Лев певзнер - триз для «чайников». приемы устранения технических противоречий. Триз. противоречие

Например: Система должна обладать свойством А, чтобы выполнять полезную функцию, и должна обладать свойством не-А, чтобы не выполнять вредную.

Разрешение противоречий в изобретательстве - способ улучшить существующую техническую систему (в некотором смысле - это «двигатель эволюции » технических систем). ТРИЗ утверждает, что любой качественный шаг в развитии - результат преодоления какого-либо противоречия.

Изобретательно мыслящий человек выявляет противоречия, как только они возникают, не делая попыток уйти от них. Вместо этого он обостряет их и приходит к решению. Традиционно мыслящий человек старается найти компромиссы, одно улучшает за счёт другого и может зайти в тупик. Таким образом, умение балансировать между противоречивыми требованиями, но не сглаживать противоречия, добиваясь их разрешения - своего рода искусство.

На стр.89 «Алгоритма изобретения», 1973 г, даётся пример возникновения противоречия у мельниц из «Капитала» К. Маркса: «Увеличение размеров рабочей машины и количества её одновременно действующих орудий требует более крупного двигательного механизма … была сделана попытка приводить в движение … два постава (две пары жерновов) посредством одного водяного колеса. Но увеличение размеров передаточного механизма вступило в конфликт с недостаточной силой воды…». ГСА объясняет это как попытку улучшения (?) одного свойства машины с неизбежным её конфликтом с другим свойством. Видна явная подгонка под постулаты своей теории. На самом деле в тексте примера вовсе не говорится об «улучшении» чего- то, есть только конкретное увеличение требований к машине, которое технически ею не может быть обеспечено. И указывается причина, препятствующая увеличению количества действующих орудий (а, значит, производительности), это недостаточная энергетическая сила воды. Формулирование противоречия как взаимосвязанное «улучшение – ухудшение» частей машины с приданием ему(противоречию) качества «изобретательская» задача в корне ошибочна и не имеет такой цели как качественное изменение техники. Более того, даже успешное решение таких задач не гарантирует получения главного, для чего якобы предназначена ТРИЗ, – изобретений («Изобретение – это развитие технической системы»: стр. 31 «Творчество как точная наука», 2004 г). И только потому, что в ТРИЗ «изобретение не самоцель, оно нужно для решения той или иной практической задачи» (стр.221 «Алгоритм изобретения»,1973 г). Какую же тогда «непрактическую» задачу ставит перед собой ТРИЗ и решает? Известно, что в ТРИЗ даже нет раздела посвященного созданию изобретений, хотя утверждается, что она их может создавать. Какая бы не решалась задача, «изобретательская» или другая, в ТРИЗ установлен явный примат «диких», красивых, алогичных и т.п. решений. При этом будут ли они воплощены в изобретения, для ТРИЗ не представляет никакого интереса, это всё практика, а у неё главное – «изобретательская» высота решений.

Природу классического противоречия изучил и описал Георг Вильгельм Фридрих Гегель (1770-1831 гг).Для объектов техники в противодействие вступают количественное увеличение некоторого качества, ради которого он создан, и исчерпание технических ресурсов его обеспечения.Они образуют противоречивое состояние: одно обуславливает второе, а второе исключает первое.Они же являются классическими первичными противоположностями.Возникновение противопоставленных сторон обусловлено действием закона перехода количественных изменений в качественные и обратно. Первая часть закона ответственна за возникновение противоречия, вторая - за его разрешение.Без опосредствующих структур противоположности вступают в разрушительные столкновения из - за "короткого замыкания".Опосредованность (вещественная, полевая, структурная)обеспечивает и поддерживает развёртывание противоречий.Протон и электрон - качественные противоположности и элементы вещества, образуют опосредованность полевого атомарного типа: электрон вращается вокруг протона.Такой способ взаимодействия исключает "короткое замыкание" и взаимное уничтожение.Это обеспечивает системе протон - электрон стабильную прочность и возможность количественных изменений: рост количества электронов и протонов является основным принципом образования новых химических элементов и веществ. Противоположности различных полей (тепловых, электрических, магнитных и тд) образуют вещественную форму опосредованности:магнитную жидкость,тепловые изоляторы,реологическую жидкость и тп, где наблюдается сходство по ряду признаков и свойств с противоположностями. Они образуют точку схождения и отождествления качественных противоположностей, их модификацию.

Галилео Галилей давно нашёл, что "невозможно выиграть в одном, не заменив это чем -то другим"! Это соответствует "золотому правилу механике" или закону сохранения энергии. Г.С.Альшуллер выдвинул тезис о связи типичных "технических противоречиях" и типовых приёмов их устранения.Однако,в разработанной им таблице на 1250 типичных "технических противоречия" приходится всего 125 типовых приёма, причём на каждое "техническое противоречие" предлагается до четырёх совершенно разных типовых приёма.Это подтверждает то, что никакой причинно - следственной связи между ними не существует.Как не существует и эвристической. Причина в том, что связь "улучшения с ухудшением" не является противоречием, тем более техническим.Практические качества этого инструмента оказались нулевыми, как и не доказательными.

