Система mes включает в себя функцию. Функции исполнительных систем производства (MES)

MES (manufacturing execution systems) - это «производственная исполнительная система». Международная ассоциация MESA предлагает следующее определение MES: «Система, состоящая из набора программных и аппаратных средств, обеспечивающих функции управления производственной деятельностью: от заказа на изготовление партии продукции и до завершения производства». В самом обобщенном понимании MES-система:

Инициирует производственный процесс;

Следит за тем, как он проходит в реальном времени;

Реагирует на изменяющуюся в производстве ситуацию;

Составляет отчеты о производственных процессах по мере их протекания в реальном времени;

Обменивается информацией о цеховых процессах с другими инженерными и бизнес-подразделениями предприятия.

Ассоциация MESA выделила 11 основных функций, которые определяют место MES-систем в автоматизированной системе управления промышленным предприятием:

1. Контроль состояния и распределение ресурсов (RAS) – обеспечивает управление ресурсами производства (машинами, инструментальными средствами, методиками работ, материалами, оборудованием) и другими объектами, например, документами о порядке выполнения каждой производственной операции. В рамках этой функции описывается детальная история ресурсов и гарантируется правильность настройки оборудования в производственном процессе,

а также отслеживается состояние оборудования в режиме реального времени.

2. Оперативное / Детальное планирование (ODS) – обеспечивает оперативное и детальное планирование работы, основанное на приоритетах, атрибутах, характеристиках и свойствах конкретного вида продукции, а также детально и оптимально вычисляет загрузку оборудования при работе конкретной смены.

3. Диспетчеризация производства (DPU) – обеспечивает текущий мониторинг и диспетчеризацию процесса производства, отслеживая выполнение операций, занятость оборудования и людей, выполнение заказов, объемов, партий и контролирует в реальном времени выполнение работ в соответствии с планом. В режиме реального времени отслеживаются все происходящие изменения и вносятся корректировки в план цеха.

4. Управление документами (DOC) – контролирует содержание и прохождение документов, которые должны сопровождать выпускаемое изделие (включая инструкции и нормативы работ, способы выполнения, чертежи, процедуры стандартных операций, программы обработки деталей, записи партий продукции, сообщения о технических изменениях, передачу информации от смены к смене), а также обеспечивает возможность вести плановую и отчетную цеховую документацию. Предусматривается архивирование информации.

5. Сбор и хранение данных (DCA) – обеспечивает информационное взаимодействие различных производственных подсистем для получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия. Данные о ходе производства могут вводиться как вручную персоналом, так и автоматически с заданной периодичностью непосредственно с производственных линий.

6. Управление персоналом (LM) – предоставляет информацию о персонале с заданной периодичностью, включая отчеты о времени и присутствии на рабочем месте, слежение за соответствием сертификации, а также возможность учитывать и контролировать основные, дополнительные и совмещаемые обязанности персонала, такие как выполнение подготовительных операций, расширение зоны работы.

7. Управление качеством продукции (QM) – предоставляет данные измерений о качестве продукции, в том числе и в режиме реального времени, собранные с производственного уровня, обеспечивая должный контроль качества и заостряя внимание на критических точках. Может предложить действия по исправлению ситуации в данной точке на основе анализа корреляционных зависимостей и статистических данных причинно-следственных связей контролируемых событий.

8. Управление производственными процессами (PM) – отслеживает заданный производственный процесс, а также автоматически вносит корректировку или предлагает соответствующее решение оператору для исправления или повышение качества текущих работ.

9. Управление производственными фондами (техобслуживание ) (MM) – поддерживает процесс технического обслуживания, планового и оперативного ремонта производственного и технологического оборудования и инструментов в течение всего производственного процесса.

10. Отслеживание истории продукта (PTG) – предоставляет информацию о том, где и в каком порядке велась работа с данной продукцией. Информация о состоянии может включать в себя: отчет о персонале, работающем с этим видом продукции, компоненты продукции, материалы от поставщика, партию, серийный номер, текущие условия производства, несоответствия установленным нормам, индивидуальный технологический паспорт изделия.

11. Анализ производительности (PA) – предоставляет отчеты о реальных результатах производственных операций, а также сравнивает с предыдущими и ожидаемыми результатами. Представленные отчеты могут включать в себя такие измерения, как использование ресурсов, наличие ресурсов, время цикла производственного ресурса, соответствие плану, стандартам и другие. Несмотря на кажущееся многообразие функций MES все они имеют оперативный характер и регламентируют соответствующие требования не к предприятию в целом, а к той его единице – цеху, для которого ведется планирование работ. Основными функциями MES-систем из перечисленных выше являются

Оперативно-календарное (детальное) планирование (ODS);

Диспетчеризация производственных процессов в цеху (DPU).

Именно эти две функции определяют MES-систему как систему оперативного характера, нацеленную на формирование расписаний работы оборудования и оперативное управление производственными процессами в цеху.

MES (от англ. Manufacturing Execution System , система управления производственными процессами) - специализированное прикладное программное обеспечение , предназначенное для решения задач синхронизации, координации, анализа и оптимизации выпуска продукции в рамках какого-либо производства. С 2004 года термин расшифровывается как англ. Manufacturing Enterprise Solutions - корпоративные системы управления производством. MES-системы относятся к классу систем управления уровня цеха.

Стандарты MES

Международная ассоциация производителей и пользователей систем управления производством (MESA International) определила в 1994 году модель MESA-11, а в 2004 году модель c-MES, которые дополняют модели и стандарты управления производством и производственной деятельностью, сформировавшиеся за последние десятилетия:

  1. Стандарт ISA95, «Интеграция систем управления предприятием и технологическим процессом» («Enterprise-Control System Integration»), который определяет единый интерфейс взаимодействия уровней управления производством и компанией и рабочие процессы производственной деятельности отдельного предприятия.
  2. Стандарт ISA88, «Управление периодическим производством» («Batch Control»), который определяет технологии управления периодическим производством, иерархию рецептур, производственные данные.
  3. Сообщество Открытых Приложений (Open Applications Group, OAG): некоммерческое промышленное сообщество, имеющее своей целью продвижение концепции функциональной совместимости между бизнес-приложениями и разработку стандартов бизнес-языков для достижения указанной цели.
  4. Модель процессов цепочки поставок (Supply-Chain Operations Reference, SCOR): референтная модель для управления процессами цепочки поставок, связывающая деятельность поставщика и заказчика. Модель SCOR описывает бизнес-процессы для всех фаз выполнения требований заказчика. Раздел SCOR «Изготовление» («Make») посвящён, в основном, производству.

