N в матрице. Матрицы. Основные определения и виды матриц. Действия над матрицами. Понятие ранга матрицы. Операции над матрицами. Понятие и нахождение обратной матрицы

Матрицы. Виды матриц. Операции над матрицами и их свойства.

Определитель матрицы n-го порядка. N, Z,Q, R,C,

Матрицей порядка m*n называется прямоугольная таблица из чисел, содержащая m-строк и n - столбцов.

Равенство матриц:

Две матрицы называются равными, если число строк и столбцов одной из них равно соответственно числу строк и столбцов другой и соответст. эл-ты этих матриц равны.

Замечание: Эл-ты имеющие одинаковые индексы являются соответствующими.

Виды матриц:

Квадратная матрица: матрица называется квадратной, если число её строк равно числу столбцов.

Прямоугольная: матрица называется прямоугольной, если число строк не равно числу столбцов.

Матрица строка: матрица порядка 1*n (m=1) имеет вид a11,a12,a13 и называется матрицей строки.

Матрица столбец:………….

Диагональная: диагональ квадратной матрицы, идущая от верхнего левого угла к правому нижнему углу, то есть состоящая из элементов а11,а22……-называется главной диагональю. (опред: квадратная матрица все элементы которой равны нулю, кроме тех, что расположены на главной диагонали, называется диагональной матрицей.

Единичная: диагональная матрица называется единичной, если все элементы расположены на главной диагонали и равны 1.

Верхняя треугольная: А=||aij|| называется верхней треугольной матрицей, если aij=0. При условии i>j.

Нижняя треугольная: aij=0. i

Нулевая: это матрица Эл-ты которой равны 0.

Операции над матрицами.

1.Транспонирование.

2.Умножение матрицы на число.

3.Сложение матриц.

4.Умножение матриц.

Основные св-ва действия над матрицами.

1.A+B=B+A (коммутативность)

2.A+(B+C)=(A+B)+C (ассоциативность)

3.a(A+B)=aA+aB (дистрибутивность)

4.(a+b)A=aA+bA (дистриб.)

5.(ab)A=a(bA)=b(aA) (асооц.)

6.AB≠BA (отсутствует комму.)

7.A(BC)=(AB)C (ассоц.) –выполняется, если опред. Произведений матриц выполняется.

8.A(B+C)=AB+AC (дистриб.)

(B+C)A=BA+CA (дистриб.)

9.a(AB)=(aA)B=(aB)A

Определитель квадратной матрицы – определение и его свойства. Разложение определителя по строкам и столбцам. Способы вычисления определителей.

Если матрица А имеет порядок m>1, то определитель этой матрицы – число.

Алгебраическим дополнением Aij эл-та aij матрицы А называется минор Mij, умноженный на число

ТЕОРЕМА1: Определитель матрицы А равен сумме произведений всех элементов произвольной строки (столбца) на их алгебраические дополнения.

Основные свойства определителей.

1. Определитель матрицы не изменится при её транспонировании.

2. При перестановки двух строк (столбцов) определитель меняет знак, а абсолютная величина его не меняется.

3. Определитель матрицы, имеющий две одинаковые строки (столбцы) равен 0.

4.При умножении строки (столбца) матрицы на число её определитель умножается на это число.

5. Если одна из строк (столбцов) матрицы состоит из 0, то определитель этой матрицы равен 0.

6. Если все элементы i-ой строки (столбца) матрицы представлены в виде суммы двух слагаемых, то её определитель можно представить в виде суммы определителей двух матриц.

7. Определитель не изменится, если к элементам одного столбца (строки) прибавить соответственно эл-ты другого столбца (строки) предварительно умнож. на одно и того же число.

8.Сумма произвольных элементов какого либо столбца (строки) определителя на соответствующее алгебраическое дополнение элементов другого столбца (строки) равна 0.

https://pandia.ru/text/78/365/images/image004_81.gif" width="46" height="27">

Способы вычисления определителя:

1. По определению или теореме 1.

2. Приведение к треугольному виду.

Определение и свойства обратной матрицы. Вычисление обратной матрицы. Матричные уравнения.

Определение: Квадратная матрица порядка n, называется обратной к матрице А того же порядка и обозначается

Для того чтобы для матрицы А существовала обратная матрица необходимо и достаточно, чтобы определитель матрицы А был отличен от 0.

Свойства обратной матрицы:

1. Единственность: для данной матрицы А её обратная – единственная.

2. определитель матрицы

3. Операция взятия транспонирования и взятие матрицы обратной.

Матричные уравнения:

Пусть А и В две квадратные матрицы того же порядка.

https://pandia.ru/text/78/365/images/image008_56.gif" width="163" height="11 src=">

Понятие линейной зависимости и независимости столбцов матрицы. Свойства линейной зависимости и линейной независимости системы столбцов.

Столбцы А1,А2…Аn называются линейно зависимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Столбцы А1,А2…Аn называются линейно независимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Линейная комбинация называется тривиальной, если все коэффициенты С(l) равны 0 и не тривиальной в противном случае.

https://pandia.ru/text/78/365/images/image010_52.gif" width="88" height="24">

2.для того чтобы столбцы были линейно зависимы необходимо и достаточно, чтобы какой-нибудь столбец являлся линейной комбинацией других столбцов.

Пусть 1 из столбцов https://pandia.ru/text/78/365/images/image014_42.gif" width="13" height="23 src=">является линейной комбинацией других столбцов.

https://pandia.ru/text/78/365/images/image016_38.gif" width="79" height="24"> линейно зависимы, то и все столбцы линейно зависимы.

4. Если система столбцов линейно независима, то любая её подсистема так же линейно независима.

(Всё что сказано относительно столбцов, справедливо и для строк).

Миноры матрицы. Базисные миноры. Ранг матрицы. Метод окаймляющих миноров вычисления ранга матрицы.

Минором порядка к матрицы А называется определитель элементы которого расположены на пересечении к-строк и к-стролбцов матрицы А.

Если все миноры к-го порядка матрицы А =0, то любой минор порядка к+1 тоже равен 0.

Базисный минор.

Рангом матрицы А называется порядок её базисного минора.

Метод окаймляющих миноров: - Выбираем не нулевой элемент матрицы А (Если такого элемента не существует, то ранг А =0)

Окаймляем минор предыдущий 1-го порядка минором 2-го порядка. (Если этот минор не равен 0, то ранг >=2) Если ранг этого минора =0, то окаймляем выбранный минор 1-го порядка другими минорами 2-го порядка. (Если все миноры 2-го порядка =0, то ранг матрицы = 1).

Ранг матрицы. Способы нахождения ранга матрицы.

Рангом матрицы А называется порядок его базисного минора.

Способы вычисления:

1) Метод окаймляющих миноров: -Выбираем ненулевой элемент матрицы А (если такого элемента нет, то ранг =0) – Окаймляем минор предыдущий 1-го порядка минором 2-го порядка..gif" width="40" height="22">r+1 Mr+1=0.

2)Приведение матрицы к ступенчатому виду: этот метод основан на элементарных преобразованиях. При элементарных преобразованиях ранг матрицы не меняется.

