ความแตกต่างของลอการิทึมธรรมชาติ สูตรลอการิทึม โซลูชันตัวอย่างลอการิทึม

ในอัตราส่วน

สามารถกำหนดภารกิจในการค้นหาตัวเลขทั้งสามตัวจากอีกสองตัวที่กำหนดได้ ถ้าให้ a และ N ไว้ จะหาได้โดยการยกกำลัง ถ้า N และ a ถูกกำหนดโดยการหารากของดีกรี x (หรือยกกำลัง) ทีนี้ ลองพิจารณากรณีที่ เมื่อให้ a และ N เราต้องค้นหา x

ให้จำนวน N เป็นบวก: จำนวน a เป็นบวกและไม่เท่ากับหนึ่ง:

คำนิยาม. ลอการิทึมของเลข N ถึงฐาน a คือเลขชี้กำลังที่ต้องยก a เพื่อให้ได้เลข N ลอการิทึมเขียนแทนด้วย

ดังนั้น ในความเท่าเทียมกัน (26.1) เลขชี้กำลังจึงถูกพบเป็นลอการิทึมของ N ถึงฐาน a กระทู้

มีความหมายเหมือนกัน ความเท่าเทียมกัน (26.1) บางครั้งเรียกว่าเอกลักษณ์หลักของทฤษฎีลอการิทึม ในความเป็นจริงมันเป็นการแสดงออกถึงคำจำกัดความของแนวคิดเรื่องลอการิทึม โดย คำจำกัดความนี้ฐานของลอการิทึม a จะเป็นค่าบวกเสมอและแตกต่างจากความสามัคคี เลขลอการิทึม N เป็นบวก จำนวนลบและศูนย์ไม่มีลอการิทึม สามารถพิสูจน์ได้ว่าตัวเลขใดๆ ที่มีฐานที่กำหนดมีลอการิทึมที่กำหนดไว้อย่างชัดเจน ความเท่าเทียมกันจึงบังเกิด โปรดทราบว่าเงื่อนไขเป็นสิ่งจำเป็นที่นี่ มิฉะนั้นข้อสรุปจะไม่ได้รับการพิสูจน์เนื่องจากความเท่าเทียมกันเป็นจริงสำหรับค่าใด ๆ ของ x และ y

ตัวอย่างที่ 1 ค้นหา

สารละลาย. การจะได้เลขต้องยกฐาน 2 ขึ้นยกกำลัง ดังนั้น

คุณสามารถจดบันทึกเมื่อแก้ไขตัวอย่างดังกล่าวในรูปแบบต่อไปนี้:

ตัวอย่างที่ 2. ค้นหา

สารละลาย. เรามี

ในตัวอย่างที่ 1 และ 2 เราพบลอการิทึมที่ต้องการได้อย่างง่ายดายโดยการแสดงเลขลอการิทึมเป็นกำลังของฐานพร้อมเลขชี้กำลังที่เป็นตรรกยะ ในกรณีทั่วไป เช่น ฯลฯ ไม่สามารถดำเนินการนี้ได้ เนื่องจากลอการิทึมมีค่าไม่ลงตัว ให้เราใส่ใจกับประเด็นหนึ่งที่เกี่ยวข้องกับคำชี้แจงนี้ ในย่อหน้าที่ 12 เราได้ให้แนวคิดเกี่ยวกับความเป็นไปได้ในการกำหนดกำลังจริงใดๆ ของจำนวนบวกที่กำหนด นี่เป็นสิ่งจำเป็นสำหรับการแนะนำลอการิทึม ซึ่งโดยทั่วไปแล้วอาจเป็นจำนวนอตรรกยะได้

ลองดูคุณสมบัติบางอย่างของลอการิทึม

คุณสมบัติ 1 ถ้าตัวเลขและฐานเท่ากัน ลอการิทึมจะเท่ากับ 1 และในทางกลับกัน ถ้าลอการิทึมเท่ากับ 1 ตัวเลขและฐานก็จะเท่ากัน

การพิสูจน์. อนุญาต ตามคำจำกัดความของลอการิทึมที่เรามีและที่ไหน

ในทางกลับกัน ให้ จากนั้น ตามคำนิยาม

คุณสมบัติ 2 ลอการิทึมของหนึ่งถึงฐานใดๆ เท่ากับศูนย์

การพิสูจน์. ตามคำจำกัดความของลอการิทึม (กำลังศูนย์ของฐานบวกใดๆ มีค่าเท่ากับ 1 ดู (10.1)) จากที่นี่

Q.E.D.

ข้อความสนทนาก็เป็นจริงเช่นกัน: ถ้า แล้ว N = 1 อันที่จริง เรามี

ก่อนที่จะกำหนดคุณสมบัติถัดไปของลอการิทึม ให้เราตกลงที่จะบอกว่าตัวเลข a และ b สองตัวอยู่บนด้านเดียวกันของเลขตัวที่สาม c ถ้าทั้งสองมีค่ามากกว่า c หรือน้อยกว่า c หากตัวเลขตัวใดตัวหนึ่งมากกว่า c และอีกจำนวนหนึ่งน้อยกว่า c เราก็จะบอกว่าพวกมันเข้ากันได้ ด้านที่แตกต่างกันจากหมู่บ้าน

คุณสมบัติ 3 ถ้าตัวเลขและฐานอยู่ด้านเดียวกัน ลอการิทึมจะเป็นค่าบวก หากตัวเลขและฐานอยู่ตรงข้ามกัน ลอการิทึมจะเป็นลบ