Положения работы MES

Положения работы MES- включают в себя:

  1. Активация производственных мощностей на основе детального пооперационного планирования производства
  2. Отслеживание производственных мощностей
  3. Сбор информации, связанной с производством от
    1. Систем автоматизации производственного процесса
    2. Датчиков
    3. Оборудования
    4. Персонала
    5. Программных систем
  4. Отслеживание и контроль параметров качества
  5. Обеспечение персонала и оборудования информацией, необходимой для начала процесса производства
  6. Установление связей между персоналом и оборудованием в рамках производства
  7. Установление связей между производством и поставщиками, потребителями, инженерным отделом, отделом продаж и менеджментом
  8. Реагирование на
    1. Требования по номенклатуре производства
    2. Изменение компонентов, сырья и полуфабрикатов, применяемых в процессе производства
    3. Изменение спецификации продуктов
    4. Доступность персонала и производственных мощностей
  9. Гарантирование соответствия применимым юридическим актам, например нормам Food and Drug Administration (FDA) США
  10. Соответствие вышеперечисленным индустриальным стандартам.

Функции MES-11

  1. RAS (англ. ) - Контроль состояния и распределение ресурсов. Управление ресурсами: технологическим оборудованием, материалами , персоналом , обучением персонала, а также другими объектами, такими как документы , которые должны быть в наличии для начала производственной деятельности. Обеспечивает детальную историю ресурсов и гарантирует, что оборудование соответствующим образом подготовлено для работы. Контролирует состояние ресурсов в реальном времени . Управление ресурсами включает резервирование и диспетчеризацию, с целью достижения целей оперативного планирования.
  2. ODS (англ. Operations/Detail Scheduling ) - Оперативное/Детальное планирование . Обеспечивает упорядочение производственных заданий, основанное на очередности, атрибутах, характеристиках и рецептах, связанных со спецификой изделий таких как: форма , цвет , последовательность операций и др. и технологией производства. Цель - составить производственное расписание с минимальными перенастройками оборудования и параллельной работой производственных мощностей для уменьшения времени получения готового продукта и времени простоя.
  3. DPU (англ. ) - Диспетчеризация производства. Управляет потоком единиц продукции в виде заданий, заказов, серий, партий и заказ-нарядов. Диспетчерская информация представляется в той последовательности, в которой работа должна быть выполнена, и изменяется в реальном времени по мере возникновения событий на цеховом уровне. Это дает возможность изменения заданного календарного плана на уровне производственных цехов. Включает функции устранение брака и переработки отходов , наряду с возможностью контроля трудозатрат в каждой точке процесса с буферизацией данных .
  4. DOC (англ. Document Control ) - Управление документами. Контролирует содержание и прохождение документов, которые должны сопровождать выпускаемое изделие, включая инструкции и нормативы работ, способы выполнения, чертежи, процедуры стандартных операций, программы обработки деталей, записи партий продукции, сообщения о технических изменениях, передачу информации от смены к смене, а также обеспечивает возможность вести плановую и отчётную цеховую документацию. Также включает инструкции по безопасности, контроль защиты окружающей среды, государственные и необходимые международные стандарты . Хранит историю прохождения и изменения документов.
  5. DCA (англ. Data Collection/Acquisition ) - Сбор и хранение данных. Взаимодействие информационных подсистем в целях получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия. Функция обеспечивает интерфейс для получения данных и параметров технологических операций, которые используются в формах и документах, прикрепляемых к единице продукции. Данные могут быть получены с цехового уровня как вручную, так и автоматически от оборудования, в требуемом масштабе времени.
  6. LM (англ. Labor Management ) - Управление персоналом. Обеспечивает получение информации о состоянии персонала и управление им в требуемом масштабе времени. Включает отчетность по присутствию и рабочему времени, отслеживание сертификации, возможность отслеживания непроизводственной деятельности, такой, как подготовка материалов или инструментальные работы, в качестве основы для учета затрат по видам деятельности (activity based costing, ABC). Возможно взаимодействие с функцией распределения ресурсов, для формирования оптимальных заданий.
  7. QM (англ. Quality Management ) - Управление качеством. Обеспечивает анализ в реальном времени измеряемых показателей, полученных от производства, для гарантированно правильного управления качеством продукции и определения проблем, требующих вмешательства обслуживающего персонала. Данная функция формирует рекомендации по устранению проблем, определяет причины брака путём анализа взаимосвязи симптомов, действий персонала и результатов этих действий. Может также отслеживать выполнение процедур статистического управления процессом и статистического управления качеством продукции (SPC/SQC), а также управлять выполнением лабораторных исследований параметров продукции. Для этого в состав MES добавляются лабораторные информационно-управляющие системы (LIMS).
  8. PM (англ. Process Management ) - Управление производственными процессами. Отслеживает производственный процесс и либо корректирует автоматически, либо обеспечивает поддержку принятия решений оператором для выполнения корректирующих действий и усовершенствования производственной деятельности. Эта деятельность может быть как внутриоперационной и направленной исключительно на отслеживаемые и управляемые машины и оборудование, так и межоперационной, отслеживающей ход процесса от одной операции к другой. Она может включать управление тревогами для обеспечения гарантированного уведомления персонала об изменениях в процессе, выходящих за приемлемые пределы устойчивости. Она обеспечивает взаимодействие между интеллектуальным оборудованием и MES, возможное благодаря функции сбора и хранения данных.
  9. MM (англ. Maintenance Management ) - Управление техобслуживанием и ремонтом . Отслеживает и управляет обслуживанием оборудования и инструментов. Обеспечивает их работоспособность. Обеспечивает планирование периодического и предупредительного ремонтов, ремонта по состоянию. Накапливает и хранит историю произошедших событий (отказы, уменьшение производительности и др.) для использования в диагностировании возникших и предупреждения возможных проблем.
  10. PTG (англ. Product Tracking and Genealogy ) - Отслеживание и генеалогия продукции. Обеспечивает возможность получения информации о состоянии и местоположении заказа в каждый момент времени. Информация о состоянии может включать данные о том, кто выполняет задачу, компонентах, материалах и их поставщиках, номере лота, серийном номере, текущих условиях производства, а также любые тревоги, данные о повторной обработке и другие события, относящиеся к продукту. Функция отслеживания в реальном времени создает также архивную запись. Эта запись обеспечивает отслеживаемость компонентов и их использование в каждом конечном продукте.
  11. PA (англ. Performance Analysis ) - Анализ производительности. Обеспечивает формирование отчетов о фактических результатах производственной деятельности, сравнение их с историческими данными и ожидаемым коммерческим результатом. Результаты производственной деятельности включают такие показатели, как коэффициент использования ресурсов, доступность ресурсов, время цикла для единицы продукции, соответствие плану и соответствие стандартам функционирования. Может включать статистический контроль качества процессов и продукции (SPC/SQC). Систематизирует информацию, полученную от разных функций, измеряющих производственные параметры. Эти результаты могут быть подготовлены в форме отчета или представлены в реальном времени в виде текущей оценки эксплуатационных показателей.