Сходные разработки

Формулирование противоречия как взаимосвязанное «улучшение – ухудшение» частей машины с приданием ему(противоречию) качества «изобретательская» задача в корне ошибочна и не имеет такой цели как качественное изменение техники. Более того, даже успешное решение таких задач не гарантирует получения главного, для чего якобы предназначена ТРИЗ, – изобретений («Изобретение – это развитие технической системы»: стр. 31 «Творчество как точная наука», 2004 г). И только потому, что в ТРИЗ «изобретение не самоцель, оно нужно для решения той или иной практической задачи» (стр.221 «Алгоритм изобретения»,1973 г). Какую же тогда «непрактическую» задачу ставит перед собой ТРИЗ и решает? Известно, что в ТРИЗ даже нет раздела посвященного созданию изобретений, хотя утверждается, что она их может создавать. Какая бы не решалась задача, «изобретательская» или другая, в ТРИЗ установлен явный примат «диких», красивых, алогичных и т.п. решений. При этом будут ли они воплощены в изобретения, для ТРИЗ не представляет никакого интереса,это всё практика, а у неё главное - "изобретательская" высота решений.

Примеры

  • …предвыборная кампания. Чтобы за кандидата проголосовали, неплохо было бы, чтобы избиратели прочитали его или её автобиографическую книгу. Но читать такую толстую книжку избиратели не будут…
  • …производство стекла : расплавленная масса движется по роликовому конвейеру и таким образом утончается. Ролики должны быть маленькими, чтобы стекло получалось гладким, и ролики должны быть большими, чтобы конвейер был удобен в эксплуатации…
  • …системное программирование : программа должна иметь возможность получить доступ к любому объёму оперативной памяти , но в то же время она должна работать на компьютерах с ограниченным объёмом оперативной памяти
  • …история: в 800 году происходила коронация Карла Великого . По ритуалу возложить корону на Карла должен был папа римский . Перед Карлом возникла нелёгкая задача. С одной стороны, коронация была нужна для укрепления власти, поэтому её надо провести «по всей форме». С другой стороны, из политических соображений было совершенно недопустимо, чтобы папа римский короновал Карла, поскольку получалось, что папа выше императора: раз папа дал корону, он может когда-нибудь и забрать её. Возникла сложная ситуация: Карл должен быть коронован папой римским, чтобы соблюсти ритуал, и не должен, чтобы не оказаться в зависимости от духовенства. Карл Великий нашёл оригинальный выход: в момент коронации он выхватил корону из рук папы и сам водрузил её на свою голову.

Источники и примечания

Ссылки

  • Петров В. Понятие о противоречиях. - Петров В. Основы ТРИЗ
  • Краткая методика построения «дерева противоречий» (c) Виссарион Григорьевич Сибиряков, «Диол», 2001.
  • Сводная картотека © Альтшуллер Г. С., 1980> Военная техника развивается особенно быстрыми темпами и применяется в особо сложных условиях. Поэтому в военной технике можно найти яркие примеры технических противоречий и интересные приемы их преодоления…
  • Классификация несчастий , или типичные противоречия в моделях задач. © Альтшуллер Г. С., Журнал «Техника и наука», 1981, № 7. - С.19.
  • «Приемы разрешения противоречий в природных и организационных системах» . Сибиряков В. Г., Семенова Л. Н.
  • «Изобретательство в бизнесе или развитие через противоречия»
  • «Относительно противоречия» Мао Цзэдун (Август 1937 г.)

Wikimedia Foundation . 2010 .

7.05.2001

Противоречия с позиции ТРИЗ

Задача из прошлой рассылки о продаже квартиры вызвала у вас самые большие затруднения за все время. Здесь нет ничего удивительного. Это не учебная, а реальная задача, которую мне довелось решать в своей практике. Возможно, что давать ее было преждевременно, но мне хотелось уже сейчас показать вам разницу между реальной задачей и задачей учебной.
Дело в том, что умение решать учебные задачи еще не означает умение решать реальные практические задачи. Но, не научившись решать учебные, бесполезно браться за реальные.

В чем же разница между учебными и реальными задачами?
Самое главное различие заключается в том, что при постановке учебной задачи ее условие приходится давать в том виде, в котором она имеет смысл, как учебная. Что здесь имеется в виду. Прежде всего, то, что она более конкретна. Задача дана в готовом для решения виде. Ее не надо переформулировать. А это существенно упрощает ее решение. Известно, что правильная постановка задачи - это половина ее решения.
Практики, занимающиеся решением реальных задач, знают, какая дистанция существует между учебными и реальными задачами. На примере задачи о продаже квартиры мне и хотелось показать вам эту дистанцию.

Из тех предложений, что были вами присланы, я бы выделил только одно.
Предложено было использовать подставных "покупателей", которые звонили бы продавцу и возмущались по поводу той цены, которую он запросил за свою квартиру. Такая психологическая обработка, конечно, будет иметь результат, и продавец быстрее придет к решению снизить цену. В принципе - это неплохая идея. Но от ИКР она все же далека. И время, и силы на это придется потратить, да и клиент в результате в другую фирму может обратиться. Недостатков в этом решении не мало. Но это лучшее, что было вами предложено.