การพิสูจน์คุณสมบัติ 3 ขึ้นอยู่กับข้อเท็จจริงที่ว่ากำลังของ a มากกว่า 1 ถ้าฐานมากกว่า 1 และเลขชี้กำลังเป็นบวก หรือฐานน้อยกว่า 1 และเลขชี้กำลังเป็นลบ กำลังจะน้อยกว่า 1 ถ้าฐานมากกว่า 1 และเลขชี้กำลังเป็นลบ หรือฐานน้อยกว่า 1 และเลขชี้กำลังเป็นบวก

มีสี่กรณีที่ต้องพิจารณา:

เราจะจำกัดตัวเองให้วิเคราะห์สิ่งแรก ผู้อ่านจะพิจารณาส่วนที่เหลือด้วยตัวเอง

ปล่อยให้ในความเท่าเทียมกัน เลขชี้กำลังไม่สามารถเป็นลบหรือเท่ากับศูนย์ได้ ดังนั้นจึงเป็นบวก กล่าวคือ ตามที่จำเป็นต้องพิสูจน์

ตัวอย่างที่ 3 ค้นหาว่าลอการิทึมใดด้านล่างนี้เป็นค่าบวกและค่าใดเป็นค่าลบ:

วิธีแก้ปัญหา ก) เนื่องจากเลข 15 และฐาน 12 อยู่ด้านเดียวกันของเลขหนึ่ง

b) เนื่องจาก 1,000 และ 2 อยู่ที่ด้านหนึ่งของยูนิต ในกรณีนี้ ฐานจะมากกว่าเลขลอการิทึมไม่สำคัญ

c) เนื่องจาก 3.1 และ 0.8 อยู่ฝั่งตรงข้ามของความสามัคคี

ช) ; ทำไม

ง) ; ทำไม

คุณสมบัติ 4-6 ต่อไปนี้มักเรียกว่ากฎของลอการิทึม: คุณสมบัติเหล่านี้ช่วยให้ทราบลอการิทึมของตัวเลขบางตัวเพื่อค้นหาลอการิทึมของผลิตภัณฑ์ ผลหาร และดีกรีของแต่ละตัว

คุณสมบัติ 4 (กฎลอการิทึมผลคูณ) ลอการิทึมผลคูณของจำนวนบวกหลายจำนวนกับฐานที่กำหนด เท่ากับผลรวมลอการิทึมของตัวเลขเหล่านี้ให้เป็นฐานเดียวกัน

การพิสูจน์. ให้ตัวเลขที่ให้มาเป็นบวก

สำหรับลอการิทึมของผลิตภัณฑ์ เราจะเขียนค่าความเท่าเทียมกัน (26.1) ซึ่งกำหนดลอการิทึม:

จากนี้เราจะพบกับ

เมื่อเปรียบเทียบเลขชี้กำลังของนิพจน์แรกและนิพจน์สุดท้าย เราจะได้ค่าความเท่าเทียมกันที่ต้องการ:

โปรดทราบว่าเงื่อนไขเป็นสิ่งจำเป็น ลอการิทึมของผลคูณของจำนวนลบสองตัวนั้นสมเหตุสมผล แต่ในกรณีนี้เราเข้าใจแล้ว

โดยทั่วไปหากผลคูณของปัจจัยหลายประการเป็นบวก ลอการิทึมของมันจะเท่ากับผลรวมของลอการิทึมของค่าสัมบูรณ์ของปัจจัยเหล่านี้

คุณสมบัติ 5 (กฎสำหรับการรับลอการิทึมของผลหาร) ลอการิทึมของผลหารของจำนวนบวกเท่ากับผลต่างระหว่างลอการิทึมของเงินปันผลและตัวหารที่นำมาจากฐานเดียวกัน การพิสูจน์. เราก็หามาเรื่อยๆ

Q.E.D.

คุณสมบัติ 6 (กฎลอการิทึมกำลัง) ลอการิทึมของกำลังของจำนวนบวกใดๆ จะเท่ากับลอการิทึมของจำนวนนั้นคูณด้วยเลขชี้กำลัง

การพิสูจน์. ให้เราเขียนเอกลักษณ์หลัก (26.1) อีกครั้งสำหรับตัวเลข:

Q.E.D.

ผลที่ตามมา ลอการิทึมของรากของจำนวนบวกเท่ากับลอการิทึมของรากหารด้วยเลขชี้กำลังของราก:

ความถูกต้องของข้อพิสูจน์นี้สามารถพิสูจน์ได้ด้วยการจินตนาการถึงวิธีการและการใช้คุณสมบัติ 6

ตัวอย่างที่ 4 นำลอการิทึมมาเป็นฐาน a:

ก) (สันนิษฐานว่าค่าทั้งหมด b, c, d, e เป็นบวก)

b) (สันนิษฐานว่า )

วิธีแก้ไข ก) สะดวกในการยกกำลังเศษส่วนในนิพจน์นี้:

จากความเท่าเทียมกัน (26.5)-(26.7) ตอนนี้เราสามารถเขียนได้:

เราสังเกตเห็นว่าการดำเนินการกับลอการิทึมของตัวเลขง่ายกว่าการดำเนินการกับตัวเลขเอง: เมื่อคูณตัวเลข ลอการิทึมของพวกมันจะถูกบวก เมื่อหาร พวกมันจะถูกลบ ฯลฯ

นั่นคือเหตุผลที่ใช้ลอการิทึมในการฝึกคำนวณ (ดูย่อหน้าที่ 29)

การกระทำผกผันของลอการิทึมเรียกว่าศักยภาพ กล่าวคือ ศักยภาพคือการกระทำที่ใช้ค้นหาตัวเลขจากลอการิทึมที่กำหนดของตัวเลข โดยพื้นฐานแล้ว ศักยภาพไม่ใช่การดำเนินการพิเศษใดๆ แต่ขึ้นอยู่กับการเพิ่มฐานให้เป็นกำลัง (เท่ากับลอการิทึมของตัวเลข) คำว่า "ศักยภาพ" ถือได้ว่ามีความหมายเหมือนกันกับคำว่า "การยกกำลัง"