По состоянию на 2004 год , функции, относящиеся к составлению производственных расписаний (ODS), управлению ТО и ремонтами (MM), а также цеховому документообороту (DOC), были исключены из базовой модели MESA-11. Разработка новой модели Collaborative Manufacturing Execution System (c-MES) была вызвана тем фактом, что при управлении производством и цепочками поставок надёжный обмен информацией между несколькими системами необходим гораздо чаще, чем обмен между несколькими уровнями одной системы. В предыдущем поколении MES основное внимание уделялось обеспечению информацией пользователей из числа оперативного персонала, таких как диспетчеры, операторы или менеджеры. Для совместного использования информации с другими была разработана модель c-MES. Она дает возможность получить полную картину происходящего, необходимую для принятия решений. В частности, при управлении цепочками поставок и принятии решений c-MES предоставляет информацию о возможностях производства («что»), производительности («сколько»), расписании («когда») и качестве («доступный уровень»). Кроме того за прошедшее время (с 1994 по 2004 гг.) появились информационные системы, реализующие исключенный функционал:

  • Advanced Planning & Scheduling (APS) - решают задачи составления производственных расписаний в рамках всего предприятия
  • Enterprise Asset Management (EAM) - отвечает за управление ТОиР

В зависимости от характера, масштаба и особенностей производственных структур и самих систем, существуют различные комбинации сочетаний корпоративных систем ERP, APS и MES в общей структуре системы управления предприятием.

Функции c-MES

  1. RAS (англ. Resource Allocation and Status ) - Контроль состояния и распределение ресурсов.
  2. DPU (англ. Dispatching Production Units ) - Диспетчеризация производства (Координация изготовления продукции).
  3. DCA (англ. Data Collection/Acquisition ) - Сбор и хранение данных.
  4. LUM (англ. Labor/User Management )- Управление людскими ресурсами.
  5. QM (англ. Quality Management ) - Управление качеством.
  6. PM (англ. Process Management ) - Управление процессами производства.
  7. PTG (англ. Product Tracking & Genealogy ) - Отслеживание и генеалогия продукции.
  8. PA (англ. Performance Analysis ) - Анализ эффективности.

Литература

Книги
  • Загидуллин Р. Р. Управление машиностроительным производством с помощью систем MES, APS, ERP . - Старый Оскол : ТНТ, . - 372 с. - ISBN 978-5-94178-272-7
  • Загидуллин Р. Р. Оперативно-календарное планирование в гибких производственных системах. - Москва : издательство МАИ, . - 208 с. - ISBN 5-7035-1445-2
Статьи
  • Высочин С.В., Смирнов Ю.Н. Система управления производственными процессами Zenith SPPS (рус.) // МЦНТИ Информация и инновации: журнал. - М .: МЦНТИ, 2007. - № 4. - С. 46-61. - ISSN 1994-2443 .
  • Высочин С.В., Пителинский К.В., Смирнов Ю.Н. Принципы построения систем для расчета производственных расписаний (рус.) // САПР и графика : журнал. - М .: Компьютер Пресс, 2008. - № 9. - С. 57-59. - ISSN 1560-4640 .
  • Высочин С.В., Смирнов Ю.Н. Об особенностях систем оперативно-диспетчерского контроля (рус.) // САПР и графика : журнал. - М .: Компьютер Пресс, 2009. - № 9. - С. 58-61. - ISSN 1560-4640 .
  • Высочин С.В., Смирнов Ю.Н. Внедрение MES-системы Zenith SPPS в различных производственных отраслях (рус.) // САПР и графика : журнал. - М .: Компьютер Пресс, 2009. - № 11. - С. 12-15. - ISSN 1560-4640 .
  • Высочин С.В., Смирнов Ю.Н. Идеология и принципы применения современных MES на примере Zenith SPPS (рус.) // Институт проблем управления им. В.А. Трапезникова РАН Автоматизация в промышленности: журнал. - М .: Издательский дом "ИнфоАвтоматизация", 2010. - № 8. - С. 25-29. - ISSN 1819-5962 .
  • Загидуллин Р.Р., Фролов Е.Б. Управление машиностроительным производством с помощью MES-систем (рус.) // СТИН : журнал. - М ., 2007. - № 11. - С. 2-5. - ISSN 0869-7566 .
  • Фролов Е.Б. Современные концепции управления в производственной логистике: MES для дискретного производства - метод вычисляемых приоритетов (рус.) // САПР и графика : журнал. - М .: Компьютер Пресс, 2011. - № 1. - С. 71-75. - ISSN 1560-4640 .
  • Фролов Е.Б. MES-системы: оперативный функционально-стоимостной анализ для нужд производственного предприятия (рус.) // Генеральный директор. Управление промышленным предприятием : журнал. - М .: Издательский дом «Панорама», 2008. - № 9. - С. 76-79. - ISSN 2075-1036 .
  • Фролов Е.Б., Загидуллин Р.Р. Оперативно-календарное планирование и диспетчирование MES-системах (рус.) // Станочный парк : журнал. - М ., 2008. - № 11. - С. 22-27. - ISSN 2075-1036 .
29 апреля 2012 в 20:13

Как один мужик MES-систему купить хотел

  • ERP-системы

Это было примерно месяц назад. К нам в офис приехал Василий. Он топ-менеджер компании, производящей оборудование для театральных сцен. С порога заявил, что ему нужна MES-система или APS-система и что он еще не до конца решил, какая из них. «Почему именно MES-система?» - спросил я.

Я уже несколько месяцев занимаюсь изучением вопроса, связанного с решением наших производственных проблем. Встречался с представителями нескольких компаний, производящих MES и APS системы. Они сказали, что их системы как раз и решают наши проблемы. Причем мне сказали, что только такие системы и способны решить наши проблемы. У вас тоже MES система?

Нет, у нас ERP-система. Да это не важно, забудьте про эти всякие аббревиатуры. Давайте просто поговорим о ваших проблемах.


- А вы думаете, ваша система способна их решить?

Василий, проблемы решает менеджмент компании. А ПО только помогает это сделать. Но само по себе ПО проблем не решает. Я думаю, что некоторые ваши проблемы решаются и без ПО, а некоторые может помочь решить наше ПО. В чем, по-вашему, заключаются ваши проблемы?

Все просто: мы никогда ничего не делаем в срок. Это наша главная болячка. Да и куча других. Например, очень часто при сборке какого-то узла, вдруг выясняется, что необходимых комплектующих для него просто нет. А других комплектующих завались.

И эту проблему можно решить при помощи MES-системы?

Мне показывали презентацию. Мне очень понравилось. Дело в том, что в MES-системе можно все заранее распланировать и если делать все так, как запланировано, то все будет хорошо. Там графики есть, все очень наглядно.