Понятно, что раскрывать свои решения в широкой рассылке мне не интересно. Решения некоторых таких задач я показываю на своих семинарах. Могу лишь сказать, что мое решение позволяет договориться о нормальной рыночной цене квартиры с 90% клиентов при первом же их визите в офис фирмы. Если кто-то пришлет мне идею такого решения, то в своем ответе я сообщу, что решение найдено.

А теперь обещанная глава о противоречиях из книги Г.С. Альтшуллера "Творчество как точная наука".

ПРОТИВОРЕЧИЯ АДМИНИСТРАТИВНЫЕ, ТЕХНИЧЕСКИЕ, ФИЗИЧЕСКИЕ

Сравним два изобретения. Первое: "Способ определения Параметров, недоступных прямому наблюдению (например, износостойкости), основанный на косвенном контроле, отличающийся тем, что с целью повышения точности определения искомых параметров по результатам косвенного контроля подбирают изделия в пары (серии) по принципу близости измеренных параметров в одном образце от каждой пары (серии), определяют искомый параметр, разрушая изделие, и распространяют полученный результат на оставшиеся изделия этой пары (серии) (а. с. N 188 097). Чтобы проверить изделия, предлагается весьма простое решение: сломать половину изделий и посмотреть... Правда, тут возникает противоречие: чем большую часть изделий мы сломаем, тем надежнее сможем судить об оставшихся. Второе изобретение: "Способ контроля и дефектоскопии однотипных изделий, имеющих скрытые дефекты, например, в виде пустот или инородных включений, отличающийся тем, что с целью упрощения процесса контроля изделие помещают в ванну с электропроводной жидкостью, пропускают через нее электрический ток, а затем воздействуют на жидкость магнитным полем для изменения ее кажущейся плотности до достижения безразличного положения в ней исправных изделий, и наличие дефектов определяют по изменению положения относительно дна ванны" (а. с. N 286 318). Очень похожая задача, но в решении нет противоречия - испытания проводят, не ломая изделий. Использован оригинальный прием: с помощью взаимодействия электрического и магнитного полей жидкость заставляют, как бы менять свою плотность, отчего помещенное в жидкость изделие тонет или всплывает (в зависимости от наличия или отсутствия дефектов).

Изобретательские задачи часто путают с задачами техническими, инженерными, конструкторскими. Построить обычный дом, имея готовые чертежи и расчеты, - задача техническая. Рассчитать обычный мост, пользуясь готовыми формулами, - задача инженерная. Спроектировать удобный и дешевый автобус, найдя компромисс между "удобно" и "дешево", - задача конструкторская. При решении этих задач не приходится преодолевать противоречия. Задача становится изобретательской только в том случае, если для ее решения необходимо преодолеть противоречие.

Не сталкиваемся мы с противоречиями и при решении задач первого уровня. Строго говоря, это задачи конструкторские, а не изобретательские. Юридическое понимание термина "изобретение" не совпадает с пониманием, так сказать, техническим, творческим. По-видимому, со временем юридический статус изобретения будет несколько изменен, и простые конструкторские решения перестанут считаться изобретениями. Во избежание путаницы будем пока пользоваться словосочетанием "изобретательская задача первого уровня", помня, однако, что подлинные изобретательские задачи второго и более высоких уровней обязательно связаны с преодолением противоречий.

В самом факте возникновения изобретательской задачи уже присутствует противоречие: нужно что-то сделать, а как это сделать - неизвестно. Такие противоречия принято называть административными (АП). Выявлять административные противоречия нет необходимости, они лежат на поверхности задачи. Но и эвристическая, "подсказывательная" сила таких противоречий равна нулю: они не говорят, в каком направлении надо искать решение.

В глубине административных противоречий лежат технические противоречия (ТП): если известными способами улучшить одну часть (или один параметр) технической системы, недопустимо ухудшится другая часть (или другой параметр). Технические противоречия часто указаны в условиях задачи, но столь же часто исходная формулировка ТП требует серьезной корректировки. Зато правильно сформулированное ТП обладает определенной эвристической ценностью. Правда, формулировка ТП не дает указания на конкретный ответ. Но она позволяет сразу отбросить множество "пустых" вариантов: заведомо не годятся все варианты, в которых выигрыш в одном свойстве сопровождается проигрышем в другом.

Каждое ТП обусловлено конкретными физическими причинами. Возьмем для примера такую задачу:

Задача

При полировании оптических стекол необходимо под полировальник (он сделан из смолы) подавать охлаждающую жидкость. Пробовали делать в полировальнике сквозные отверстия и различные поры для подачи жидкости, но "дырчатая" поверхность полировальника работает хуже сплошной. Как быть?