เมื่อเพิ่มศักยภาพ เราต้องใช้กฎที่ผกผันกับกฎของลอการิทึม: แทนที่ผลรวมของลอการิทึมด้วยลอการิทึมของผลิตภัณฑ์ ผลต่างของลอการิทึมด้วยลอการิทึมของผลหาร ฯลฯ โดยเฉพาะอย่างยิ่งหากมีปัจจัยอยู่ข้างหน้า ของเครื่องหมายของลอการิทึม จากนั้นในระหว่างการโพเทนเชียลจะต้องถ่ายโอนไปยังองศาเลขชี้กำลังภายใต้เครื่องหมายของลอการิทึม

ตัวอย่างที่ 5 ค้นหา N หากทราบสิ่งนั้น

สารละลาย. ในการเชื่อมต่อกับกฎศักยภาพที่ระบุไว้ เราจะถ่ายโอนปัจจัย 2/3 และ 1/3 ที่ยืนอยู่หน้าเครื่องหมายลอการิทึมทางด้านขวาของความเท่าเทียมกันนี้ไปเป็นเลขชี้กำลังภายใต้เครื่องหมายของลอการิทึมเหล่านี้ เราได้รับ

ตอนนี้เราแทนที่ผลต่างของลอการิทึมด้วยลอการิทึมของผลหาร:

เพื่อให้ได้เศษส่วนสุดท้ายของห่วงโซ่ความเสมอภาคนี้ เราได้ปล่อยเศษส่วนก่อนหน้าออกจากความไม่ลงตัวในตัวส่วน (ตอนที่ 25)

คุณสมบัติ 7. ถ้าฐานมีมากกว่าหนึ่งแล้ว จำนวนที่มากขึ้นมีลอการิทึมที่ใหญ่กว่า (และจำนวนที่น้อยกว่าก็จะมีลอการิทึมที่น้อยกว่า) ถ้าฐานน้อยกว่าหนึ่ง จำนวนที่มากกว่าก็จะมีลอการิทึมที่น้อยกว่า (และจำนวนที่น้อยกว่าก็จะมีลอการิทึมที่ใหญ่กว่า)

คุณสมบัตินี้ยังถูกกำหนดให้เป็นกฎสำหรับการหาลอการิทึมของอสมการ ซึ่งทั้งสองด้านเป็นบวก:

เมื่อลอการิทึมอสมการเป็นฐานที่มากกว่าหนึ่ง สัญลักษณ์ของความไม่เท่าเทียมกันจะถูกรักษาไว้ และเมื่อลอการิทึมเป็นฐานที่น้อยกว่าหนึ่ง สัญลักษณ์ของความไม่เท่าเทียมกันจะเปลี่ยนเป็นตรงกันข้าม (ดูย่อหน้าที่ 80 ด้วย)

การพิสูจน์ขึ้นอยู่กับคุณสมบัติ 5 และ 3 พิจารณากรณีเมื่อ ถ้า แล้ว และ เมื่อรับลอการิทึม เราได้

(a และ N/M อยู่บนด้านเดียวกันของความสามัคคี) จากที่นี่

กรณีต่อไปนี้ผู้อ่านจะคิดออกเอง

คุณสมบัติหลัก.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y)

บริเวณที่เหมือนกัน

ล็อก6 4 + ล็อก6 9.

ตอนนี้เรามาทำให้งานซับซ้อนขึ้นเล็กน้อย

ตัวอย่างของการแก้ลอการิทึม

จะเกิดอะไรขึ้นถ้าฐานหรืออาร์กิวเมนต์ของลอการิทึมเป็นกำลัง? จากนั้นสามารถนำเลขชี้กำลังของระดับนี้ออกจากเครื่องหมายลอการิทึมได้ตามกฎต่อไปนี้:

แน่นอนว่า กฎทั้งหมดนี้สมเหตุสมผลหากสังเกต ODZ ของลอการิทึม: a > 0, a ≠ 1, x >

งาน. ค้นหาความหมายของสำนวน:

การเปลี่ยนไปสู่รากฐานใหม่

ให้ลอการิทึม logax ถูกกำหนดไว้ ดังนั้น สำหรับจำนวน c ใดๆ ที่ c > 0 และ c ≠ 1 ความเท่ากันจะเป็นจริง:

งาน. ค้นหาความหมายของสำนวน:

ดูเพิ่มเติมที่:


คุณสมบัติพื้นฐานของลอการิทึม

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



เลขชี้กำลังคือ 2.718281828…. หากต้องการจำเลขชี้กำลัง คุณสามารถศึกษากฎได้: เลขชี้กำลังเท่ากับ 2.7 และสองเท่าของปีเกิดของ Leo Nikolaevich Tolstoy

คุณสมบัติพื้นฐานของลอการิทึม

เมื่อรู้กฎนี้ คุณจะรู้ทั้งค่าที่แน่นอนของเลขยกกำลังและวันเดือนปีเกิดของ Leo Tolstoy


ตัวอย่างลอการิทึม

นิพจน์ลอการิทึม

ตัวอย่างที่ 1
ก) x=10ac^2 (a>0,c>0)

เราคำนวณโดยใช้คุณสมบัติ 3.5

2.

3.

4. ที่ไหน .



ตัวอย่างที่ 2. ค้นหา x ถ้า


ตัวอย่างที่ 3 ให้ค่าลอการิทึมได้รับ

คำนวณบันทึก (x) ถ้า




คุณสมบัติพื้นฐานของลอการิทึม

ลอการิทึมก็เหมือนกับตัวเลขอื่นๆ ที่สามารถบวก ลบ และแปลงได้ในทุกวิถีทาง แต่เนื่องจากลอการิทึมไม่ตรงกัน ตัวเลขปกติมีกฎเกณฑ์อยู่ที่นี่ซึ่งเรียกว่า คุณสมบัติหลัก.