Ключевая фраза «делать, как запланировано», я не думаю, что у вас это получится. Как вы думаете, 50 лет назад были MES-системы?

Конечно, нет.

Это означает, что раньше абсолютно все компании никогда ничего не делали в срок? И форд, и тойота и тысячи других производителей, некоторые из которых работают уже не одно столетие. По словам людей, презентовавших вам MES-систему, по-другому эту проблему не решить.

Я не знаю, не думал над этим.

Кстати, вы не спрашивали у них, как эта система будет интегрирована во все остальные бизнес-процессы компании? Ну, там, я не знаю, закупки, продажи, склад, финансы и т.д.

Хм, да, интересно. Мы не обсуждали этот вопрос, я не знаю…спрошу.

Что вы производите?

Лебедки. Большие лебедки, не для автомобилей, а посерьезней.

Хорошо. Если все комплектующие на складе, сколько нужно времени на производство одной лебедки?

Эээ, думаю, часов пять.

А если я у вас прямо сейчас закажу лебедку, то когда я ее получу?

Ммм, думаю, что дней через десять точно.

Странно. У вас весьма неплохое соотношение чистой трудоемкости и общего срока. Что-то около 15-ти. Это прекрасное соотношение для нашей страны. На западе, а особенно в Японии, оно конечно значительно меньше, но в России это может быть и сотни. А у вас пятнадцать. Очень странно… Ну, хорошо, давайте разбираться дальше. Какую комплектующую нужно закупать дольше всего?

Двигатель.

Сколько нужно времени на его закупку?

Может быть и сорок дней.

Вы держите их на складе?

Секундочку. Откуда тогда десять дней?

Василий в замешательстве.

Я не знаю, мне всегда казалось, что десяти дней нам точно достаточно.
Тут мне становится понятно, что контрольное соотношение у них на самом деле «традиционное», что-то около сотни.

Остальные комплектующие как быстро можно купить?

Быстро. День-два.

Ну, вот вам и первая ваша проблема. Она называется «двигатель». Почему вы не держите на складе небольшой буфер движков?

Мы думали над этим. Но не получается. Дело в том, что они к нам поступают с муфтами. Муфты очень разные. Двигателей примерно с десяток разных, а муфт гораздо больше. Поэтому комбинаций получается очень много. Придется на складе держать огромное количество этих двигателей.

Муфты вы можете сами монтировать?

Да, это не сложно. У нас же производство.

Почему вы этого не делаете?

Эээ, я не знаю. Так всегда было.

Я думаю, решение проблемы сорока дней лежит примерно в этом месте. Подумайте о монтаже муфт самостоятельно и держите небольшой буфер двигателей на складе. Управляйте буфером по принципу «закажи, что потратил». Взял двигатель – закажи его у поставщика. Это первое. Второе. Никогда не приступайте к производственному заданию, если не выполнено предыдущее задание. Тогда вы избавитесь от проблемы под названием «когда мы что-то делаем, обнаруживаем отсутствие комплектующих». Правильно выстраивайте очередность заданий, всегда делайте наиболее горящие.

Не знаю - не знаю. Я поговорю с шефом, но он загорелся MES-системой. Там очень здорово все планируется. Шеф хочет утвердить план и не думать после этого о срыве сроков.

Это, разумеется, его право. А если что-то пойдет не так?

Не понял. Что значит не так?

Ну, смотрите. У вас есть люди разной квалификации, есть разные станки. Казалось бы все сложно. MES (и уж тем более APS) система все это учитывает при планировании. Так?

Да, я сам видел на презентации.

А теперь простая ситуация. Не дай Бог конечно, но вот представим себе завтрашний день, 08-00. Один из ключевых инженеров (слесарей) по дороге на работу падает и ломает ногу. Без него одно из изделий, которое как назло стоит в плане на сегодня, сделать нельзя. Что делать?

Нууу, я не знаю. MES-системы умеют все быстро перепланировать.

Не сомневаюсь. Но планируют не MES-системы, а менеджмент. Вы ведь сами сказали, что план утверждает шеф. Но он к сожалению сейчас в отпуске…Делать что будете?

Ну, я точно не знаю, не думал над этим. Я думаю, начальник производства примет решение, что именно сейчас нужно производить.

Василий, я привел вам один самых простых случаев внешнего воздействия на ваш план производства. На самом деле таких воздействий гораздо больше и они могут быть значительно сложнее. И случаться они будут ежедневно, к сожалению. В результате ваш начальник производства будет каждый день принимать «волевые решения». А через какое-то время вы будете строить планы только потому, что «всандалили кучу денег и не выбрасывать же».

Ну и что вы предлагаете?

Вы читали «цель1» Голдратта?

Нет, а кто это?

Голдратт - потрясающий мужик, который придумал гениальную (как и все простое) систему менеджмента. Давайте так. Вы прочитаете его, а потом мы с вами еще раз встретимся и просто поговорим. Очень вам его рекомендую. У меня в компании все процессы строятся по этой теории. За последние два года компания выросла раза в три.

А вот еще вопрос. Ваша система умеет определять положение автомобиля?

Господи, зачем вам это?

Понимаете, наш шеф очень часто вмешивается в процесс и звонит водителям, когда те уже загрузились и уехали, находит ближайшего, возвращает его назад, тот разгружается и загружается срочным заказом, потому что кто-то там шефу позвонил. Да и на производстве такое случается часто, что шеф вмешивается и требует производить что-то другое…

Ну, вот вам еще одна ваша проблема. Она называется «шеф». Вы мне поведали о некоторых своих проблемах и вместо того, чтобы пытаться их решить, вы хотите залепить их пластилином.
Потом я на доске нарисовал ему очень простые производственные схемы, но это тема для отдельного поста.
И он в задумчивости уехал.

Буквально через несколько дней после этой встречи я улетел в Новосибирск. Точнее в Академгородок, а точнее в Технопарк Академгородка. Все производственные процессы в котором построены на базе теории ограничений Голдрата. Это потрясающее зрелище.

Подробности той поездки у меня в

В статье рассматривается огромный проект, в котором участвовало несколько компаний: создание и внедрение системы MES на заводе «Воронежсинтезкаучук», производящем синтетические каучуки и термоэластопласты (ТЭП). Показано, как MES-система позволяет улучшить бизнес-процессы на предприятии.

Журнал «ИСУП», г. Москва

MES-системы

Статьи о системах MES в нашем журнале появились несколько лет назад, но большого развития эта тема тогда не получила. В какой-то момент даже показалось, что сами системы MES плохо приживаются в нашей промышленности. Однако им тогда просто не пришло время. Сегодня мы расскажем об одном внедрении, благодаря которому удалось значительно повысить эффективность производственных процессов на одном из крупнейших российских предприятий по производству синтетического каучука.