Элементарными преобразованиями называются следующие преобразования:

Перестановка двух строк (столбцов).

Умножение всех элементов некоторого столбца (строки) на число не =0.

Прибавление ко всем элементам некоторого столбцы (строки) элементов другого столбца (строки), предварительно умноженных на одно и тоже число.

Теорема о базисном миноре. Необходимое и достаточное условие равенства нулю определителя.

Базисным минором матрицы А называется минор наибольшего к-го порядка отличного от 0.

Теорема о базисном миноре:

Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы А являются линейной комбинацией базисных строк (столбцов).

Замечания: Строки и столбцы на пересечении которых стоит базисный минор называются соответственно базисными строками и столбцами.

a11 a12… a1r a1j

a21 a22….a2r a2j

a31 a32….a3r a3j

ar1 ar2 ….arr arj

ak1 ak2…..akr akj

Необходимые и достаточные условия равенства нулю определителя:

Для того чтобы определитель n-го порядка =0, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Системы линейных уравнений, их классификация и формы записи. Правило Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

https://pandia.ru/text/78/365/images/image020_29.gif" alt="l14image048" width="64" height="38 id=">

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

https://pandia.ru/text/78/365/images/image022_23.gif" alt="l14image052" width="93" height="22 id=">

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

https://pandia.ru/text/78/365/images/image024_24.gif" alt="l14image056" width="247" height="31 id=">

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

https://pandia.ru/text/78/365/images/image026_23.gif" alt="l14image060" width="324" height="42 id=">

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Системы линейных уравнений. Условие совместимости линейных уравнений. Теорема Кронекера-Капелли.

Решением системы алгебраических уравнений называется такая совокупность n чисел C1,C2,C3……Cn, которая при подстановки в исходную систему на место x1,x2,x3…..xn обращает все уравнения системы в тождества.

Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение.

Совместная система называется определённой, если она имеет единственное решение, и неопределённой, если она имеет бесчисленно много решений.

Условия совместности систем линейных алгебраических уравнений.

a11 a12 ……a1n x1 b1

a21 a22 ……a2n x2 b2

……………….. .. = ..

am1 am2…..amn xn bn

ТЕОРЕМА: Для того чтобы система m линейных уравнений с n неизвестными была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу матрицы А.

Замечание: Эта теорема даёт лишь критерии существования решения, но не указывает способа отыскивания решения.

10 вопрос.

Системы линейных уравнений. Метод базисного минора - общий метод отыскивания всех решений систем линейных уравнений.

A=a21 a22…..a2n

Метод базисного минора:

Пусть система совместна и RgA=RgA’=r. Пусть базисный минор расписан в верхнем левом углу матрицы А.

https://pandia.ru/text/78/365/images/image035_20.gif" width="22" height="23 src=">…...gif" width="23" height="23 src=">…...gif" width="22" height="23 src=">…...gif" width="46" height="23 src=">-…..-a

d2 b2-a(2r+1)x(r+1)-..-a(2n)x(n)

… = …………..

Dr br-a(rr+1)x(r+1)-..-a(rn)x(n)

https://pandia.ru/text/78/365/images/image050_12.gif" width="33" height="22 src=">

Замечания: Если ранг основной матрицы и рассматриваемой равен r=n, то в этом случае dj=bj и система имеет единственное решение.

Однородные системы линейных уравнений.

Система линейных алгебраических уравнений называется однородной, если все ее свободные члены равны нулю.

AX=0 – однородная система.

АХ =В – неоднородная система.

Однородные системы всегда совместны.

Х1 =х2 =..=хn =0

Теорема 1.

Однородные системы имеют неоднородные решения, когда ранг матрицы системы меньше числа неизвестных.

Теорема 2.

Однородная система n-линейных уравнений с n-неизвестными имеет не нулевое решение, когда определитель матрицы А равен нулю. (detA=0)

Свойства решений однородных систем.

Любая линейная комбинация решения однородной системы сама является решением этой системы.

α1C1 +α2C2 ; α1 и α2– некоторые числа.

А(α1C1 +α2C2) = А(α1C1) +А(α2C2) = α1(А C1) + α2(АC2) = 0,т. к. (А C1) = 0; (АC2) = 0

Для неоднородной системы это свойство не имеет места.

Фундаментальная система решений.

Теорема 3.

Если ранг матричной системы уравнения с n-неизвестными равен r, то эта система имеет n-r линейно-независимых решений.

Пусть базисный минор в левом верхнем углу. Если r< n, то неизвестные х r+1;хr+2;..хn называются свободными переменными, а систему уравнений АХ=В запишем, как Аr Хr =Вr

C1 = (C11 C21 .. Cr1 , 1,0..0)

C2 = (C21 C22 .. C2r,0, 1..0) <= Линейно-независимы.

……………………..

Cn-r = (Cn-r1 Cn-r2 .. Cn-rr ,0, 0..1)

Система n-r линейно-независимых решений однородной системы линейных уравнений с n-неизвестными ранга r называется фундаментальной системой решений.

Теорема 4.

Любое решение системы линейных уравнений есть линейная комбинация решения фундаментальной системы.

С = α1C1 +α2C2 +.. + αn-r Cn-r

Если r

12 вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Соо +Сч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т. к. (АСоо) = 0

Сон= α1C1 +α2C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т. д.

Продолжая процесс последовательного исключения переменных х4;х5...хr-1 получим для (r-1)-ого шага.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т. е. r=n (в этом случае система имеет треугольный вид).

б)r

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS, detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк.

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х1 +С2 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ1 +С2 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х1 +С2 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn + Cn+1 (λn+1 –λn+1)Xn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn = 0

Надо чтобы С1 =С2 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А - λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А - XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+ann)λn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в11+в22+..+вnn

2)Множество собственных значений подобных матриц совпадают.

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

https://pandia.ru/text/78/365/images/image062_10.gif" width="92" height="38">

Det(Ag-λE) = (λ11 – λ)(λ22 – λ)…(λnn – λ)= 0

Для того чтобы матрица А порядка n была диагонализируема, необходимо, чтобы существовали линейно-независимые собственные вектора матрицы А.

Следствие.

Если все собственные значения матрица А различны, то она диагонализируема.

Алгоритм нахождения собственных векторов и собственных значений.

1)составляем характеристическое уравнение

2)находим корни уравнений

3)составляем систему уравнений для определения собственного вектора.

λi (A-λi E)X = 0

4)находим фундаментальную систему решений

x1,x2..xn-r, где r - ранг характеристической матрицы.

r =Rg(A - λi E)

5)собственный вектор, собственные значения λi записываются в виде:

X = С1 Х1 +С2 Х2 + .. +Сn-r Хn-r, где С12 +С22 +… С2n ≠0

6)проверяем, может ли матрица быть приведена к диагональному виду.

7)находим Ag

Ag = S-1AS S=

15 вопрос.

Базис прямой, плоскости, пространства.

DIV_ADBLOCK410">

Модулем вектора называется его длина, то есть расстояние между А и В (││, ││). Модуль вектора равен нулю, тогда, когда этот вектор нулевой (│ō│=0)

4.Орт вектора.