คุณจำเป็นต้องรู้กฎเหล่านี้อย่างแน่นอน - ไม่ใช่ปัญหาลอการิทึมร้ายแรงแม้แต่ข้อเดียวที่ไม่สามารถแก้ไขได้หากไม่มีกฎเหล่านี้ นอกจากนี้ยังมีน้อยมาก - คุณสามารถเรียนรู้ทุกสิ่งได้ภายในวันเดียว มาเริ่มกันเลย

การบวกและการลบลอการิทึม

พิจารณาลอการิทึมสองตัวที่มีฐานเดียวกัน: logax และ logay จากนั้นจึงสามารถบวกและลบได้ และ:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y)

ดังนั้น ผลรวมของลอการิทึมเท่ากับลอการิทึมของผลิตภัณฑ์ และผลต่างเท่ากับลอการิทึมของผลหาร โปรดทราบ: ประเด็นสำคัญที่นี่คือ บริเวณที่เหมือนกัน- หากเหตุผลแตกต่าง กฎเหล่านี้ใช้ไม่ได้!

สูตรเหล่านี้จะช่วยคุณคำนวณนิพจน์ลอการิทึมแม้ว่าจะไม่ได้พิจารณาแต่ละส่วนก็ตาม (ดูบทเรียน "ลอการิทึมคืออะไร") ดูตัวอย่างและดู:

เนื่องจากลอการิทึมมีฐานเท่ากัน เราจึงใช้สูตรผลรวม:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2

งาน. ค้นหาค่าของนิพจน์: log2 48 − log2 3

ฐานเท่ากัน เราใช้สูตรผลต่าง:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4

งาน. ค้นหาค่าของนิพจน์: log3 135 − log3 5

ฐานก็เหมือนกัน ดังนั้นเราจึงได้:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3

อย่างที่คุณเห็น นิพจน์ดั้งเดิมประกอบด้วยลอการิทึมที่ "ไม่ดี" ซึ่งไม่ได้คำนวณแยกกัน แต่หลังจากการแปลงจะได้ตัวเลขปกติโดยสมบูรณ์ หลายคนถูกสร้างขึ้นจากข้อเท็จจริงนี้ การทดสอบ- ใช่ สำนวนที่เหมือนการทดสอบมีการนำเสนออย่างจริงจังทุกประการ (บางครั้งแทบไม่มีการเปลี่ยนแปลงใดๆ) ในการสอบ Unified State

แยกเลขชี้กำลังออกจากลอการิทึม

จะเห็นได้ง่ายว่ากฎข้อสุดท้ายเป็นไปตามสองข้อแรก แต่ยังไงก็ดีกว่าที่จะจำไว้ - ในบางกรณีมันจะลดจำนวนการคำนวณลงอย่างมาก

แน่นอนว่า กฎทั้งหมดนี้สมเหตุสมผลหากสังเกต ODZ ของลอการิทึม: a > 0, a ≠ 1, x > 0 และอีกอย่างหนึ่ง: เรียนรู้การใช้สูตรทั้งหมดไม่เพียงแต่จากซ้ายไปขวาเท่านั้น แต่ยังในทางกลับกันอีกด้วย , เช่น. คุณสามารถป้อนตัวเลขก่อนที่ลอการิทึมจะลงชื่อเข้าใช้ลอการิทึมได้ นี่คือสิ่งที่จำเป็นบ่อยที่สุด

งาน. ค้นหาค่าของนิพจน์: log7 496

กำจัดระดับของการโต้แย้งโดยใช้สูตรแรก:
log7 496 = 6 log7 49 = 6 2 = 12

งาน. ค้นหาความหมายของสำนวน:

โปรดทราบว่าตัวส่วนประกอบด้วยลอการิทึม ซึ่งฐานและอาร์กิวเมนต์เป็นกำลังที่แน่นอน: 16 = 24; 49 = 72 เรามี:

ฉันคิดว่าตัวอย่างสุดท้ายต้องมีการชี้แจง ลอการิทึมหายไปไหน? จนถึงวินาทีสุดท้ายที่เราทำงานกับตัวส่วนเท่านั้น

สูตรลอการิทึม โซลูชันตัวอย่างลอการิทึม

เรานำเสนอฐานและอาร์กิวเมนต์ของลอการิทึมที่อยู่ตรงนั้นในรูปแบบของกำลังและนำเลขชี้กำลังออกมา - เราได้เศษส่วน "สามชั้น"

ทีนี้มาดูเศษส่วนหลักกัน ตัวเศษและตัวส่วนมีจำนวนเท่ากัน: log2 7 เนื่องจาก log2 7 ≠ 0 เราสามารถลดเศษส่วนได้ - 2/4 จะยังคงอยู่ในตัวส่วน ตามกฎของเลขคณิตแล้วทั้งสี่สามารถโอนไปยังตัวเศษซึ่งเป็นสิ่งที่ทำเสร็จแล้ว ผลลัพธ์คือคำตอบ: 2.

การเปลี่ยนไปสู่รากฐานใหม่

เมื่อพูดถึงกฎสำหรับการบวกและการลบลอการิทึม ฉันเน้นย้ำเป็นพิเศษว่ากฎเหล่านี้ใช้ได้เฉพาะกับฐานเดียวกันเท่านั้น จะทำอย่างไรถ้าเหตุผลต่างกัน? จะเกิดอะไรขึ้นถ้าพวกมันไม่ใช่เลขยกกำลังที่เท่ากัน?