Начнем с главного: что такое MES? Это своеобразное промежуточное звено между системами планирования производства (ERP) и системами управления самим технологическим процессом (АСУ ТП).

Технологический процесс на каждом предприятии уникален, и тем не менее сходство есть: на всех заводах давно уже правят бал АСУ ТП разнообразного типа, начиная с PLC и заканчивая мощными РСУ. В то же время, на любом предприятии существует уровень, в фокусе внимания которого находится заказчик – потребитель вырабатываемой продукции. Здесь планируются производство и логистика, прогнозируются продажи и контролируются затраты. Уже 15–20 лет назад для помощи в работе на этом уровне тоже использовались автоматизированные системы ERP (от англ. Enterprise Resource Planning – «планирование ресурсов предприятия»).

Между уровнями технологического процесса и планирования производства всегда циркулировало огромное количество бумажных отчетов, которые писали обходчики, операторы, инженеры, диспетчеры и другие сотрудники. Велись бумажные журналы, составлялись отчеты в Excel-таблицах, распечатывались режимные листы из АСУ ТП, все эти отчеты бесконечно дублировались и кочевали из кабинета в кабинет. Отдельной сложной работой, отнимающей много времени, являлось сведение материальных балансов. Однако постепенно, позже, чем на других уровнях, и здесь начала происходить автоматизация «бумажного» ручного труда. Стали появляться программы-приложения, написанные для анализа и обработки данных, связанных с технологическими процессами. Они получили общее название MES.

Сегодня MES (от англ. Manufacturing Execution System – «система управления производственными процессами») уже не отдельные приложения, а комплексная система, объединяющая производство (рис. 1). С помощью MES пользователи могут получать информацию обо всех производственных операциях, которые ведутся на предприятии. Происходит это в режиме времени, максимально приближенном к реальному. А это позволяет сделать производство прозрачным и принимать управленческие решения с большой скоростью и мобильностью.



Рис. 1. Модули MES

Особенно востребованы системы MES на предприятиях с многоуровневыми технологическими процессами, которые зависят от множества факторов: температурного режима, давления, энергопотребления и др.

Именно таким и является воронежское предприятие группы ­СИБУР «Воронежсинтезкаучук». Поэтому в 2012 го­ду в целях повышения эффективности производственных процессов на производственной площадке в Воронеже стартовал масштабный проект по внедрению системы MES.

Чтобы представить себе масштаб производства на заводе в Воронеже, сделаем небольшое отступление. Как известно, в нефти содержится попутный газ (ПНГ), который отделяется от нее во время переработки. На протяжении многих лет этот газ просто сжигали, однако есть у ПНГ и другое, куда более эффективное, применение: производство полимеров, окружающих нас изо дня в день. Всё – от пластиковых окон до медицинских инструментов, от бутылок с минералкой до автомобильных запчастей – является продуктом многоступенчатой переработки попутного нефтяного газа.

Ключевым сырьем для производства синтетического каучука является бутадиен, который, в свою очередь, также производится из ПНГ. На воронежскую площадку СИБУРа бутадиен поступает из Тольятти, а также из Тобольска, с предприятий «Тольяттикаучук» и «Тобольск-Нефтехим» соответственно.

Уже в Воронеже с помощью многочисленных технологических операций бутадиен подвергают обработке, получая на выходе не только синтетический каучук, но и термоэластопласты (ТЭП) – материалы, сочетающие в себе достоинства пластмассы и резины. Основным сегментом применения первого является автомобильный сектор, вторых – строительство.

Внедренная на воронежской промышленной площадке СИБУРа система MES позволяет отслеживать весь технологический процесс, начиная от стадии приемки сырья до отгрузки готовой продукции на склад.

Программная платформа GE Proficy

Для построения MES требовалась программная платформа. Выбор пал на продукт компании Gene­ral Electric.

GE, огромная корпорация, которую когда-то, 138 лет назад, основал сам Томас Эдиссон, всю свою историю была известна как производитель электрооборудования: компрессоров, турбин, подстанций, холодильников, медицинских установок и огромного числа другого «железа». Однако в последние годы у компании изменились амбиции: теперь она самым активным образом занимается разработкой программного обеспечения: корпорация твердо намерена войти в топ‑10 ведущих мировых разработчиков софтверных решений.

Одним из этих решений является программный продукт Proficy, который с успехом используется для построения MES-систем во всем мире.

Учитывая специфику внедрения на «Воронежсинтезкаучке», GE предстояло определить, что именно нужно заказчику для построения шаблонного решения. Используя собственную методологию, с помощью программы Enterprise Architect специалисты компании GE перевели требования заказчика в цифровой вид и создали сценарии их использования. Эта методология позволила избежать любых разночтений между специалистами со стороны ­СИБУРа и разработчиками программного продукта. Так был создан шаблон MES-системы, в котором были учтены все пожелания заказчика.

Предприятие «Воронежсинтезкаучук»

Кратко познакомим читателя с первым предприятием группы, на котором предстояло внедрить MES-систему. «Воронежсинтезкаучук» производит синтетические каучуки с 1932 года. До 1992 года в качестве сырья для производства каучука использовался этиловый спирт, но позже завод перешел на технологию, в основе которой лежит переработка поступающего на предприятие бутадиена. Бесперебойные поставки сырья с других предприятий группы СИБУР позволяют воронежской площадке выстраивать долгосрочные отношения с клиентами. Важность этого фактора сложно переоценить: немалая доля предприятий по производству синтетических каучуков в стране была закрыта именно по причине нехватки сырья.

Как уже упоминалось выше, на заводе производят не только синтетический каучук (использующийся главным образом для изготовления шин), но и термоэластопласты – ТЭП, вещества, совмещающие в себе свойства пластмассы и резины. Поэтому клиентский портфель завода включает в себя как производителей автомобильных шин (Michelin, Bridgestone, Pirelli, Yokohama и др.), так и компании, поставляющие продукцию для строительной отрасли.

На отдельном производстве «ТЭП‑50» изготавливается сырье для мягкой кровли, герметиков, клеев. Также продукция установки «ТЭП‑50» нашла широкое применение в автодорожном строительстве. Полимерно-битумные вяжущие, получаемые из термоэластопластов, позволяют существенно повысить износостойкость верхнего слоя дорожного покрытия и в целом продлить срок эксплуатации дорожного фонда. Отметим, что воронежская площадка СИБУРа является единственным в России производителем ТЭП. Более 80 % термоэластопластов, потребляемых внутри страны, производится в Воронеже.

«ИндаСофт» – интеграция системы

В 2012 году для внедрения MES-системы на воронежском заводе пригласили российскую компанию-интегратора «ИндаСофт». Во-первых, потому что основное направление ее деятельности – внедрение MES «под ключ». А во‑вторых, потому что специалистами «ИндаСофт» для этой задачи разработаны программные продукты, соответствующие российским реалиям и законодательству, включенные в Реестр российского ПО:
- система сведения материального баланса (I-DRMS);
- система учета энергоресурсов (I-EMS);
- система диспетчерского управления (I-DS/P).