Ортом данного вектора называется вектор, который направлен одинаково с данным вектором и имеет модуль, равный единице.

Равные вектора имеют равные орты.

5.Угол между двумя векторами.

Это меньшая часть площади, ограниченная двумя лучами, исходящими из одной точки и направленные одинаково с данными векторами.

Сложение векторов. Умножение вектора на число.

1)Сложение двух векторов

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">+ │≤│ │+│ │

2)Умножение вектора на скаляр.

Произведением вектора и скаляра называют новый вектор, который имеет:

а) = произведения модуля умножаемого вектора на абсолютную величину скаляра.

б) направление одинаковое с умножаемым вектором, если скаляр положителен, и противоположное, если скаляр отрицателен.

λ а(вектор)=>│ λ │= │ λ │=│ λ ││ │

Свойства линейных операций над векторами.

1.Закон коммунитативности.

2. Закон ассоциативности.

3. Сложение с нулем.

а(вектор)+ō= а(вектор)

4.Сложение с противоположным.

5. (αβ) = α(β) = β(α)

6;7.Закон дистрибутивности.

Выражение вектора через его модуль и орт.

Максимальное число линейно-независимых векторов называются базисом.

Базисом на прямой является любой ненулевой вектор.

Базисом на плоскости являются любые два некаллениарных вектора.

Базисом в пространстве является система любых трех некомпланарных векторов.

Коэффициент разложения вектора по некоторому базису называется компонентами или координатами вектора в данном базисе.

https://pandia.ru/text/78/365/images/image075_10.gif" height="11 src=">.gif" height="11 src="> выполнить действие сложения и умножения на скаляр, то в результате любого числа таких действий получим:

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-зависимыми, если существует их нетривиальная линейная комбинация, равная ō.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-НЕзависимыми, если не существует их нетривиальная линейная комбинация.

Свойства линейно-зависимых и Независимых векторов:

1)система векторов, содержащая нулевой вектор линейно-зависима.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> были линейно-зависимыми, необходимо, чтобы какой-нибудь вектор являлся линейной комбинацией других векторов.

3)если часть векторов из системы а1(вектор), а2(вектор)… ак(вектор) линейно-зависимы, то и все вектора линейно-зависимы.

4)если все вектора https://pandia.ru/text/78/365/images/image076_9.gif" height="11 src=">.gif" width="75" height="11">

https://pandia.ru/text/78/365/images/image082_10.gif" height="11 src=">.gif" height="11 src=">)

Линейные операции в координатах.

https://pandia.ru/text/78/365/images/image069_9.gif" height="12 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" height="11 src=">+ (λа3)DIV_ADBLOCK413">

Скалярное произведение 2-х векторов – это число равное произведению векторов на косинус угла между ними.

https://pandia.ru/text/78/365/images/image090_8.gif" width="48" height="13">

3. (a;b)=0, тогда и только тогда, когда векторы ортоганальны или какой нибудь из векторов равен 0.

4. Дистрибутивность (αa+βb;c)=α(a;c)+β(b;c)

5. Выражение скалярного произведения a и b через их координаты

https://pandia.ru/text/78/365/images/image093_8.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image095_8.gif" width="254" height="13 src=">

При выполнении условия () , h, l=1,2,3

https://pandia.ru/text/78/365/images/image098_7.gif" width="176" height="21 src=">

https://pandia.ru/text/78/365/images/image065_9.gif" height="11"> и называется третий вектор который удовлетворяет следующим уравнениям:

3. – правая

Свойства векторного произведения:

4. Векторное произведение координатных ортов

Ортонормированый базис.

https://pandia.ru/text/78/365/images/image109_7.gif" width="41" height="11 src=">

https://pandia.ru/text/78/365/images/image111_8.gif" width="41" height="11 src=">

Часто для обозначения ортов ортонормированного базиса используются 3 символа

https://pandia.ru/text/78/365/images/image063_10.gif" width="77" height="11 src=">

https://pandia.ru/text/78/365/images/image114_5.gif" width="549" height="32 src=">

Если - это ортонормированный базис, то

DIV_ADBLOCK414">

Прямая линия на плоскости. Взаимное расположение 2-х прямых. Расстояние от точки до прямой линии. Угол между двумя прямыми. Условие параллельности и перпендикулярности 2-х прямых.

1. Часный случай расположения 2-х прямых на плоскости.

1)- уравнение прямой параллельной оси ОХ

2) - уравнение прямой параллельной оси ОУ

2. Взамное расположение 2-х прямых.

Теорема 1 Пусть относительно аффинной системы координат даны уравнения прямых

А) Тогда необходимое и достаточное условие когда они пересекаются имеет вид:

Б) Тогда необходимое и достаточное условие того что прямые паралельны является условие:

B) Тогда необходимым и достаточным условием того что прямые сливаются в одну является условие:

3. Расстояние от точки до прямой.

Теорема. Расстояние от точки до прямой относительно декартовой системы координат:

https://pandia.ru/text/78/365/images/image127_7.gif" width="34" height="11 src=">

4. Угол между двумя прямыми. Условие перпендикулярности.

Пусть 2 прямые заданы относительно декартовой системы координат общими уравнениями.

https://pandia.ru/text/78/365/images/image133_4.gif" width="103" height="11 src=">

Если , то прямые перпендикулярны.

24 вопрос.

Плоскость в пространстве. Условие комплонарности вектора и плоскости. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности двух плоскостей.

1. Условие комплонарности вектора и плоскости.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image140.jpg" alt="Безымянный4.jpg" width="111" height="39">

https://pandia.ru/text/78/365/images/image142_6.gif" width="86" height="11 src=">

https://pandia.ru/text/78/365/images/image144_6.gif" width="148" height="11 src=">

https://pandia.ru/text/78/365/images/image145.jpg" alt="Безымянный5.jpg" width="88" height="57">

https://pandia.ru/text/78/365/images/image147_6.gif" width="31" height="11 src=">

https://pandia.ru/text/78/365/images/image148_4.gif" width="328" height="24 src=">

3. Угол между 2-я плоскостями. Условие перпендикулярности.

https://pandia.ru/text/78/365/images/image150_6.gif" width="132" height="11 src=">

Если , то плоскости перпендикулярны.

25 вопрос.

Прямая линя в пространстве. Различные виды уравнения прямой линии в пространстве.

https://pandia.ru/text/78/365/images/image156_6.gif" width="111" height="19">

2. Векторное уравнение прямой в пространстве.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image162_5.gif" width="44" height="29 src=">

4. Каноническое уравнение прямое.

https://pandia.ru/text/78/365/images/image164_4.gif" width="34" height="18 src=">

https://pandia.ru/text/78/365/images/image166_0.jpg" alt="Безымянный3.jpg" width="56" height="51">

28 вопрос.