สูตรสำหรับการเปลี่ยนไปใช้รากฐานใหม่มาช่วยเหลือ ให้เรากำหนดพวกมันในรูปแบบของทฤษฎีบท:

ให้ลอการิทึม logax ถูกกำหนดไว้ ดังนั้น สำหรับจำนวน c ใดๆ ที่ c > 0 และ c ≠ 1 ความเท่ากันจะเป็นจริง:

โดยเฉพาะอย่างยิ่ง ถ้าเราตั้งค่า c = x เราจะได้:

จากสูตรที่สองเป็นไปตามว่าสามารถสลับฐานและอาร์กิวเมนต์ของลอการิทึมได้ แต่ในกรณีนี้นิพจน์ทั้งหมดจะ "พลิกกลับ" เช่น ลอการิทึมจะปรากฏในตัวส่วน

สูตรเหล่านี้หาได้ยากในสูตรทั่วไป นิพจน์เชิงตัวเลข- มีความเป็นไปได้ที่จะประเมินว่าสะดวกเพียงใดเมื่อแก้สมการลอการิทึมและอสมการเท่านั้น

แต่มีปัญหาที่ไม่สามารถแก้ไขได้เลยนอกจากการย้ายฐานรากใหม่ ลองดูสองสามสิ่งเหล่านี้:

งาน. ค้นหาค่าของนิพจน์: log5 16 log2 25

โปรดทราบว่าอาร์กิวเมนต์ของลอการิทึมทั้งสองมีกำลังที่แน่นอน มาดูตัวบ่งชี้กัน: log5 16 = log5 24 = 4log5 2; ล็อก2 25 = ล็อก2 52 = 2ล็อก2 5;

ทีนี้ลอง "ย้อนกลับ" ลอการิทึมที่สอง:

เนื่องจากผลคูณไม่เปลี่ยนแปลงเมื่อจัดเรียงปัจจัยใหม่ เราจึงคูณสี่และสองอย่างใจเย็น จากนั้นจึงจัดการกับลอการิทึม

งาน. ค้นหาค่าของนิพจน์: log9 100 lg 3

ฐานและอาร์กิวเมนต์ของลอการิทึมแรกคือกำลังที่แน่นอน มาเขียนสิ่งนี้และกำจัดตัวบ่งชี้:

ตอนนี้ กำจัดลอการิทึมทศนิยมโดยการย้ายไปยังฐานใหม่:

เอกลักษณ์ลอการิทึมพื้นฐาน

บ่อยครั้งในกระบวนการแก้ปัญหา จำเป็นต้องแสดงตัวเลขเป็นลอการิทึมของฐานที่กำหนด ในกรณีนี้สูตรต่อไปนี้จะช่วยเรา:

ในกรณีแรก ตัวเลข n จะกลายเป็นเลขชี้กำลังในอาร์กิวเมนต์ จำนวน n สามารถเป็นอะไรก็ได้ เพราะมันเป็นเพียงค่าลอการิทึม

สูตรที่สองเป็นคำจำกัดความที่ถอดความจริงๆ นั่นคือสิ่งที่เรียกว่า: .

อันที่จริง จะเกิดอะไรขึ้นถ้าเลข b ยกกำลังจนเลข b ยกกำลังนี้ให้เลข a? ถูกต้อง: ผลลัพธ์คือเลข a เดียวกัน อ่านย่อหน้านี้อย่างละเอียดอีกครั้ง หลายๆ คนอาจติดอยู่กับเรื่องนี้

เช่นเดียวกับสูตรสำหรับการย้ายไปยังฐานใหม่ บางครั้งเอกลักษณ์ลอการิทึมพื้นฐานก็เป็นวิธีแก้ปัญหาเดียวที่เป็นไปได้

งาน. ค้นหาความหมายของสำนวน:

โปรดทราบว่า log25 64 = log5 8 - แค่เอากำลังสองจากฐานและอาร์กิวเมนต์ของลอการิทึม เมื่อคำนึงถึงกฎในการคูณกำลังด้วยฐานเดียวกัน เราได้รับ:

ถ้าใครไม่รู้ นี่คืองานจริงจากการสอบ Unified State :)

หน่วยลอการิทึมและศูนย์ลอการิทึม

โดยสรุป ฉันจะให้สองตัวตนที่แทบจะเรียกได้ว่าเป็นคุณสมบัติไม่ได้ - แต่พวกมันเป็นผลมาจากคำจำกัดความของลอการิทึม พวกมันมักเกิดปัญหาอยู่ตลอดเวลา และน่าประหลาดใจที่มันสร้างปัญหาแม้กระทั่งกับนักเรียน "ขั้นสูง" ก็ตาม

  1. logaa = 1 คือ จำไว้ทุกครั้ง: ลอการิทึมของฐานใดๆ a ของฐานนั้นจะเท่ากับ 1
  2. โลกา 1 = 0 คือ ฐาน a สามารถเป็นอะไรก็ได้ แต่ถ้าอาร์กิวเมนต์มีหนึ่งค่า ลอการิทึมจะเท่ากับศูนย์! เพราะ a0 = 1 เป็นผลโดยตรงจากนิยาม

นั่นคือคุณสมบัติทั้งหมด อย่าลืมฝึกฝนการนำไปปฏิบัติจริง! ดาวน์โหลดเอกสารสรุปตอนต้นบทเรียน พิมพ์ออกมา และแก้ไขปัญหา

ดูเพิ่มเติมที่:

ลอการิทึมของ b ถึงฐาน a แสดงถึงนิพจน์ การคำนวณลอการิทึมหมายถึงการค้นหากำลัง x () ที่ทำให้ได้ความเท่าเทียมกัน

คุณสมบัติพื้นฐานของลอการิทึม

จำเป็นต้องทราบคุณสมบัติข้างต้นเนื่องจากปัญหาและตัวอย่างเกือบทั้งหมดที่เกี่ยวข้องกับลอการิทึมได้รับการแก้ไขบนพื้นฐานของปัญหาเหล่านี้ คุณสมบัติแปลกใหม่ที่เหลือสามารถได้มาจากการปรุงแต่งทางคณิตศาสตร์ด้วยสูตรเหล่านี้

