биологию и способность воздействовать на клетки животного и человека. Таким образом, появляется возможность понять патогенез вирусных заболеваний и, соответственно, правильно выбрать методику лечения.

В чем заключается диагностика?

В живых клетках. Чтобы его исследовать, необходимо культивирование на уровне подопытного организма или Для этого в медицинской практике и микробиологии в целом проводятся вирусологические методы исследования, которые имеют следующие основные подходы:

  • прямой;
  • непрямой;
  • серологический.

Материал могут исследовать непосредственно на наличие нуклеиновых кислот, вирусного антигена или, например, изолировать и идентифицировать вирус из клинического материала.

Кроме возможности установить этиологию заболевания, мониторинга терапевтического эффекта, вирусологические методы исследования играют большую роль в противоэпидемических мероприятиях. Для выделения и используют куриные эмбрионы, лабораторных животных или культуры клеток.

Как исследуют?

Самый быстрый - это прямой метод. Он позволяет обнаружить вирус, антиген или НК (нуклеиновую кислоту) в самом клиническом материале. Занимает время от двух часов до суток.

  1. ЭМ - электронная микроскопия. Обнаруживает непосредственно вирус.
  2. ИЭМ - иммунная электронная микроскопия. Использует специфические антитела к вирусам.
  3. РИФ - реакция иммунофлюоресценции. Использует антитела, связанные с красителем. Такие вирусологические методы исследования широко применяются в качестве быстрой расшифровки этиологии ОРВИ (острых респираторных вирусных инфекций), когда берут мазки-отпечатки со слизистой оболочки верхних дыхательных путей.
  4. ИФА - иммуноферментный анализ - определение вирусных антигенов, похожее на РИФ, но основанное на мечении антител ферментами.
  5. РИА - радиоиммунный анализ. Использует метку антител радиоизотопами для обеспечения высокой чувствительности в определении вирусного антигена.
  6. Молекулярный - гибридизация НК или выделение геномов вируса при помощи ПЦР (полимеразной цепной реакции).
  7. Цитология - применяется редко, но при определенных инфекциях эти вирусологические методы исследования очень эффективны. Исследуются материалы биопсии, аутопсии и мазки, обрабатываемые с целью окрашивания и анализа под микроскопом.

В чем смысл исследований?

Для успешного выделения вирусов клинический материал берут в соответствии с патогенезом и как можно раньше. Часто этот процесс требует проведения нескольких пассажей, прежде чем применить определенные вирусологические методы исследования.

Микробиология изучает микроскопические существа. И ее область - это не только медицина. Она является основополагающей наукой для сельского хозяйства, ветеринарии, космической и технической промышленности, геологии.

Но безусловно все создано для человека и его развития на этой прекрасной планете. Поэтому очень важно вовремя обнаружить опасность и нейтрализовать ее. Вирусы отличны от бактерий. Это структуры, попадающие в организм и вызывающие образование нового поколения. Они похожи на кристаллы и направлены на управление процессом своего размножения, хотя сами не питаются, не растут и не выделяют продуктов обмена.

Вирус способен вызвать тяжелое заболевание у любого живого организма, в который он попал. К тому же он может эволюционировать. Именно поэтому вирусологические методы исследования в микробиологии должны развиваться и совершенствоваться, так как под угрозой может быть человеческая цивилизация в целом.

Материалы

Для обнаружения и идентификации вирусов в медицине, как правило, берутся:

  • носоглоточный смыв (респираторные инфекции);
  • смыв и фекалии (энтеровирусные инфекции);
  • соскобы, содержимое пузырьков (поражения кожи, слизистых оболочек, как герпес, ветряная оспа);
  • смывы (экзантемные инфекции, как корь, краснуха);
  • кровь, спинномозговая жидкость (арбовирусные инфекции).

Фазы

Все этапы вирусологического метода исследования включают в себя:

  • забор материала;
  • выбор, получение тест-системы, определение ее жизнеспособности;
  • заражение тест-системы;
  • индикация вируса;
  • определение типа вируса.

В основном, патогенные вирусы отличаются наличием тканевой и типовой специфичности. Взять, к примеру, полиовирус, который репродуцируется только у приматов (в их клетках). Соответственно, для выделения определенного вируса используют определенную культуру ткани. Если речь идет о неизвестном возбудителе, то целесообразно будет одномоментно заразить три, а лучше четыре культуры клеток.

Таким образом, возможно, одна из них окажется чувствительной. Чтобы определить наличие вируса в зараженных культурах, смотрят на развитие специфической дегенерации клеток, внутриклеточные включения, выявление специфического антигена, положительные реакции гемагглютинации и гемадсорбции.

Все вирусологические методы исследования (прямые и непрямые, серологические) должны быть выбраны, как наиболее подходящие для конкретного случая предполагаемого инфицирования.

Непрямые методы основываются на выделении и идентификации вируса. Они трудоемкие, длительные, но точные.

Серодиагностика

Под такой диагностикой подразумевается метод, основанный на реакции антиген-антитело. Чаще всего используют парные сыворотки крови, взятые с интервалом в несколько недель. Если нарастание титра антител в 4 и больше раз, реакцию считают за положительную. Чтобы определить типоспецифичность вируса, применяют реакцию вируснейтрализации. Для определения группоспецифичности нужно получить реакцию связывания комплемента.

Широко используют различные варианты иммуноферментного анализа, реакции торможения гемагглютинации, пассивной гемагглютинации, обратной пассивной гемагглютинации, РИФ. Еще в генной инженерии был разработан метод получения моноклональных антител. Преодолеть узкую специфичность моноклонов можно применением нескольких моноклональных антител к различным вирусным детерминантам. Таким образом, была повышена специфичность и чувствительность исследования с определением антигенов.

Некоторые особенности

Сегодня создано много разных тест-систем для иммунологической диагностики инфекций, возникших вследствие попадания вируса в живой организм.

Таким образом, вирусологические методы исследования - это способы выделения вирусов, изучение их свойств и установление их этиологической связи с определенными заболеваниями.