Эллипс. Вывод Канонического уравнения эллипса. Форма. Свойства

Эллипс – геометрическое место точек, для которых сумма расстояний от двух фиксированных расстояний, называемых фокусами есть данное число 2a, большее чем расстояние 2c между фокусами.

https://pandia.ru/text/78/365/images/image195_4.gif" alt="image002" width="17" height="23 id=">.gif" alt="image043" width="81 height=44" height="44"> 0=

на рис.2 r1=a+ex r2=a-ex

Ур-е касательной к эллипсу

DIV_ADBLOCK417">

Каноническое уравнение гиперболы

Форма и св-ва

y=±b/a умножить на корень из (x2-a2)

Ось симметрии гиперболы - её оси

Отрезок 2a - действительная ось гиперболы

Эксентриситет e=2c/2a=c/a

Если b=a получается равнобокая гипербола

Ассимтотой - называется прямая, если при неограниченном удалении точки M1 по кривой расстояние от точки до прямой стремится к нулю.

lim d=0 при x-> ∞

d=ba2/(x1+(x21-a2)1/2/c)

касательная гиперболы

xx0/a2 - yy0/b2 = 1

парабола - геометрическое место точек, равноудаленное от точки, названной фокусом и данной прямой, названной директриссой

Каноническое уравнение параболы

свойства

ось симметрии параболы проходит через её фокус и перпендиукулярна директрисе

если вращать параболу получится эллиптический параболоид

все параболы подобны

вопрос 30. Исследование уравнения общего вида кривой второго порядка.

Тип кривой опр. при старших членах A1, B1, C1

A1x12+2Bx1y1+C1y12+2D1x1+2E1y1+F1=0

1. AC=0 ->кривая параболического типа

A=C=0 => 2Dx+2Ey+F=0

A≠0 C=0 => Ax2+2Dx+2Ey+F=0

Если Е=0 => Ax2+2Dx+F=0

то x1=x2 - сливается в одну

x1≠x2 - прямые параллельны Оу

x1≠x2 и корни мнимые, не имеет геометричекого образа

С≠0 А=0 =>C1y12+2D1x1+2E1y1+F1=0

Вывод: кривая параболического типа это либо парабола, либо 2 параллельные прямые, или мнимые, или в одну сливаются.

2.AC>0 -> кривая эллиптического типа

Дополняя до полного квадрата исходное уравнение преобразуем к каноническому, тогда получим случаи

(x-x0)2/a2+(y-y0)2/b2=1 - эллипс

(x-x0)2/a2+(y-y0)2/b2=-1 - мнимый эллипс

(x-x0)2/a2-(y-y0)2/b2=0 - точка с координатой x0 y0

Вывод: кривая эл. типа ето либо эллипс, либо мнимый, либо точка

3. АС<0 - кривая гиперболического типа

(x-x0)2/a2-(y-y0)2/b2=1 гипербола, действительная ось параллельна Ох

(x-x0)2/a2-(y-y0)2/b2=-1 гипербола, действительная ось параллельна Oy

(x-x0)2/a2-(y-y0)2/b2=0 ур-е двух прямых

Вывод: кривая гиперболического типа это либо гипербола, либо две прямые

Матрица - это особый объект в математике. Изображается в форме прямоугольной или квадратной таблицы, сложенной из определенного числа строк и столбцов. В математике имеется большое разнообразие видов матриц, различающихся по размерам или содержанию. Числа ее строк и столбцов именуются порядками. Эти объекты употребляются в математике для упорядочивания записи систем линейных уравнений и удобного поиска их результатов. Уравнения с использованием матрицы решаются посредством метода Карла Гаусса, Габриэля Крамера, миноров и алгебраических дополнений, а также многими другими способами. Базовым умением при работе с матрицами является приведение к стандартному виду. Однако для начала давайте разберемся, какие виды матриц выделяют математики.

Нулевой тип

Все компоненты этого вида матрицы - нули. Между тем, число ее строк и столбцов абсолютно различно.

Квадратный тип

Количество столбцов и строк этого вида матрицы совпадает. Иначе говоря, она представляет собой таблицу формы "квадрат". Число ее столбцов (или строк) именуются порядком. Частными случаями считается существование матрицы второго порядка (матрица 2x2), четвертого порядка (4x4), десятого (10x10), семнадцатого (17x17) и так далее.

Вектор-стобец

Это один из простейших видов матриц, содержащий только один столбец, который включает в себя три численных значения. Она представляет ряд свободных членов (чисел, независимых от переменных) в системах линейных уравнений.

Вид, аналогичный предыдущему. Состоит из трех численных элементов, в свою очередь организованных в одну строку.

Диагональный тип

Числовые значения в диагональном виде матрицы принимают только компоненты главной диагонали (выделена зеленым цветом). Основная диагональ начинается с элемента, находящегося в правом верхнем углу, а заканчивается числом в третьем столбце третьей строки. Остальные компоненты равны нулю. Диагональный тип представляет собой только квадратную матрицу какого-либо порядка. Среди матриц диагонального вида можно выделить скалярную. Все ее компоненты принимают одинаковые значения.

Подвид диагональной матрицы. Все ее числовые значения являются единицами. Используя единичный тип матричных таблиц, выполняют ее базовые преобразования или находят матрицу, обратную исходной.

Канонический тип

Канонический вид матрицы считается одним из основных; приведение к нему часто необходимо для работы. Число строк и столбцов в канонической матрице различно, она необязательно принадлежит к квадратному типу. Она несколько похожа на единичную матрицу, однако в ее случае не все компоненты основной диагонали принимают значение, равное единице. Главнодиагональных единиц может быть две, четыре (все зависит от длины и ширины матрицы). Или единицы могут не иметься вовсе (тогда она считается нулевой). Остальные компоненты канонического типа, как и элементы диагонального и единичного, равны нулю.

Треугольный тип

Один из важнейших видов матрицы, применяемый при поиске ее детерминанта и при выполнении простейших операций. Треугольный тип происходит от диагонального, поэтому матрица также является квадратной. Треугольный вид матрицы подразделяют на верхнетреугольный и нижнетреугольный.

В верхнетреугольной матрице (рис. 1) только элементы, которые находятся над главной диагональю, принимают значение, равное нулю. Компоненты же самой диагонали и части матрицы, располагающейся под ней, содержат числовые значения.

В нижнетреугольной (рис. 2), наоборот, элементы, располагающиеся в нижней части матрицы, равны нулю.

Вид необходим для нахождения ранга матрицы, а также для элементарных действий над ними (наряду с треугольным типом). Ступенчатая матрица названа так, потому что в ней содержатся характерные "ступени" из нулей (как показано на рисунке). В ступенчатом типе образуется диагональ из нулей (необязательно главная), и все элементы под данной диагональю тоже имеют значения, равные нулю. Обязательным условием является следующее: если в ступенчатой матрице присутствует нулевая строка, то остальные строки, находящиеся ниже нее, также не содержат числовых значений.

Таким образом, мы рассмотрели важнейшие типы матриц, необходимые для работы с ними. Теперь разберемся с задачей преобразования матрицы в требуемую форму.