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

เมื่อคำนวณสูตรสำหรับผลรวมและผลต่างของลอการิทึม (3.4) คุณมักจะพบบ่อยมาก ส่วนที่เหลือค่อนข้างซับซ้อน แต่ในงานจำนวนหนึ่งสิ่งเหล่านี้ขาดไม่ได้ในการลดความซับซ้อนของนิพจน์ที่ซับซ้อนและการคำนวณค่าของพวกเขา

กรณีทั่วไปของลอการิทึม

ลอการิทึมทั่วไปบางตัวเป็นลอการิทึมที่มีฐานเป็นสิบเลขยกกำลังหรือสอง
ลอการิทึมถึงฐานสิบมักเรียกว่าลอการิทึมทศนิยม และเขียนแทนด้วย lg(x)

จากการบันทึกก็ชัดเจนว่าพื้นฐานไม่ได้ถูกเขียนไว้ในการบันทึก ตัวอย่างเช่น

ลอการิทึมธรรมชาติคือลอการิทึมที่มีฐานเป็นเลขชี้กำลัง (แสดงโดย ln(x))

เลขชี้กำลังคือ 2.718281828…. หากต้องการจำเลขชี้กำลัง คุณสามารถศึกษากฎได้: เลขชี้กำลังเท่ากับ 2.7 และสองเท่าของปีเกิดของ Leo Nikolaevich Tolstoy เมื่อรู้กฎนี้ คุณจะรู้ทั้งค่าที่แน่นอนของเลขยกกำลังและวันเดือนปีเกิดของ Leo Tolstoy

และลอการิทึมสำคัญอีกตัวของฐานสองเขียนแทนด้วย

อนุพันธ์ของลอการิทึมของฟังก์ชันเท่ากับค่าหนึ่งหารด้วยตัวแปร

ลอการิทึมอินทิกรัลหรือแอนติเดริเวทีฟถูกกำหนดโดยความสัมพันธ์

เนื้อหาที่ให้มานั้นเพียงพอสำหรับคุณในการแก้ปัญหาหลายประเภทที่เกี่ยวข้องกับลอการิทึมและลอการิทึม เพื่อช่วยให้คุณเข้าใจเนื้อหา ฉันจะยกตัวอย่างทั่วไปบางส่วนจาก หลักสูตรของโรงเรียนและมหาวิทยาลัย

ตัวอย่างลอการิทึม

นิพจน์ลอการิทึม

ตัวอย่างที่ 1
ก) x=10ac^2 (a>0,c>0)

เราคำนวณโดยใช้คุณสมบัติ 3.5

2.
โดยคุณสมบัติของผลต่างของลอการิทึมที่เรามี

3.
เราพบโดยใช้คุณสมบัติ 3.5

4. ที่ไหน .

นิพจน์ที่ดูเหมือนซับซ้อนจะถูกทำให้ง่ายขึ้นโดยใช้กฎหลายข้อ

การค้นหาค่าลอการิทึม

ตัวอย่างที่ 2. ค้นหา x ถ้า

สารละลาย. สำหรับการคำนวณ เราใช้กับคุณสมบัติ 5 และ 13 เทอมสุดท้าย

เราบันทึกไว้และไว้อาลัย

เนื่องจากฐานเท่ากัน เราจึงจัดนิพจน์ให้เท่ากัน

ลอการิทึม ระดับรายการ

ให้ค่าลอการิทึมได้รับ

คำนวณบันทึก (x) ถ้า

วิธีแก้: ลองใช้ลอการิทึมของตัวแปรเพื่อเขียนลอการิทึมผ่านผลรวมของพจน์ของมัน


นี่เป็นเพียงจุดเริ่มต้นของความคุ้นเคยกับลอการิทึมและคุณสมบัติของพวกมัน ฝึกฝนการคำนวณ เสริมสร้างทักษะการปฏิบัติของคุณ - ในไม่ช้าคุณจะต้องมีความรู้ที่ได้รับในการแก้สมการลอการิทึม เมื่อศึกษาวิธีการพื้นฐานในการแก้สมการดังกล่าวแล้วเราจะขยายความรู้ของคุณไปอีกไม่น้อย หัวข้อสำคัญ- อสมการลอการิทึม...

คุณสมบัติพื้นฐานของลอการิทึม

ลอการิทึมก็เหมือนกับตัวเลขอื่นๆ ที่สามารถบวก ลบ และแปลงได้ในทุกวิถีทาง แต่เนื่องจากลอการิทึมไม่ใช่ตัวเลขธรรมดาเสียทีเดียว จึงมีกฎที่เรียกว่า คุณสมบัติหลัก.

คุณจำเป็นต้องรู้กฎเหล่านี้อย่างแน่นอน - ไม่ใช่ปัญหาลอการิทึมร้ายแรงแม้แต่ข้อเดียวที่ไม่สามารถแก้ไขได้หากไม่มีกฎเหล่านี้ นอกจากนี้ยังมีน้อยมาก - คุณสามารถเรียนรู้ทุกสิ่งได้ภายในวันเดียว มาเริ่มกันเลย

การบวกและการลบลอการิทึม

พิจารณาลอการิทึมสองตัวที่มีฐานเดียวกัน: logax และ logay จากนั้นจึงสามารถบวกและลบได้ และ:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y)

ดังนั้น ผลรวมของลอการิทึมเท่ากับลอการิทึมของผลิตภัณฑ์ และผลต่างเท่ากับลอการิทึมของผลหาร โปรดทราบ: ประเด็นสำคัญที่นี่คือ บริเวณที่เหมือนกัน- หากเหตุผลแตกต่าง กฎเหล่านี้ใช้ไม่ได้!