Компанией «ИндаСофт» было выполнено свыше 100 проектов на разных предприятиях, однако со спецификой каучукового производства довелось столкнуться впервые. Дело в том, что в этом производстве очень сложный учет: в синтетические каучуки входит огромное число компонентов, а кроме того, в производстве участвуют 19 энергоресурсов.



Рис. 2. Интеграция MES с SAP

Вот почему заказчик поставил перед интегратором задачу: не просто внедрить систему MES, но и совместить ее с системой SAP, автоматизирующей работу бухгалтеров, финансовой, кадровой и других служб. Эта система внедрялась на заводе «Воронежсинтезкаучук» параллельно. С помощью интеграции MES и SAP предстояло решать задачи, связанные со сравнением плана и факта производства, передачей технических заказов, результатами испытаний, проблемой остатков, согласованием выработки потребления материалов и ресурсов.

Для задач по интеграции MES с другими системами, внедренными на заводе (SAP и LIMS), был выбраны программные продукты GE Digital. Однако с самого начала была осуществлена интеграция MES с АСУ ТП – реализован модуль диспетчеризации.



Рис. 3. Мнемосхема в диспетчерской, отражающая технологические процессы, протекающие на предприятии

Уже в 2014 году диспетчер предприятия видел все производство на мониторе (рис. 3): какие линии функционируют и какие стоят, насколько эффективно идет работа. Раньше диспетчер узнавал эту информацию по телефону: ему звонили операторы и другие сотрудники, обслуживающие АСУ ТП, и отчитывались о том, что происходит. Таким образом, информация диспетчера зависела от сотрудников, приходилось всю ее фиксировать в бумажных журналах, а принятие решений отнимало много времени. Теперь информация поступает в режиме, максимально приближенном к реальному времени, непосредственно с датчиков АСУ ТП. И звонки теперь идут в обратном режиме: диспетчер звонит оператору и указывает, что у него недостаточно эффективно работает линия или наблюдается какая-то неисправность. Решения принимаются очень быстро. Кроме того, полностью отпала необходимость заполнять бумажные журналы, что освобождает от ненужного труда и исключает человеческую ошибку, ведь вся информация о технологическом процессе поступает в MES автоматически.

Здесь следует указать отдельно, что связь между АСУ ТП и системой MES односторонняя. В MES-систему поступает информация о протекании технологических процессов из разных АСУ ТП завода, но обратно через сеть никакая информация и никакие управляющие сигналы в АСУ ТП поступить не могут. Обратная связь осуществляется только через людей: например, по тому же телефону. Это важно в первую очередь из соображений безопасности.


Рис. 4. В операторной установки «ТЭП‑50»: на стене – видеоинформация из цеха; на мониторе оператора – мнемосхема рабочего процесса

Однако самая «горячая пора» в работе над внедрением MES наступила во второй половине 2014 го­да. К лету были написаны все необходимые приложения, подготовлено все необходимое оборудование. До нового года оставалось шесть месяцев. За эти полгода необходимо было внедрить систему, потому что с 1 января наступает новый финансовый год и MES должна была вступить в работу параллельно с SAP. Это рекордное по скорости внедрение было выполнено в срок.

Как это работает

Проект по внедрению MES на воронежской площадке СИБУРа действительно уникален, поскольку именно здесь впервые в России удалось интегрировать две системы – MES и SAP. Благодаря интеграции появилась возможность максимально оперативно сводить материальный баланс завода. Данные об остатках готовой продукции на складе обновляются в MES и транслируются в SAP ежедневно.

Поясним на наглядном примере: как только кладовщику приходит часть партии каучука, он фиксирует это событие в компьютере. Информация сразу вносится в систему и отправляется в SAP, где ее тоже видят.

Также эта партия отправляется в лабораторию на контроль качества. У синтетических каучуков может быть многообразный состав. Разным клиентам нужен разный каучук. Качество партии фиксируется сотрудниками в лабораторной системе LIMS, оттуда эта информация попадает в MES, которая сортирует готовую продукцию под конкретного заказчика. Ежемесячно происходит большое количество сортировок, поэтому ясно, что автоматизация значительно облегчила, ускорила и оптимизировала рабочий процесс. Кроме того, теперь можно оперативно отгружать продукцию клиенту, не храня ее на складе.

На основе всех полученных данных раз в сутки проводится сведение материального баланса, а также сведение экономического баланса – исключительная ситуация для нашей промышленности, где сведение балансов бывает раз в месяц и требует очень больших трудозатрат. Сегодня сведение балансов на «Воронежсинтезкаучуке» стало очень удобной функцией, которая необходима компании.

Такое же сведение баланса происходит по каждому энергоресурсу.

И все эти данные (подчеркнем – достоверные данные!) в режиме реального времени могут видеть все сотрудники предприятия разного уровня: инженеры, диспетчеры, начальники подразделений, генеральный директор и др.

Отметим ключевые бизнес-результаты внедрения MES и интеграции SAP/MES:
- получение в SAP (через MES) первичных данных с приборов учета с аудируемым изменением;
- прозрачный алгоритм формирования агрегированных и согласованных показателей работы завода по измеренным данным;
- доступ к первичным измерениям АСУ ТП на всех уровнях управления производством, контроль качества данных АСУ ТП;
- единый достоверный набор данных для формирования оперативной отчетности, все службы предприятия получают данные из единого источника;
- единый источник данных по качеству, автоматическая передача данных в MES и SAP ERP для паспортизации;
- оперативный контроль параметров безопасного и эффективного ведения технологических режимов из любого места.

Функции исполнительных систем производства (MES)

MES (Manufacturing Execution System) – исполнительная система производства. Системы такого класса решают задачи синхронизации, координации, анализа и оптимизации выпуска продукции в рамках какого-либо производства.

Существует несколько формулировок определения MES систем:

1 MES – это информационная и коммуникационная система производственной среды предприятия.

2 MES – автоматизированная система управления и оптимизации производственной деятельности, которая в режиме реального времени инициирует, отслеживает, оптимизирует и документирует производственные процессы от начала выполнения заказа до выпуска готовой продукции.

3 MES – интегрированная информационно-вычислительная система, объединяющая инструменты и методы управления производством в реальном времени .

Отличия MES систем от ERP заключаются в следующем: ERP-системы ориентированы на планирование выполнения заказов, то есть отвечают на вопрос: когда и сколько продукции должно быть произведено? MES системы фокусируются на вопросе: как в действительности продукция производится? Они оперируют более точной информацией о производственных процессах.