Приведение к треугольному виду

Как же привести матрицу к треугольному виду? Чаще всего в заданиях нужно преобразовать матрицу в треугольный вид, чтобы найти ее детерминант, по-другому называемый определителем. Выполняя данную процедуру, крайне важно "сохранить" главную диагональ матрицы, потому что детерминант треугольной матрицы равен именно произведению компонентов ее главной диагонали. Напомню также альтернативные методы нахождения определителя. Детерминант квадратного типа находится при помощи специальных формул. Например, можно воспользоваться методом треугольника. Для других матриц используют метод разложения по строке, столбцу или их элементам. Также можно применять метод миноров и алгебраических дополнений матрицы.

Подробно разберем процесс приведения матрицы к треугольному виду на примерах некоторых заданий.

Задание 1

Необходимо найти детерминант представленной матрицы, используя метод приведения его к треугольному виду.

Данная нам матрица представляет собой квадратную матрицу третьего порядка. Следовательно, для ее преобразования в треугольную форму нам понадобится обратить в нуль два компонента первого столбца и один компонент второго.

Чтобы привести ее к треугольному виду, начнем преобразование с левого нижнего угла матрицы - с числа 6. Чтобы обратить его в нуль, умножим первую строку на три и вычтем ее из последней строки.

Важно! Верхняя строка не изменяется, а остается такой же, как и в исходной матрице. Записывать строку, в четыре раза большую исходной, не нужно. Но значения строк, компоненты которых нужно обратить в нуль, постоянно меняются.

Осталось только последнее значение - элемент третьей строки второго столбца. Это число (-1). Чтобы обратить его в нуль, из первой строки вычтем вторую.

Выполним проверку:

detA = 2 x (-1) x 11 = -22.

Значит, ответ к заданию: -22.

Задание 2

Нужно найти детерминант матрицы методом приведения его к треугольному виду.

Представленная матрица принадлежит к квадратному типу и является матрицей четвертого порядка. Значит, необходимо обратить в нуль три компонента первого столбца, два компонента второго столбца и один компонент третьего.

Начнем приведение ее с элемента, находящегося в нижнем углу слева, - с числа 4. Нам нужно обратить данное число в нуль. Удобнее всего сделать это, умножив на четыре верхнюю строку, а затем вычесть ее из четвертой. Запишем итог первого этапа преобразования.

Итак, компонент четвертой строки обращен в нуль. Перейдем к первому элементу третьей строки, к числу 3. Выполняем аналогичную операцию. Умножаем на три первую строку, вычитаем ее из третьей строки и записываем результат.

Нам удалось обратить в нуль все компоненты первого столбца данной квадратной матрицы, за исключением числа 1 - элемента главной диагонали, не требующего преобразования. Теперь важно сохранить полученные нули, поэтому будем выполнять преобразования со строками, а не со столбцами. Перейдем ко второму столбцу представленной матрицы.

Снова начнем с нижней части - с элемента второго столбца последней строки. Это число (-7). Однако в данном случае удобнее начать с числа (-1) - элемента второго столбца третьей строки. Чтобы обратить его в нуль, вычтем из третьей строки вторую. Затем умножим вторую строку на семь и вычтем ее из четвертой. Мы получили нуль вместо элемента, расположенного в четвертой строке второго столбца. Теперь перейдем к третьему столбцу.

В данном столбце нам нужно обратить в нуль только одно число - 4. Сделать это несложно: просто прибавляем к последней строке третью и видим необходимый нам нуль.

После всех произведенных преобразований мы привели предложенную матрицу к треугольному виду. Теперь, чтобы найти ее детерминант, нужно только произвести умножение получившихся элементов главной диагонали. Получаем: detA = 1 x (-1) x (-4) x 40 = 160. Следовательно, решением является число 160.

Итак, теперь вопрос приведения матрицы к треугольному виду вас не затруднит.

Приведение к ступенчатому виду

При элементарных операциях над матрицами ступенчатый вид является менее "востребованным", чем треугольный. Чаще всего он используется для нахождения ранга матрицы (т. е. количества ее ненулевых строк) или для определения линейно зависимых и независимых строк. Однако ступенчатый вид матрицы является более универсальным, так как подходит не только для квадратного типа, но и для всех остальных.

Чтобы привести матрицу к ступенчатому виду, сначала нужно найти ее детерминант. Для этого подойдут вышеназванные методы. Цель нахождения детерминанта такова: выяснить, можно ли преобразовать ее в ступенчатый вид матрицы. Если детерминант больше или меньше нуля, то можно спокойно приступать к заданию. Если же он равен нулю, выполнить приведение матрицы к ступенчатому виду не получится. В таком случае нужно проверить, нет ли ошибок в записи или в преобразованиях матрицы. Если подобных неточностей нет, задание решить невозможно.

Рассмотрим, как привести матрицу к ступенчатому виду на примерах нескольких заданий.

Задание 1. Найти ранг данной матричной таблицы.

Перед нами квадратная матрица третьего порядка (3x3). Мы знаем, что для нахождения ранга необходимо привести ее к ступенчатому виду. Поэтому сначала нам необходимо найти детерминант матрицы. Воспользуемся методом треугольника: detA = (1 x 5 x 0) + (2 x 1 x 2) + (6 x 3 x 4) - (1 x 1 x 4) - (2 x 3 x 0) - (6 x 5 x 2) = 12.

Детерминант = 12. Он больше нуля, значит, матрицу можно привести к ступенчатому виду. Приступим к ее преобразованиям.

Начнем его с элемента левого столбца третьей строки - числа 2. Умножаем верхнюю строку на два и вычитаем ее из третьей. Благодаря этой операции как нужный нам элемент, так и число 4 - элемент второго столбца третьей строки - обратились в нуль.

Мы видим, что в результате приведения образовалась треугольная матрица. В нашем случае продолжить преобразование нельзя, так как остальные компоненты не удастся обратить в нуль.

Значит, делаем вывод, что количество строк, содержащих числовые значения, в данной матрице (или ее ранг) - 3. Ответ к заданию: 3.

Задание 2. Определить количество линейно независимых строк данной матрицы.

Нам требуется найти такие строки, которые нельзя какими-либо преобразованиями обратить в нуль. Фактически нам нужно найти количество ненулевых строк, или ранг представленной матрицы. Для этого выполним ее упрощение.

Мы видим матрицу, не принадлежащую к квадратному типу. Она имеет размеры 3x4. Начнем приведение также с элемента левого нижнего угла - числа (-1).

Дальнейшие ее преобразования невозможны. Значит, делаем вывод, что количество линейно независимых строк в ней и ответ к заданию - 3.

Теперь приведение матрицы к ступенчатому виду не является для вас невыполнимым заданием.

На примерах данных заданий мы разобрали приведение матрицы к треугольному виду и ступенчатому виду. Чтобы обратить в нуль нужные значения матричных таблиц, в отдельных случаях требуется проявить фантазию и правильно преобразовать их столбцы или строки. Успехов вам в математике и в работе с матрицами!

Матрицей размерности называется таблица чисел , содержащая строк и столбцов. Числа называются элементами этой матрицы, где – номер строки, – номер столбца, на пересечении которых стоит данный элемент. Матрица, содержащая строк и столбцов, имеет вид: .