สูตรเหล่านี้จะช่วยคุณคำนวณนิพจน์ลอการิทึมแม้ว่าจะไม่ได้พิจารณาแต่ละส่วนก็ตาม (ดูบทเรียน "ลอการิทึมคืออะไร") ดูตัวอย่างและดู:

งาน. ค้นหาค่าของนิพจน์: log6 4 + log6 9

เนื่องจากลอการิทึมมีฐานเท่ากัน เราจึงใช้สูตรผลรวม:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2

งาน. ค้นหาค่าของนิพจน์: log2 48 − log2 3

ฐานเท่ากัน เราใช้สูตรผลต่าง:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4

งาน. ค้นหาค่าของนิพจน์: log3 135 − log3 5

ฐานก็เหมือนกัน ดังนั้นเราจึงได้:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3

อย่างที่คุณเห็น นิพจน์ดั้งเดิมประกอบด้วยลอการิทึมที่ "ไม่ดี" ซึ่งไม่ได้คำนวณแยกกัน แต่หลังจากการแปลงจะได้ตัวเลขปกติโดยสมบูรณ์ การทดสอบจำนวนมากขึ้นอยู่กับข้อเท็จจริงนี้ ใช่ สำนวนที่เหมือนการทดสอบมีการนำเสนออย่างจริงจังทุกประการ (บางครั้งแทบไม่มีการเปลี่ยนแปลงใดๆ) ในการสอบ Unified State

แยกเลขชี้กำลังออกจากลอการิทึม

ตอนนี้เรามาทำให้งานซับซ้อนขึ้นเล็กน้อย จะเกิดอะไรขึ้นถ้าฐานหรืออาร์กิวเมนต์ของลอการิทึมเป็นกำลัง? จากนั้นสามารถนำเลขชี้กำลังของระดับนี้ออกจากเครื่องหมายลอการิทึมได้ตามกฎต่อไปนี้:

จะเห็นได้ง่ายว่ากฎข้อสุดท้ายเป็นไปตามสองข้อแรก แต่ยังไงก็ดีกว่าที่จะจำไว้ - ในบางกรณีมันจะลดจำนวนการคำนวณลงอย่างมาก

แน่นอนว่า กฎทั้งหมดนี้สมเหตุสมผลหากสังเกต ODZ ของลอการิทึม: a > 0, a ≠ 1, x > 0 และอีกอย่างหนึ่ง: เรียนรู้การใช้สูตรทั้งหมดไม่เพียงแต่จากซ้ายไปขวาเท่านั้น แต่ยังในทางกลับกันอีกด้วย , เช่น. คุณสามารถป้อนตัวเลขก่อนที่ลอการิทึมจะลงชื่อเข้าใช้ลอการิทึมได้

วิธีแก้ลอการิทึม

นี่คือสิ่งที่จำเป็นบ่อยที่สุด

งาน. ค้นหาค่าของนิพจน์: log7 496

กำจัดระดับของการโต้แย้งโดยใช้สูตรแรก:
log7 496 = 6 log7 49 = 6 2 = 12

งาน. ค้นหาความหมายของสำนวน:

โปรดทราบว่าตัวส่วนประกอบด้วยลอการิทึม ซึ่งฐานและอาร์กิวเมนต์เป็นกำลังที่แน่นอน: 16 = 24; 49 = 72 เรามี:

ฉันคิดว่าตัวอย่างสุดท้ายต้องมีการชี้แจง ลอการิทึมหายไปไหน? จนถึงวินาทีสุดท้ายที่เราทำงานกับตัวส่วนเท่านั้น เรานำเสนอฐานและอาร์กิวเมนต์ของลอการิทึมที่อยู่ตรงนั้นในรูปแบบของกำลังและนำเลขชี้กำลังออกมา - เราได้เศษส่วน "สามชั้น"

ทีนี้มาดูเศษส่วนหลักกัน ตัวเศษและตัวส่วนมีจำนวนเท่ากัน: log2 7 เนื่องจาก log2 7 ≠ 0 เราสามารถลดเศษส่วนได้ - 2/4 จะยังคงอยู่ในตัวส่วน ตามกฎของเลขคณิตแล้วทั้งสี่สามารถโอนไปยังตัวเศษซึ่งเป็นสิ่งที่ทำเสร็จแล้ว ผลลัพธ์คือคำตอบ: 2.

การเปลี่ยนไปสู่รากฐานใหม่

เมื่อพูดถึงกฎสำหรับการบวกและการลบลอการิทึม ฉันเน้นย้ำเป็นพิเศษว่ากฎเหล่านี้ใช้ได้เฉพาะกับฐานเดียวกันเท่านั้น จะทำอย่างไรถ้าเหตุผลต่างกัน? จะเกิดอะไรขึ้นถ้าพวกมันไม่ใช่เลขยกกำลังที่เท่ากัน?