MES системы, оперируя исключительно производственной информацией, позволяют корректировать производственное расписание в течение рабочей смены столько раз, сколько это необходимо . За счет быстрой реакции на происходящие события и применения математических методов компенсации отклонений от производственного расписания, MES системы позволяют оптимизировать производство и сделать его более рентабельным. Структура такой организации производства показана на рисунке 1.5.

MES системы реализуют связь в реальном времени производственных процессов с бизнес процессами предприятия и улучшают финансовые показатели предприятия, включая повышение отдачи основных фондов, ускорение оборота денежных средств, снижение себестоимости, своевременность поставок, повышение размера прибыли и производительности.

Таким образом, MES – это связующее звено между ориентированными на финансово-хозяйственные операции ERP-системами и оперативной производственной деятельностью предприятия на уровне цеха, участка или производственной линии.

Рисунок 1.5 – Структурная схема организации производства с MES-системой

Функции, выполняемые MES-системами, могут быть интегрированы с другими системами управления предприятием (рис. 1.6) :

ERP – планирования ресурсов предприятия;

SCM (Supply Chain Management) – управление цепочками поставок;

SCADA – автоматизация технологических процессов;

CAD (Computer-Aided Design) – автоматизированное проектирование изделий;

CAPP (Computer-Aided Process Planning) – автоматизированная разработка маршрутной технологии;

ABC (Activity Based Costing) – функционально-стоимостной анализ производственной деятельности;

EAM (Enterprise Asset Management) – управление основными фондами предприятия;

CRM (Customer Relationship Management) – управление взаимоотношениями с клиентами.

Рисунок 1.6 – MES, как ядро интеграции систем

Используя данные уровней планирования и контроля, MES системы управляют текущей производственной деятельностью в соответствии с поступающими заказами, требованиями конструкторской и технологической документации, актуальным состоянием оборудования, преследуя при этом цели максимальной эффективности и минимальной стоимости выполнения производственных процессов.

Международная ассоциация производителей систем управления производством (MESA) определила 11 типовых функций MES-систем :

· контроль состояния и распределение ресурсов (RAS) – управление ресурсами производства: технологическим оборудованием, материалами, персоналом, документацией, инструментами, методиками работ;

· оперативное / детальное планирование (ODS) – расчет производственных расписаний, основанный на приоритетах, атрибутах, характеристиках и способах, связанных со спецификой изделий и технологией производства;

· диспетчеризация производства (DPU) управление потоком изготавливаемых деталей по операциям, заказам, партиям, сериям, посредством рабочих нарядов;

· управление документами (DOC) – контроль содержания и прохождения документов, сопровождающих изготовление продукции, ведение плановой и отчетной цеховой документации;

· сбор и хранение данных (DCA) взаимодействие информационных подсистем в целях получения, накопления и передачи технологических и управляющих данных, циркулирующих в производственной среде предприятия;

· управление персоналом (LM) обеспечение возможности управления персоналом в ежеминутном режиме;

· управление качеством продукции (QM) анализ данных измерений качества продукции в режиме реального времени на основе информации поступающей с производственного уровня, обеспечение должного контроля качества, выявление критических точек и проблем, требующих особого внимания;

· управление производственными процессами (PM) – мониторинг производственных процессов, автоматическая корректировка либо диалоговая поддержка решений оператора;

· управление техобслуживанием и ремонтом (MM) – управление техническим обслуживанием, плановым и оперативным ремонтом оборудования и инструментов для обеспечения их эксплуатационной готовности;

· отслеживание истории продукта (PTG) визуализация информации о месте и времени выполнения работ по каждому изделию. Информация может включать отчеты: об исполнителях, технологических маршрутах, комплектующих, материалах, партионных и серийных номерах, произведенных переделках, текущих условиях производства и т. п.;

· анализ производительности (PA) предоставление подробных отчетов о реальных результатах производственных операций, а также сравнение плановых и фактических показателей.

В настоящее время на рынке существует много различных программных продуктов. Их различие может быть связано с критериями составления производственного расписания. Нередко эти критерии скрываются. Поэтому принятие той или иной системы должно осуществляться с определенной осторожностью.


1.5 Функции систем управления технологического уровня (SCADA и PLC)

К функциям систем SCADA относятся:

· сбор первичной информации от датчиков;

· хранение, обработка и визуализация данных;

· регистрация аварийных сигналов, выдача сообщений о неисправностях и аварийных ситуациях;

· связь с корпоративной информационной сетью;

· формирование отчетов.

SCADA-системы состоят из терминальных компонентов, диспетчерских пунктов и каналов связи. Они различаются типами поддерживаемых контроллеров и способами связи с ними, операционной средой, типами алармов, числом трендов (характеристик состояний контролируемого процесса), особенностями человеко-машинного интерфейса (HMI) и др. Алармы фиксируются при выходе значений контролируемых параметров или скоростей их изменения за границы допустимых диапазонов.

В SCADA-системах используются операционные системы реального времени. К этим системам предъявляется ряд специфических требований. Основными требованиями являются: высокая скорость реакции на запросы внешних устройств, устойчивость систем, то есть способность работы без зависаний, а также экономное использование имеющихся в наличии системных ресурсов.

К операционным системам реального времени относятся:

· многозадачная, многопользовательская, UNIX-совместимая система LynxOS;

· популярная ОС для встраиваемых приложений OS-9 (Unix-подобная RTOS от Microware для процессора Motorola 6809);

· модульная и легко модифицируемая система QNX;

· ОС Windows NT, дополненная, например, средой RTX компании VenturCom;

· система планирования и управления задачами VxWorks, которая вместе с инструментальной системой Tornado является кросс-системой для разработки прикладного ПО.

Современные SCADA-системы не ограничивают выбор аппаратуры нижнего уровня – RTU, так как предоставляют большой набор драйверов или серверов ввода/вывода и имеют хорошо развитые средства для создания собственных драйверов новых устройств нижнего уровня. Драйверы разрабатываются на основе стандартных языков программирования. Так, в системе TRACE MODE спецификации доступа к ядру системы поставляются фирмой-разработчиком в штатном комплекте. Для SCADA FactoryLink, InTouch при создании драйверов необходимы специальные пакеты.

Для подсоединения драйверов ввода/вывода к SCADA-системе используются два механизма: стандартный динамический обмен данными (Dynamic Data Exchange – DDE) и обмен по внутреннему фирменному протоколу. Из-за низкой производительности механизма DDE компания Microsoft предложила использовать технологию OLE (Object Linking and Embedding – включение и встраивание объектов). Механизм OLE поддерживается в SCADA-системах RSView, FIX, InTouch, Factory Link и др. На базе OLE появился новый стандарт OPC (OLE for Process Control), ориентированный на рынок промышленной автоматизации. Новый стандарт позволяет объединить на уровне объектов различные системы автоматизации и устранить необходимость использования специализированного оборудования и оригинальных драйверов.