Техническое противоречие здесь уже указано: охлаждающая способность "дырчатого" полировальника вступает в конфликт с его способностью полировать стекло. В чем причина конфликта? "Дырка" хорошо пропускает охлаждающую жидкость, но, естественно, не может сдирать частицы стекла. Твердые участки полировальника, наоборот, способны сдирать частицы стекла, но не в состоянии пропускать воду. Следовательно, поверхность полировальника должна быть твердой, чтобы сдирать частицы стекла, и "пустой", чтобы пропускать охлаждающую жидкость. Это - физическое противоречие (ФП): к одной и той же части системы предъявляются взаимопротивоположные требования.

В физических противоречиях столкновение конфликтующих требований предельно обострено. Поэтому на первый взгляд ФП кажутся абсурдными, заведомо неразрешимыми. Как сделать, чтобы вся поверхность полировальника была сплошной "дыркой" и в то же время сплошным твердым телом?! Но именно в этом, в доведении противоречия до крайности, и проявляется эвристическая сила ФП. Поскольку одна и та же часть вещества не может быть в двух разных состояниях, остается развести, разъединить противоречивые свойства простыми физическими преобразованиями. Можно, например, разделить их в пространстве: пусть объект состоит из двух частей, обладающих разными свойствами. Можно разделить противоречивые свойства во времени: пусть объект поочередно обладает то одним свойством, то другим. Можно использовать переходные состояния вещества, при которых на время возникает что-то вроде сосуществования противоположных свойств. Если, например, полировальник сделать из льда с вмороженными в него частицами абразива, лед при полировании будет плавиться, обеспечивая требуемое сочетание свойств: полирующая поверхность остается твердой и в то же время сквозь нее везде как бы проходит холодная вода. Как видите, мои объяснения сути противоречия практически ни чем не отличаются от тех, с которыми вы только что познакомились. Разница в некоторых названиях. То, что я называл противоположностями, здесь называется техническим противоречием (ТП), а формально-логическое противоречие - физическим противоречием (ФП). При решении технических задач, такие названия более удобны. Но важны не названия. Практика показывает, что понимание сути противоречия дается не просто, и мои объяснения имели цель облегчить вам это понимание.

Теперь очередная задача (учебная). Ее решение есть на сайте. Пример этой задачи скоро пригодится нам для объяснения последующих материалов.

Задача о водопроводной трубе

Вы на даче откопали участок трубопровода. Предположим, что вам необходимо определить, в какую сторону течет по трубе вода.
Как это сделать?

До следующей встречи.

Дата публикации: 03.11.2010

В отличие от обыденного понимания противоречия как конфликта между желаниями человека и реальной ситуацией, в ТРИЗ выявлены и конкретизированы несколько типов противоречий, основными из которых являются техническое и физическое .
Традиционные методы проектирования предусматривают поиск компромисса между требованиями к различным частям проектируемой системы, т.е. нацелены на сглаживание возникающих противоречий. При улучшении одного параметра системы другие, как правило, ухудшаются - в этом случае выбирается оптимальное решение.
Если у скоростного самолета маленькие крылья, то для взлета и посадки ему требуется длинная полоса. Поэтому конструкторы стремятся к компромиссу и разрабатывают крылья, обеспечивающие оптимальное значение скорости, при котором полоса еще сохраняет приемлемые размеры.
ТРИЗ рекомендует, напротив, предельно обострить противоречие, что позволяет найти сильное решение.
Крыло с изменяемой геометрией может становиться маленьким на высоте и большим при взлете и посадке самолета. На высоте такой самолет имеет высокую скорость, а для посадки ему не нужна специальная длинная полоса (рис. 1).

Техническое противоречие - ситуация, когда улучшение одного эксплуатационного параметра системы приводит к недопустимому ухудшению другого.
Именно изучение примеров сильных изобретений в патентном фонде и позволило выявить ряд специальных приемов разрешения технических противоречий. Приемы указывают лишь общее направление преобразований, направляя изобретателя в область сильных идей. Конкретные же решения можно найти по аналогии с приемом или примером, его иллюстрирующим. Один и тот же прием может применяться для решения задач из совершенно разных областей техники.
Вот два примера решения задач из гидротехники и двигателестроения.

Обкатка двигателя

Обкатка двигателя - важная операция его изготовления. Двигатель запускают без нагрузки, и все его трущиеся части начинают притираться, прирабатываться друг к другу. Процесс этот довольно длительный и требует значительного расхода топлива. Как ускорить приработку трущихся частей при обкатке двигателя?
Решить такую задачу, не зная специальных приемов, довольно сложно. Использование приема разрешения технических противоречий "Применить вред в пользу" дает мощную подсказку для решения этой задачи. Прием рекомендует:
а) использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта,
б) устранить вредный фактор за счет сложения с другим вредным фактором,
в) усилить вредный фактор до такой степени, чтобы он перестал быть вредным.
Решение, соответствующее рекомендации пункта а: приработка деталей ускоряется в несколько раз, если подавать в двигатель не очищенный воздух, а запыленный.

Уменьшение энергии потока

Поток воды, мчащийся с горы, обладает огромной разрушительной силой. Он может повредить гидротехнические сооружения. Как уменьшить энергию потока?
Здесь можно применить тот же прием "Применить вред в пользу".
Использовав рекомендацию пункта б, получили следующее решение: русло потока разделяют на несколько рукавов, которые направляют навстречу друг другу (рис. 4.59). Потоки сталкиваются и гасят энергию друг друга.