Виды матриц:

1) при – квадратная , причем называют порядком матрицы ;

2) квадратная матрица, у которой все недиагональные элементы равны нулю

диагональная ;

3) диагональная матрица, у которой все диагональные элементы равны

единице – единичная и обозначается ;

4) при – прямоугольная ;

5) при – матрица-строка (вектор-строка);

6) при – матрица-столбец (вектор-столбец);

7) при всех – нулевая матрица.

Заметим, что основной числовой характеристикой квадратной матрицы является ее определитель. Определитель, соответствующий матрице -го порядка, также имеет -ый порядок.

Определителем матрицы 1-го порядка называется число .

Определителем матрицы 2-го порядка называется число . (1.1)

Определителем матрицы 3-го порядка называется число . (1.2)

Приведем необходимые для дальнейшего изложения определения.

Минором М ij элемента а ij матрицы n- гопорядка А называется определитель матрицы (n-1)- гопорядка, полученной из матрицы А путем вычеркивания i -ой строки и j -го столбца.

Алгебраическим дополнением А ij элемента а ij матрицы n - гопорядка А называется минор этого элемента, взятый со знаком .

Сформулируем основные свойства определителей, присущие определителям всех порядков и упрощающие их вычисление.

1. При транспонировании матрицы ее определитель не меняется.

2. При перестановке двух строк (столбцов) матрицы ее определитель меняет знак.

3. Определитель, имеющий две пропорциональные (равные) строки (столбца), равен нулю.

4. Общий множитель элементов какой-либо строки (столбца) определителя можно вынести за знак определителя.

5. Если элементы какой-либо строки (столбца) определителя представляют собой сумму двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей.

6. Определитель не изменится, если к элементам любой его строки (столбца) прибавить соответствующие элементы другой его строки (столбца), предварительно умноженные на любое число.

7. Определитель матрицы равен сумме произведений элементов любой его строки (столбца) на алгебраические дополнения этих элементов.

Поясним данное свойство на примере определителя 3-го порядка. В данном случае свойство 7 означает, что – разложение определителя по элементам 1-ой строки. Заметим, что для разложения выбирают ту строку (столбец), где есть нулевые элементы, так как соответствующие им слагаемые в разложении обращаются в ноль.

Свойство 7 представляет собой теорему о разложении определителя, сформулированную Лапласом.

8. Сумма произведений элементов какой-либо строки (столбца) определителя на алгебраические дополнения соответствующих элементов другой его строки (столбца) равна нулю.

Последнее свойство часто называют псевдоразложением определителя.

Вопросы для самопроверки.

1. Что называется матрицей?

2. Какая матрица называется квадратной? Что понимается под ее порядком?

3. Какая матрица называется диагональной, единичной?

4. Какая матрица называется матрицей-строкой и матрицей-столбцом?

5. Что является основной числовой характеристикой квадратной матрицы?

6. Какое число называется определителем 1-го, 2-го и 3-го порядка?

7. Что называется минором и алгебраическим дополнением элемента матрицы?

8. Каковы основные свойства определителей?

9. С помощью какого свойства можно вычислить определитель любого порядка?

Действия над матрицами (схема 2)

На множестве матриц определен ряд операций, основными среди которых являются следующие:

1) транспонирование – замена строк матрицы на столбцы, а столбцов на строки;

2) умножение матрицы на число производится поэлементно, то есть , где , ;

3) сложение матриц, определенное только для матриц одной размерности;

4) умножение двух матриц, определенное только для согласованных матриц.

Суммой (разностью) двух матриц называется такая результирующая матрица, каждый элемент которой равен сумме (разности) соответствующих элементов матриц-слагаемых.

Две матрицы называются согласованными , если количество столбцов первой из них равно количеству строк другой. Произведением двух согласованных матриц и называется такая результирующая матрица , что , (1.4)

где , . Отсюда следует, что элемент -ой строки и -го столбца матрицы равен сумме попарных произведений элементов -ой строки матрицы на элементы -го столбца матрицы .

Произведение матриц не коммутативно, то есть А . В В . А. Исключение составляет, например, произведение квадратных матриц на единичную А . Е = Е . А.

Пример 1.1. Перемножить матрицы A и B, если:

.

Решение. Так как матрицы согласованные (количество столбцов матрицы равно количеству строк матрицы ), то воспользуемся формулой (1.4):

Вопросы для самопроверки.

1. Какие действия осуществляются над матрицами?

2. Что называется суммой (разностью) двух матриц?

3. Что называется произведением двух матриц?

Метод Крамера решения квадратных систем линейных алгебраических уравнений (схема 3)

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной , если хотя бы один ее свободный член отличен от нуля, и однородной , если все ее свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она решений не имеет.

Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

Рассмотрим неоднородную квадратную систему линейных алгебраических уравнений, имеющую следующий общий вид:

. (1.5) Главной матрицей системы линейных алгебраических уравнений называется матрица, составленная из коэффициентов, стоящих при неизвестных: .

Определитель главной матрицы системы называется главным определителем и обозначается .

Вспомогательный определитель получается из главного определителя путем замены -го столбца на столбец свободных членов.

Теорема 1.1 (теорема Крамера). Если главный определитель квадратной системы линейных алгебраических уравнений отличен от нуля, то система имеет единственное решение, вычисляемое по формулам:

Если главный определитель , то система либо имеет бесконечное множество решений (при всех нулевых вспомогательных определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного из вспомогательных определителей)

В свете приведенных выше определений теорема Крамера может быть сформулирована иначе: если главный определитель системы линейных алгебраических уравнений отличен от нуля, то система является совместной определенной и при этом ; если главный определитель нулевой, то система является либо совместной неопределенной (при всех ), либо несовместной (при отличии хотя бы одного из от нуля).

После этого следует провести проверку полученного решения.

Пример 1.2. Решить систему методом Крамера

Решение. Так как главный определитель системы

отличен от нуля, то система имеет единственное решение. Вычислим вспомогательные определители

Воспользуемся формулами Крамера (1.6): , ,

Вопросы для самопроверки.

1. Что называется решением системы уравнений?

2. Какая система уравнений называется совместной, несовместной?

3. Какая система уравнений называется определенной, неопределенной?

4. Какая матрица системы уравнений называется главной?

5. Как вычислить вспомогательные определители системы линейных алгебраических уравнений?

6. В чем состоит суть метода Крамера решения систем линейных алгебраических уравнений?

7. Какой может быть система линейных алгебраических уравнений, если ее главный определитель равен нулю?

Решение квадратных систем линейных алгебраических уравнений методом обратной матрицы (схема 4)

Матрица, имеющая отличный от нуля определитель, называется невырожденной ; имеющая определитель равный нулю – вырожденной .

Матрица называется обратной для заданной квадратной матрицы , если при умножении матрицы на обратную ей как справа, так и слева, получается единичная матрица, то есть . (1.7)

Заметим, что в данном случае произведение матриц и коммутативно.

Теорема 1.2. Необходимым и достаточным условием существования обратной матрицы для заданной квадратной матрицы, является отличие от нуля определителя заданной матрицы

Если главная матрица системы оказалась при проверке вырожденной, то для нее не существует обратной, и рассматриваемый метод применить нельзя.

Если главная матрица невырожденная, то есть определитель 0, то для нее можно найти обратную матрицу по следующему алгоритму.