С точки зрения SCADA-систем, применение OPC-серверов означает введение стандартов обмена данными с технологическими устройствами. На рынке появились инструментальные пакеты для написания OPC-компонентов, например, OPC-Toolkits фирмы Factory Soft Inc., включающий OPC Server Toolkit, OPC Client Toolkit [см., например, «SCADA-системы, или муки выбора». Надежда Куцевич, а также ЗАО РТСофт (URL: www.rtsoft.ru)].

В настоящее время получили распространение десятки систем SCADA. В Украине широко внедряются следующие системы SCADA:

1 Система Citect австралийской компании Ci Technology, работающая в среде Windows (http://www.promsat.com/page/11/). Это масштабируемая клиент-серверная система со встроенным резервированием, обеспечивающим повышение надежности. Citect состоит из пяти подсистем – ввода-вывода, визуализации, оповещения (алармов), трендов и отчетов. Подсистемы могут быть распределены по разным узлам сети. В Citect используется оригинальный язык программирования Cicode.

2 TRACE MODE – это одна из самых покупаемых в России SCADA-систем, предназначенная для разработки крупных распределенных АСУТП широкого назначения (http://www.tracemode.ua/). TRACE MODE состоит из инструментальной системы и исполнительных (run-time) модулей. При помощи инструментальной системы осуществляется разработка АСУ, а исполнительные модули служат для запуска в реальном времени проектов, разработанных в инструментальной системе TRACE MODE.

3 WinCC – система фирмы SIEMENS (http://www.siemens.com.ua/). На основе WinCC могут создаваться как простейшие системы человеко-машинного интерфейса с одной станцией оператора, так и мощные многопользовательские системы, включающие в свой состав десятки станций. WinCC поддерживает стандартные интерфейсы OLE, ODBC, OLE и SQL, что обеспечивает её открытость и использование в сочетании с любым другим программным обеспечением.

1.6 Основные направления в обеспечении интеграции систем автоматизации

В автоматизированных системах управления технологическими процессами (АСУТП), часто называемых системами промышленной автоматизации, можно выделить два иерархических уровня.

На верхнем (диспетчерском) уровне АСУТП осуществляются сбор и обработка данных о состоянии оборудования и протекании производственных процессов для принятия решений по загрузке станков и выполнению технологических маршрутов. Эти функции возложены на систему диспетчерского управления и сбора данных SCADA (Supervisory Control and Data Acquisition). Кроме диспетчерских функций, система SCADA выполняет роль инструментальной системы разработки ПО для промышленных систем компьютерной автоматизации.

На нижнем уровне управления технологическим оборудованием (на уровне контроллеров) в АСУТП выполняются запуск, тестирование, сигнализация о неисправностях, а также выработка управляющих воздействий для рабочих технологического оборудования. Для этого в составе технологического оборудования используются системы управления на базе программируемых контроллеров и промышленных компьютеров. Поэтому системы промышленной автоматизации часто называют встроенными системами ECS (Embedded Computing System).

Техническое обеспечение АСУТП распределено по участкам и связано друг с другом с помощью промышленных (полевых) шин, как показано на рисунке 1.7.

Рисунок 1.7 – Архитектура АСУТП

На верхнем уровне иерархии шин осуществляется связь компьютеров системы SCADA и серверов баз данных. Здесь используются технологии локальных вычислительных сетей Industrial Ethernet.

Для связи компьютеров с высокоскоростными периферийными устройствами служат шины Infiniband (межсерверные соединения), Fiber Channel (в последнее время заменяется более дешевым соединением на базе Gigabit Ethernet).

Для подключения периферийных устройств без собственного источника питания применяется USB, а для подключения аудио и видео мультимедийных устройств – FireWire 1394. Связь с низкоскоростными устройствами осуществляют через интерфейсы RS-232, RS-422 (симплексная передача с соединением «точка-точка»), а также RS-485 (полудуплексная многоточечная передача данных).

На уровне контроллеров обычно применяют промышленные сети Fieldbus (дословный перевод – полевая шина). Соединение модулей контроллеров, датчиков, измерительного и другого оборудования в пределах одного функционального узла (например, соединение слотов в крейте или стойке) выполняется посредством магистрально-модульных параллельных шин, таких как VME-bus, Compact PCI, а также последовательных шин типа Infiniband или Compact PCI Express.

Для создания единой информационной системы необходимо решить две задачи.

1 Применить горизонтальную интеграцию информационного взаимодействия между существующими автономными подсистемами. Для этого необходимо:

· на технологическом уровне объединить контроллерное оборудование промышленными шинами, обеспечить взаимодействие SCADA-приложений, которые уже имеют данные контроллерного уровня, с использованием механизмов COM (DCOM), DDE (NetDDE);

· осуществить взаимодействие стандартных программ на базе OLEAutomation-объектов, SQL-запросов, DDE-протокола;

· применить для модификации текущих записей в таблицах баз данных (добавление, удаление) язык SQL-запросов (драйверы ODBC, OLE DB).

Примечание. Данные, которые поступают с технологического уровня, отличаются тем, что быстро изменяются во времени по сравнению
с бизнес-параметрами. Поэтому их объем, получаемый в единицу времени, огромен. Из этого следует, что подсистема, интегрирующая технологические данные, должна обеспечивать скоростной сбор данных, сжатие данных при сохранении, а также поддержку каналов обмена по вышеуказанным протоколам. Причём интегрирующие подсистемы должны не только поддерживать обмен с технологическим уровнем, но и обеспечивать передачу технологических данных на уровень ERP-систем.

2 Применить вертикальную интеграцию . В общем случае целью вертикальной интеграции является передача технологических данных
на уровень бизнес-приложений.

Для создания вертикальной интеграции необходимо:

· обеспечить хранение оперативных данных реального времени (realtime-данные) в объеме, оптимальном для конкретного предприятия;

· сформировать данные, отражающие динамику и последовательность технологического процесса производства продукта от сырья до товара (product-данные). Программное обеспечение, ориентированное на решение таких задач, относится к классу MES (Manufacturing Executive Systems), или систем управления производством. В качестве входных данных в MES-системы поступают параметры сырья, выходными параметрами является полная характеристика (например, технологический паспорт) полученного товара;

· сформировать данные, отражающие структуру и состояние фондов (активов) предприятия (maintenance-данные). Программное обеспечение, ориентированное на отслеживание и сопровождение основных фондов, относится к классу EAM -cистем (Enterprise Assets Management).

Следует заметить, что realtime-данные часто являются основой формирования количественных значений product- и maintenance-данных (данные производства и обслуживания).


2 ОСОБЕННОСТИ СОВРЕМЕННЫХ ПРОГРАММИРУЕМЫХ ЛОГИЧЕСКИХ КОНТРОЛЛЕРОВ (ПЛК)