Для удобства выделения и разрешения технического противоречия Г.С. Альтшуллером была разработана таблица разрешения технических противоречий . Она организована следующим образом (рис. 2).
По вертикали располагаются типовые параметры, которые по условию задачи необходимо улучшить. По горизонтали - параметры, которые при этом недопустимо ухудшаются. На пересечении строк и колонок таблицы указаны номера приемов, позволяющих с наибольшей вероятностью устранить техническое противоречие, возникшее между улучшаемым и ухудшающимся параметрами. Для построения этой таблицы Г.С. Альтшуллер использовал 40 наиболее эффективных приемов разрешения технических противоречий.
Предварительные концепции решения при помощи приемов можно получить и без использования Таблицы противоречий. Для этого нужно последовательно проанализировать возможность применения каждого из 40 приемов. Каждый изобретатель постепенно компонует список своих наиболее часто применяемых приемов.
Практическое применение приемов разрешения технических противоречий имеет следующую особенность: рекомендации, описанные в каждом из приемов, не следует понимать буквально. Наибольший эффект достигается, если их воспринимать как подсказку, исходный материал для размышлений.

Рис.2. Таблица разрешения противоречий, разработанная Г.С. Альтшуллером

Например, прием 25: изменение окраски. Если понимать эту рекомендацию буквально, то поле действий резко сужается. Если же трактовать этот прием как изменение свойств поверхности вообще, то возможности получения новых идей неизмеримо вырастают. В данном случае речь может идти об изменении оптических свойств поверхности, ее шероховатости, температуры, о нанесении какого-то дополнительного вещества и т.п.

Физическое противоречие - это ситуация, при которой к некоторому элементу технической системы или его части предъявляются взаимоисключающие в физическом смысле требования.
В отличие от технического физическое противоречие возникает не между параметрами технической системы, а описывает противоречивые требования к одному ее элементу или, даже, какой-то его части. Формулируется физическое противоречие следующим образом: "Чтобы удовлетворять требованиям задачи, данная зона должна обладать свойством "X" (например, быть подвижной), чтобы выполнять какую-то функцию и обладать свойством "не-Х" (например, быть неподвижной)".

Пример физического противоречия: лобовое стекло автомобиля должно быть твердым, жестким, чтобы сопротивляться встречному потоку воздуха, и должно быть гибким, эластичным, чтобы не поранить водителя при разрушении. Такое противоречие разрешается применением триплексных стекол, когда между двумя наружными стеклами располагается внутренний мягкий слой.
Основные приемы разрешения физических противоречий:
1. Если от элемента требуется проявление противоположных свойств в одно и то же время, то такое противоречие разрешается разнесением этих свойств в пространстве.
2. Если от элемента требуется проявление противоположных свойств в одном и том же месте, то такое противоречие разрешается разнесением этих свойств во времени.
3. Если от элемента требуется проявление противоположных свойств в одно и то же время и в одном и том же месте, то такое противоречие разрешается в надсистеме.

Перекресток

Как организовано дорожное движение, например проезд автомобилями перекрестков? Если не соблюдать никаких правил, то все автомобили будут пытаться проехать перекресток одновременно. Это касается и тех автомобилей, которые должны ехать в первую очередь (например, скорая помощь).
При этом неизбежны столкновения, поскольку возникает физическое противоречие: два или больше автомобилей пытаются оказаться в одном и том же месте пространства в одно и то же время.

Одна дорога располагается над другой. Автомобили пересекают перекресток на разных уровнях и не мешают друг другу (рис. 3).

Применяется светофор. Автомобили проезжают перекресток в соответствии с сигналом светофора.

Специальные машины с включенными сигналами, например, скорая помощь, имеют право первоочередного проезда перекрестка. Этот порядок устанавливается в надсистеме, определяется специальными правилами дорожного движения и действует на всех дорогах.

Дисплей

Экран любого дисплея составлен из множества мельчайших квадратиков - пикселей. Изображение получается за счет того, что каждый пиксель может становиться то светлее, то темнее и генерировать свет любого желаемого цвета. Чтобы получить движущуюся картинку, кадры изображения на экране меняются 24 раза в секунду, яркость и цвет пикселей должны меняться с такой же частотой.
Таким образом, для цветного дисплея возникает следующее противоречие: цвет пикселя должен постоянно изменяться, в то время, как технические ограничения позволяют получить пиксель только одного цвета.
Как разрешается это противоречие в пространстве?
Пиксель разделяется на некоторое число подпикселей, в минимальном случае - на три, каждый из которых дает только один цвет - или красный, или зеленый, или синий. Это основные цвета спектра, и их смешение в определенных пропорциях воспринимается глазом как требуемый цвет (рис. 4, а). Здесь соблюдается правило: "один показанный кадр - один световой импульс".