1. Вычислить алгебраические дополнения всех элементов матрицы .

2. Выписать найденные алгебраические дополнения в матрицу транспонированно.

3. Составить обратную матрицу по формуле: (1.8)

4. Сделать проверку правильности найденной матрицы А-1 согласно формуле (1.7). Заметим, что данная проверка может быть включена в итоговую проверку самого решения системы.

Система (1.5) линейных алгебраических уравнений может быть представлена в виде матричного уравнения: , где – главная матрица системы, – столбец неизвестных, – столбец свободных членов. Умножим это уравнение слева на обратную матрицу , получим:

Так как по определению обратной матрицы , то уравнение принимает вид или . (1.9)

Таким образом, чтобы решить квадратную систему линейных алгебраических уравнений нужно столбец свободных членов умножить слева на матрицу, обратную для главной матрицы системы. После этого следует сделать проверку полученного решения.

Пример 1.3. Решить систему методом обратной матрицы

Решение. Вычислим главный определитель системы

. Следовательно, матрица невырожденная и обратная к ней матрица существует.

Найдём алгебраические дополнения всех элементов главной матрицы :

Запишем алгебраические дополнения транспонированно в матрицу

. Воспользуемся формулами (1.8) и (1.9) для нахождения решения системы

Вопросы для самопроверки.

1. Какая матрица называется вырожденной, невырожденной?

2. Какая матрица называется обратной для заданной? Каково условие ее существования?

3. Каков алгоритм нахождения обратной матрицы для заданной?

4. Какому матричному уравнению эквивалентна система линейных алгебраических уравнений?

5. Как решить систему линейных алгебраических уравнений с помощью обратной матрицы для главной матрицы системы?

Исследование неоднородных систем линейных алгебраических уравнений (схема 5)

Исследование любой системы линейных алгебраических уравнений начинается с преобразования ее расширенной матрицы методом Гаусса. Пусть размерность главной матрицы системы равна .

Матрица называется расширенной матрицей системы, если наряду с коэффициентами при неизвестных, она содержит столбец свободных членов. Следовательно, размерность равна .

Метод Гаусса основан на элементарных преобразованиях , к которым относятся:

– перестановка строк матрицы;

– умножение строк матрицы на отличное от руля число;

– поэлементное сложение строк матрицы;

– вычеркивание нулевой строки;

– транспонирование матрицы (в этом случае преобразования производятся по столбцам).

Элементарные преобразования приводят первоначальную систему к системе, ей эквивалентной. Системы называются эквивалентными , если они имеют одно и то же множество решений.

Рангом матрицы называется наивысший порядок отличных от нуля ее миноров. Элементарные преобразования ранга матрицы не меняют.

На вопрос о наличии решений у неоднородной системы линейных уравнений отвечает следующая теорема.

Теорема 1.3 (теорема Кронекера-Капелли). Неоднородная система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу ее главной матрицы, т. е.

Обозначим количество строк, оставшихся в матрице после метода Гаусса, через (соответственно, в системе остается уравнений). Эти строки матрицы называются базисными .

Если , то система имеет единственное решение (является совместной определенной), ее матрица элементарными преобразованиями приводится к треугольному виду. Такую систему можно решить методом Крамера, с помощью обратной матрицы или универсальным методом Гаусса.

Если (количество переменных в системе больше чем уравнений), матрица элементарными преобразованиями приводится к ступенчатому виду. Такая система имеет множество решений и является совместной неопределенной. В данном случае для нахождения решений системы необходимо выполнить ряд операций.

1. Оставить в левых частях уравнений системы неизвестных (базисные переменные ), остальные неизвестных перенести в правые части (свободные переменные ). После разделения переменных на базисные и свободные система принимает вид:

. (1.10)

2. Из коэффициентов при базисных переменных составить минор (базисный минор ), который должен быть отличен от нуля.

3. Если базисный минор системы (1.10) равен нулю, то одну из базисных переменных заменить на свободную; полученный базисный минор проверить на отличность от нуля.

4. Применяя формулы (1.6) метода Крамера, считая правые части уравнений их свободными членами, найти выражение базисных переменных через свободные в общем виде. Полученный при этом упорядоченный набор переменных системы является ее общим решением .

5. Придавая свободным переменным в (1.10) произвольные значения, вычислить соответствующие значения базисных переменных. Получаемый при этом упорядоченный набор значений всех переменных называется частным решением системы, соответствующим данным значениям свободных переменных. Система имеет бесконечное множество частных решений.

6. Получить базисное решение системы – частное решение, получаемое при нулевых значениях свободных переменных.

Заметим, что количество базисных наборов переменных системы (1.10) равно числу сочетаний из элементов по элементов . Так как каждому базисному набору переменных соответствует свое базисное решение, следовательно, базисных решений у системы также.

Однородная система уравнений всегда совместна, так как имеет хотя бы одно – нулевое (тривиальное) решение. Для того чтобы однородная система линейных уравнений с переменными имела ненулевые решения, необходимо и достаточно, чтобы ее главный определитель был равен нулю. Это означает, что ранг ее главной матрицы меньше числа неизвестных . В этом случае исследование однородной системы уравнений на общее и частные решения проводится аналогично исследованию неоднородной системы. Решения однородной системы уравнений обладают важным свойством: если известны два различных решения однородной системы линейных уравнений, то их линейная комбинация также является решением этой системы. Нетрудно убедиться в справедливости следующей теоремы.

Теорема 1.4. Общее решение неоднородной системы уравнений представляет собой сумму общего решения соответствующей однородной системы и некоторого частного решения неоднородной системы уравнений

Пример 1.4.

Исследовать заданную систему и найти одно частное решение:

Решение. Выпишем расширенную матрицу системы и применим к ней элементарные преобразования:

. Так как и , то по теореме 1.3 (Кронекера-Капелли) заданная система линейных алгебраических уравнений совместна. Количество переменных , т. е. , значит, система является неопределённой. Количество базисных наборов переменных системы равно

. Следовательно, базисными могут быть 6 комплектов переменных: . Рассмотрим один из них . Тогда систему, полученную в результате метода Гаусса, можно переписать в виде

. Главный определитель . С помощью метода Крамера ищем общее решение системы. Вспомогательные определители

По формулам (1.6) имеем

. Данное выражение базисных переменных через свободные представляет собой общее решение системы:

При конкретных значениях свободных переменных из общего решения получаем частное решение системы. Например, частное решение соответствует значениям свободных переменных . При получаем базисное решение системы

Вопросы для самопроверки.

1. Какая система уравнений называется однородной, неоднородной?

2. Какая матрица называется расширенной?

3. Перечислите основные элементарные преобразования матриц. Какой метод решения систем линейных уравнений основан на этих преобразованиях?

4. Что называется рангом матрицы? Каким способом можно его вычислить?

5. О чем говорит теорема Кронекера-Капелли?

6. К какому виду может быть приведена система линейных алгебраических уравнений в результате ее решения методом Гаусса? Что это означает?

7. Какие строки матрицы называются базисными?

8. Какие переменные системы называются базисными, какие свободными?