Как разрешается это противоречие во времени?
Специалистами компании Samsung разработана специальная технология работы жидкокристаллического экрана, называющаяся UFS, что можно расшифровать как "дисплей очень высокого качества изображения". Согласно этой технологии не нужно делить пиксель на три подпикселя. Необходимые яркость и цвет пикселя обеспечиваются за счет установки сзади жидкокристаллического фильтра трех ламп подсветки: красной, зеленой и синей, которые мигают поочередно множество раз за время показа одного кадра изображения (рис. 4, б). Далее формированием нужного цвета управляет жидко-кристаллический фильтр, который может открывать окошечко перед пикселем.
Если нужно показать красную точку, то фильтр открывает пиксель только тогда, когда мигает красная лампа, и держит закрытым, когда мигают синяя и зеленая. Чтобы получить белый цвет, пиксель остается открытым на все время показа одного кадра изображения. Управляя количеством пульсаций разных цветов, можно получить любой желаемый цвет пикселя.
Здесь соблюдается правило: "один показанный кадр - много световых импульсов".
Как разрешается это противоречие в надсистеме?
Поскольку размер пикселя ограничен, то для повышения четкости изображения нужно увеличить число пикселей на экране дисплея, а сам экран отодвинуть от наблюдателя. Тогда видимый размер пикселя будет меньше.
Одно из возможных решений - использование принципов, заложенных в Seamless Technology, в соответствии с которой несколько экранов обычного размера и разрешения объединяются в один большой суперэкран высокой четкости. Поскольку размер пикселя сохраняется прежним, а размер экрана увеличивается, то четкость изображения для наблюдателя повышается (рис. 4, в).

Лыжи

Ходить на лыжах на первый взгляд совсем просто. Лыжник отталкивается одной ногой и скользит, затем отталкивается другой ногой и опять скользит. При этом возникает следующее противоречие:

  • Чтобы хорошо скользить, надо, чтобы трение поверхности лыжи о снег было низким.
  • Чтобы лыжник мог отталкиваться, поверхность лыжи должна иметь хорошее сцепление с лыжней.

Как разрешается это противоречие в пространстве?
Современные беговые лыжи имеют прогиб в средней части. Когда человек просто стоит на лыжах, то часть лыжи под ногой не касается снега (рис. 5, а). Средняя часть лыжи покрывается смазкой на основе воска, обладающей тормозящими свойствами, а начало и конец лыжи пропитываются жировой смазкой, которая обеспечивает хорошее скольжение.
Тогда при толчке, когда средняя часть лыжи прижата к снегу, она тормозится, а при свободном скольжении приподнимается и лыжа касается снега только в местах, которые покрыты "скользкой" смазкой .
Как разрешается это противоречие во времени?
Когда лыжа скользит, она имеет малое сопротивление, когда лыжник отталкивается - большое.
Одна из конструкций - лыжи, обитые камусом - мехом с наклонным расположением ворса. Такая лыжа хорошо скользит, но не проскальзывает назад при отталкивании или движении в гору.
Подобный эффект можно получить, используя явление, открытое В. Петренко . Если на скользящей поверхности лыжи закрепить тонкие электроды и подать на них небольшой отрицательный заряд, скольжение заметно улучшается. Если же заряд будет положительный, то резко увеличивается сцепление лыжи со снегом (рис. 5, б). Лыжнику нужно надеть на пояс легкую батарею и управляющее устройство, а на лыжах закрепить датчики давления. При толчке устройство должно подать на лыжу положительный заряд, при скольжении - отрицательный.
Как разрешается это противоречие в надсистеме?
Заставить лыжи двигаться, не отталкиваясь, можно, если просто ехать с горки. Можно использовать какой-то буксировщик и двигаться за мотоциклом или снегоходом, воздушным змеем или парашютом, использовать лошадь или собаку и т.п.

Выделение и разрешение противоречий - очень сильный инструмент решения изобретательских задач. Он дает возможность не сглаживать проблемы, а, наоборот, предельно обострять их и разрешать, устраняя нежелательные эффекты в ситуации.


Литература:

1. Альтшуллер Г.С. Найти идею. - Новосибирск: Наука, 1986.

2. Пентти Содерлин. Лыжи - превосходный пример для ТРИЗ.
http://www.gnrtr.com/problems/ru/p08.html

4. Виктор Петренко: Электричество уберет лед с дорог и ускорит лыжи. // Веб-сайт МЕМБРАНА.

Гин Анатолий, Френклах Григорий

Основные понятия ТРИЗ

Любую задачу можно назвать изобретательской, если для ее решения нужно разрешить противоречие. В ТРИЗ различают три вида противоречий: административное, техническое и физическое. АДМИНИСТРАТИВНОЕ ПРОТИВОРЕЧИЕ возникает, когда необходимо что-то сделать, но неизвестно каким способом.

ПРИМЕР
Необходимо повысить точность обработки какой-либо детали, но как? То ли платить дополнительно рабочему за увеличение точности, то ли использовать более совершенный станок, то ли вообще сменить технологию обработки.

Преодолевая административные противоречия каким-либо способом, сталкиваемся с противоречием техническим.

ПРИМЕР
Допустим, решили увеличить скорость самолета и для этого поставили на него мощные двигатели. Но крылья не могут оторвать от земли потяжелевший самолет. Решили увеличить крылья, но возросшее лобовое сопротивление свело почти на нет мощь новых двигателей.

ТЕХНИЧЕСКОЕ ПРОТИВОРЕЧИЕ — это конфликт внутри технической системы между ее параметрами, узлами, деталями.

При уточнении задачи техническое противоречие заменяется физическим.

ФИЗИЧЕСКОЕ ПРОТИВОРЕЧИЕ возникает между параметрами технической системы в каком-либо одном элементе или даже его части.

ПРИМЕР
Для приведенной выше задачи с самолетом физическое противоречие для крыла звучит так:
ДОЛЖНО БЫТЬ маленькое крыло,
ЧТОБЫ не создавать лобовое сопротивление и не уменьшать скорости самолета, и
ДОЛЖНО БЫТЬ большое крыло,
ЧТОБЫ оторвать самолет от земли.

Физические противоречия в простейших случаях можно разрешить, разделяя противоречивые требования во времени и в пространстве, иногда используют фазовые переходы и другие физические эффекты.

Например, разрешение противоречия во времени: во время полета крыло маленькое, а во время взлета и посадки — большое (крыло с изменяемой геометрией).

Для закрепления материала рассмотрим еще один пример. На игрушечной фабрике решили освоить новинку — летающую куклу Карлсон. Но как сделать куклу достаточно эстетичной и заставить ее летать — непонятно (это АДМИНИСТРАТИВНОЕ противоречие).

В результате разрешения административного противоречия пришли к ТЕХНИЧЕСКОМУ противоречию: если у куклы винт большой, то она летает, но внешний вид у нее ужасный — не Карлсон, а ветряная мельница. Если винт маленький, то внешний вид прекрасный, но летать кукла отказывается.

Физическое противоречие в данном случае можно сформулировать так: винт должен быть большим, чтобы кукла летала, и винт должен быть маленьким, чтобы она была эстетичной. Это противоречие довольно легко разрешается: в «спокойном» состоянии лопасти винта свернуты в рулон, но при вращении они разворачиваются центробежной силой и становятся большими.

Справку подготовили А. Гин и Г. Френклах

ТРИЗ для «чайников»

Приемы устранения технических противоречий


Лев Хатевич Певзнер

Редактор Надежда Станиславовна Сотникова


© Лев Хатевич Певзнер, 2017


ISBN 978-5-4485-7523-5

Создано в интеллектуальной издательской системе Ridero

ВВЕДЕНИЕ

Я познакомился с ТРИЗ в 1982 году на семинаре, который проводили Г. С. Альтшуллер, В. М. Петров и В. М. Герасимов. После месяца обучения нам показалось, что мы всесильны, что мы способны решать любые задачи. Но действительность быстро приземлила нас. Задачи почему-то не решались. То, что казалось панацеей, не «лечило» наши конкретные диагнозы.

Позднее я понял – не произошло ничего неожиданного. Самая хорошая скрипка не звучит без скрипача, и даже суперсовременный самолет сам не делает фигуры «высшего пилотажа». Так и с ТРИЗ – это сильный инструмент, но только в руках профессионалов. А профессионалом можно стать только после 5-10 лет плотной работы со всеми инструментами ТРИЗ. Таких специалистов в СССР было несколько десятков человек, да и сейчас немногим больше. Но зато каждый способен решить практически любую изобретательскую задачу.

Особенно эффектно это происходило на обучающих семинарах по заказам предприятий. Неподготовленному человеку трудно поверить, что ТРИЗ-профессионалы могут в течение часа решить проблему, над которой группа инженеров билась несколько месяцев или даже лет. Инженеры предприятий встречали нас всегда с большим недоверием, особенно на таких сильных предприятиях, как НГМК или Уралмаш. Все, что мы им показывали в первые дни, вызывало недоверие: понятно, тут у вас все подготовлено, вот и получается, а попробуйте-ка реальную задачу решить.

Сразу мы не соглашались, ведь чтобы создать напряжение – нужна пауза. Но на третий день семинара мы предлагали дать любую практическую задачу, стоящую перед предприятием. Всем слушателям становилось ясно, что тут заготовки быть не может, и вся группа со злорадством ждала оглушительного провала. Ведь задача, которая потребовала несколько лет работы лучших специалистов предприятия и на которую у них был «контрольный ответ», не может быть решена человеком со стороны, да еще в течения часа-полутора. И вот тут провалиться было нельзя! Но мы и не проваливались. Как правило, всегда находилось решение, которое часто было гораздо более эффектным, чем заготовленный заказчиками «контрольный ответ». Трудно поверить, что это возможно, но это так! Поэтому после таких «показательных выступлений» контакт с группой налаживался очень быстро. Так было на всех моих семинарах. Исключение составил семинар в Норильске, где я в составе команды Б. Злотина участвовал в обучении сразу трех групп инженеров. Надо сказать, что инженерный корпус НГМК был самым сильным из всех, с кем мне приходилось работать. Это были молодые и очень умные ребята. Они быстро сообразили, что мы действительно умеем решать задачи и… начали активно эксплуатировать нас! За этот семинар мы решили для каждой группы наших слушателей по 10-12 реальных задач по производству. Это, разумеется, входило в стоимость семинара и, я уверен, комбинат вернул все свои затраты на семинар только за счет этих решений.