9. Какое решение неоднородной системы называется частным?

10.Какое ее решение называется базисным? Сколько базисных решений имеет неоднородная система линейных уравнений?

11.Какое решение неоднородной системы линейных алгебраических уравнений называется общим? Сформулируйте теорему об общем решении неоднородной системы уравнений.

12. Каковы основные свойства решений однородной системы линейных алгебраических уравнений?

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m ×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В .

В общем виде матрицу размером m ×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы . Элементы матрицы удобно снабжать двумя индексами a ij : первый указывает номер строки, а второй – номер столбца. Например, a 23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом .

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц . Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны a ij = b ij . Так если и , то A=B , если a 11 = b 11 , a 12 = b 12 , a 21 = b 21 и a 22 = b 22 .

Транспонирование . Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A , а переход от A к B транспонированием .

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A , обычно обозначают A T .

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры . Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B , стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C , которая определяется по правилу, например,

Примеры. Найти сумму матриц:

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B )+C =A +(B+C ).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

Примеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй). Произведением матрицы A не матрицу B называется новая матрица C=AB , элементы которой составляются следующим образом:

Таким образом, например, чтобы получить у произведения (т.е. в матрице C ) элемент, стоящий в 1-ой строке и 3-м столбце c 13 , нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу A = (a ij) размера m ×n на матрицу B = (b ij) размера n ×p , то получим матрицу C размера m ×p , элементы которой вычисляются следующим образом: элемент c ij получается в результате произведения элементов i -ой строки матрицы A на соответствующие элементы j -го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙B B∙A . Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC .

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A , причём AE=EA=A .

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например , если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка , соответствующим данной матрице, называется число, получаемое следующим образом: a 11 a 22 – a 12 a 21 .

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка , соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a 11 , a 12 , a 13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.


Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки "+" и "–" у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

Операции над матрицами и их свойства.

Понятие определителя второго и третьего порядков. Свойства определителей и их вычисление.

3. Общее описание задания.

4. Выполнение заданий.

5. Оформление отчета о лабораторной работе.

Глоссарий

Выучите определения следующих терминов :

Размерностью матрицы называется совокупность двух чисел, состоящая из числа её строк m и числа столбцов n.

Если m=n, то матрицу называют квадратной матрицей порядка n.

Операции над матрицами : транспонирование матрицы, умножение (деление) матрицы на число, сложение и вычитание, умножение матрицы на матрицу.

Переход от матрицы А к матрице А т, строками которой являются столбцы, а столбцами —строки матрицы А, называется транспонированием матрицы А.

Пример: А= , А т = .

Чтобы умножить матрицу на число , нужно каждый элемент матрицы умножить на это число.

Пример: 2А= 2· = .

Суммой (разностью) матриц А и В одинаковой размерности называется матрица С=А В, элементы которой равны с ij = a ij b ij для всех i и j .

Пример: А = ; В = . А+В= = .

Произведением матрицы А m n на матрицу В n k называется матрица С m k , каждый элемент которой c ij равен сумме произведений элементов i-ой строки матрицы А на соответствующий элемент j-го столбца матрицы В:

c ij = a i1 · b 1j + a i2 ·b 2j +…+ a in ·b nj .

Чтобы можно было умножить матрицу на матрицу, они должны быть согласованными для умножения, а именно число столбцов в первой матрице должно быть равно числу строк во второй матрице.

Пример: А= и В = .

А·В—невозможно, т.к. они не согласованы.

В·А= . = = .

Свойства операции умножения матриц .

1. Если матрица А имеет размерность m n, а матрица В—размерность n k , то произведение А·В существует.

Произведение В·А может существовать, только когда m=k.

2.Умножение матриц не коммутативно, т.е. А·В не всегда равно В·А даже если определены оба произведения. Однако если соотношение А·В= В·А выполняется, то матрицы А и В называются перестановочными .

Пример . Вычислить .

Минором элемента называется определитель матрицы порядка, полученный вычёркиванием -ой строки -го столбца.

Алгебраическим дополнением элемента называется .

Теорема разложения Лапласа :

Детерминант квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения.

Пример . Вычислить .

Решение. .

Свойства определителей n-го порядка :

1) Величина определителя не изменится, если строки и столбца поменять местами.

2) Если определитель содержит строку (столбец) из одних нулей, то он равен нулю.

3) При перестановке двух строк (столбцов) определитель меняет знак.

4) Определитель, имеющий две одинаковые строки (столбца), равен нулю.

5) Общий множитель элементов любой строки (столбца) можно вынести за знак определителя.

6) Если каждый элемент некоторой строки (столбца) представляет собой сумму двух слагаемых, то определитель равен сумме двух определителей, в каждом из которых все строки (столбцы), кроме упомянутой, такие же, как и в данном определителе, а в упомянутой строке (столбце) первого определителя стоят первые слагаемые, второго - вторые.

7) Если в определителе две строки (столбца) пропорциональны, то он равен нулю.

8) Определитель не изменится, если к элементам некоторой строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

9) Определители треугольных и диагональных матриц равны произведению элементов главной диагонали.

Метод накопления нулей вычисления определителей основан на свойствах определителей.

Пример . Вычислить .

Решение. Вычтем из первой строки удвоенную третью, далее используем теорему разложения по первому столбцу.

~ .

Контрольные вопросы (ОК-1, ОК-2, ОК-11,ПК-1):

1. Что называется определителем второго порядка?

2. Какие основные свойства определителей?

3. Что называется минором элемента?

4. Что называется алгебраическим дополнением элемента определителя?

5. Как разложить определитель третьего порядка по элементам какой-либо строки (столбца)?

6. Чему равна сумма произведений элементов какой-либо строки (или столбца), определителя по алгебраическим дополнениям соответствующих элементов другой строки (или столбца)?

7. В чём заключается правило треугольников?

8. Как вычисляются определители высших порядков способом понижения порядка

10. Какая матрица называется квадратной? Нулевой? Что такое матрица-строка, матрица-столбец?

11. Какие матрицы называются равными?

12. Дать определения операций сложения, умножения матриц, умно-жения матрицы на число

13. Каким условиям должны удовлетворять размеры матриц при сло-жении, умножении?

14. В чём заключаются свойства алгебраических операций: коммута-тивность, ассоциативность, дистрибутивность ? Какие из них выпол-няются для матриц при сложении, умножении, а какие нет?

15. Что такое обратная матрица? Для каких матриц она определена?

16. Сформулировать теорему о существовании и единственности обратной матрицы.

17. Сформулировать лемму о транспонировании произведения мат-риц.

Практические задания общие (ОК-1, ОК-2, ОК-11,ПК-1):

№1. Найти сумму и разность матриц А и В:

а)

б)

в)

№2. Выполните указанные действия:

в) Z= -11А+7В-4С+D

если

№3. Выполните указанные действия:

в)

№4. При помощи применения четырех способов вычисления определителя квадратной матрица, найти определители следующих матриц:

№5. Найти определителей n-ого порядка, по элементам столбца (строки):

а) б)

№6. Найти определитель матрицы, используя свойства определителей:

а) б)