Основной проблемой ТРИЗ является то, что этот сильный инструмент очень не прост в освоении и применении. Поэтому, даже прослушав серьезный курс ТРИЗ, инженеры не могут сразу эффективно применять его. Именно это и препятствовало быстрому распространению ТРИЗ, поскольку у рядового инженера нет времени на освоение новых навыков. Как разрешить это проблему – сделать сильный инструмент доступным широкому кругу инженеров? Ведь зачастую у меня были семинары всего от 12 до 40 часов, что явно недостаточно. Как убедить рядового инженера, что ТРИЗ эффективен? Как дать ему инструмент, чтобы он сразу мог пользоваться им?

Я любил вести обучение в виде беседы со слушателями, когда просто рассказывал основные инструменты ТРИЗ, иллюстрируя все примерами из своей практики, шутками и анекдотами. Так проще понимать материал и принимать его (ведь, как говорят, «в каждой шутке есть только доля шутки, а все остальное – правда»). А заодно просил слушателей самим попробовать сразу применять изложенный материал к своим производственным проблемам и обсуждал с ними их проблемы и задачи.

В этой книге мы рассмотрим 20 основных приемов устранения технических противоречий, которые я выбрал как наиболее эффективные и часто применяемые. На основе более чем 30-летнего опыта работы я исключил часть приемов, которые используются редко, а часть приемов перегруппировал и объединил для удобства работы.

В отличие от традиционного изложения приемов, я подробно раскрою подприемы каждого из них, а также расскажу о типовых применениях этих приемов, подкрепив каждый пункт примером (задачей-аналогом). Это позволит тебе, Читатель, увидеть как общие аналогии (приемы), так и более конкретные аналогии, а значит найти больше интересных решений.

В этой книге будут изложены два инструмента – алгоритм выявления противоречия и приемы.

Понимание изобретательской задачи как противоречия в системе позволяет быстро выбрать метод решения, а зачастую и решить ее сразу, без привлечения специальных инструментов ТРИЗ. А использование приемов устранения технических противоречий часто подсказывает аналогии, которые могут наводить на решение. Эти материалы, с моей точки зрения, позволяют быстро перейти к практическому использованию ТРИЗ. Эти инструменты доступны рядовым инженерам, имеющим общую техническую подготовку, минимальные знания и опыт работы с инструментами ТРИЗ. Для работы достаточно просто читать излагаемый материал и примерить его на свои проблемы.

Глава 1. БАЗОВЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Собственно говоря, комплекс инструментов ТРИЗ основывается на двух базовых философских сентенциях:


1. Весь материальный мир развивается по объективным законам диалектики, и техника, как часть материального мира подчиняется этим законам.

2. Законы развития техники объективны – их можно познать и осознанно использовать для развития техники.


Пример-шутка

К одесситу подходит приезжий

– Скажите, если я пойду по этой улице там, в конце будет вокзал?

– Знаете, он там будет, даже если вы туда не пойдете.


Рис. 1. Знаете, он там будет, даже если вы туда не пойдете


Из этих двух положений вытекают очень важные следствия:


– если есть общие закономерности развития техники, значит, есть и общие подходы к решению изобретательских задач в различных областях науки и техники; эти закономерности можно выявить и использовать;

– на основании общих философских подходов можно разработать конкретные закономерности (вплоть до приемов, микростандартов), позволяющие прогнозировать развитие техники в разных областях, на основе общих закономерностей, выявленных в одной из них.


Что такое правильно поставить задачу?

Из основных положений ТРИЗ следует, что развитие техники идет по пути развития, обострения и разрешения противоречий, на основе основного закона диалектики – закона единства и борьбы противоположностей. Поэтому при развитии техники и решении задач следует в первую очередь выявлять противоречие, препятствующее развитию технической системы или решению изобретательской задачи.


Говорят, что правильно поставить задачу – наполовину решить ее. В технике правильно поставить задачу – это выявить ключевое техническое противоречие из общей изобретательской ситуации, которое мешает развитию системы или решению задачи.


Дело в том, что задачи, которые ставятся перед изобретателями, строго говоря, не являются техническими задачами. Как правило, мы сталкиваемся даже не с задачей, а с изобретательской ситуацией.


Изобретательская ситуация – это то, как мы видим проблему внешне. И хотя часто, кажется, что проблема поставлена точно и определенно, но реально это не так. В изобретательской ситуации часто бывает смешано несколько задач, а иногда вообще ставится не та задача, которую надо решать!

Почти всегда в описании проблемной ситуации присутствует избыточная информация (зачастую просто неверная или субъективная информация!), которая не имеет отношение к проблеме, но сильно затрудняет понимание ее сути и решение. Иногда же наоборот, границы задачи неоправданно заужены, что мешает найти решение. И часто правильно понять проблему – почти эквивалентно решению задачи. Именно поэтому крайне важно бывает понять, что мешает нам решить ту или иную задачу, то есть выявить техническое противоречие.