สูตรสำหรับการเปลี่ยนไปใช้รากฐานใหม่มาช่วยเหลือ ให้เรากำหนดพวกมันในรูปแบบของทฤษฎีบท:

ให้ลอการิทึม logax ถูกกำหนดไว้ ดังนั้น สำหรับจำนวน c ใดๆ ที่ c > 0 และ c ≠ 1 ความเท่ากันจะเป็นจริง:

โดยเฉพาะอย่างยิ่ง ถ้าเราตั้งค่า c = x เราจะได้:

จากสูตรที่สองเป็นไปตามว่าสามารถสลับฐานและอาร์กิวเมนต์ของลอการิทึมได้ แต่ในกรณีนี้นิพจน์ทั้งหมดจะ "พลิกกลับ" เช่น ลอการิทึมจะปรากฏในตัวส่วน

สูตรเหล่านี้ไม่ค่อยพบในนิพจน์ตัวเลขทั่วไป มีความเป็นไปได้ที่จะประเมินว่าสะดวกเพียงใดเมื่อแก้สมการลอการิทึมและอสมการเท่านั้น

แต่มีปัญหาที่ไม่สามารถแก้ไขได้เลยนอกจากการย้ายฐานรากใหม่ ลองดูสองสามสิ่งเหล่านี้:

งาน. ค้นหาค่าของนิพจน์: log5 16 log2 25

โปรดทราบว่าอาร์กิวเมนต์ของลอการิทึมทั้งสองมีกำลังที่แน่นอน มาดูตัวบ่งชี้กัน: log5 16 = log5 24 = 4log5 2; ล็อก2 25 = ล็อก2 52 = 2ล็อก2 5;

ทีนี้ลอง "ย้อนกลับ" ลอการิทึมที่สอง:

เนื่องจากผลคูณไม่เปลี่ยนแปลงเมื่อจัดเรียงปัจจัยใหม่ เราจึงคูณสี่และสองอย่างใจเย็น จากนั้นจึงจัดการกับลอการิทึม

งาน. ค้นหาค่าของนิพจน์: log9 100 lg 3

ฐานและอาร์กิวเมนต์ของลอการิทึมแรกคือกำลังที่แน่นอน มาเขียนสิ่งนี้และกำจัดตัวบ่งชี้:

ตอนนี้ กำจัดลอการิทึมทศนิยมโดยการย้ายไปยังฐานใหม่:

เอกลักษณ์ลอการิทึมพื้นฐาน

บ่อยครั้งในกระบวนการแก้ปัญหา จำเป็นต้องแสดงตัวเลขเป็นลอการิทึมของฐานที่กำหนด ในกรณีนี้สูตรต่อไปนี้จะช่วยเรา:

ในกรณีแรก ตัวเลข n จะกลายเป็นเลขชี้กำลังในอาร์กิวเมนต์ จำนวน n สามารถเป็นอะไรก็ได้ เพราะมันเป็นเพียงค่าลอการิทึม

สูตรที่สองเป็นคำจำกัดความที่ถอดความจริงๆ นั่นคือสิ่งที่เรียกว่า: .

อันที่จริง จะเกิดอะไรขึ้นถ้าเลข b ยกกำลังจนเลข b ยกกำลังนี้ให้เลข a? ถูกต้อง: ผลลัพธ์คือเลข a เดียวกัน อ่านย่อหน้านี้อย่างละเอียดอีกครั้ง หลายๆ คนอาจติดอยู่กับเรื่องนี้

เช่นเดียวกับสูตรสำหรับการย้ายไปยังฐานใหม่ บางครั้งเอกลักษณ์ลอการิทึมพื้นฐานก็เป็นวิธีแก้ปัญหาเดียวที่เป็นไปได้

งาน. ค้นหาความหมายของสำนวน:

โปรดทราบว่า log25 64 = log5 8 - แค่เอากำลังสองจากฐานและอาร์กิวเมนต์ของลอการิทึม เมื่อคำนึงถึงกฎในการคูณกำลังด้วยฐานเดียวกัน เราได้รับ:

ถ้าใครไม่รู้ นี่คืองานจริงจากการสอบ Unified State :)

หน่วยลอการิทึมและศูนย์ลอการิทึม

โดยสรุป ฉันจะให้สองตัวตนที่แทบจะเรียกได้ว่าเป็นคุณสมบัติไม่ได้ - แต่พวกมันเป็นผลมาจากคำจำกัดความของลอการิทึม พวกมันมักเกิดปัญหาอยู่ตลอดเวลา และน่าประหลาดใจที่มันสร้างปัญหาแม้กระทั่งกับนักเรียน "ขั้นสูง" ก็ตาม

  1. logaa = 1 คือ จำไว้ทุกครั้ง: ลอการิทึมของฐานใดๆ a ของฐานนั้นจะเท่ากับ 1
  2. โลกา 1 = 0 คือ ฐาน a สามารถเป็นอะไรก็ได้ แต่ถ้าอาร์กิวเมนต์มีหนึ่งค่า ลอการิทึมจะเท่ากับศูนย์! เพราะ a0 = 1 เป็นผลโดยตรงจากนิยาม

นั่นคือคุณสมบัติทั้งหมด อย่าลืมฝึกฝนการนำไปปฏิบัติจริง! ดาวน์โหลดเอกสารสรุปตอนต้นบทเรียน พิมพ์ออกมา และแก้ไขปัญหา

เมื่อสังคมพัฒนาและการผลิตมีความซับซ้อนมากขึ้น คณิตศาสตร์ก็พัฒนาขึ้นด้วย การเคลื่อนไหวจากง่ายไปสู่ซับซ้อน จากการบัญชีทั่วไปโดยใช้วิธีการบวกและการลบด้วยการทำซ้ำซ้ำ ๆ เรามาถึงแนวคิดของการคูณและการหาร การลดการดำเนินการคูณซ้ำๆ กลายเป็นแนวคิดเรื่องการยกกำลัง ตารางแรกของการพึ่งพาตัวเลขบนฐานและจำนวนการยกกำลังถูกรวบรวมในศตวรรษที่ 8 โดย Varasena นักคณิตศาสตร์ชาวอินเดีย จากนั้นคุณสามารถนับเวลาที่เกิดลอการิทึมได้

ภาพสเก็ตช์ประวัติศาสตร์

การฟื้นตัวของยุโรปในศตวรรษที่ 16 ยังช่วยกระตุ้นการพัฒนากลศาสตร์อีกด้วย ต ต้องใช้การคำนวณจำนวนมากเกี่ยวข้องกับการคูณและการหาร ตัวเลขหลายหลัก- โต๊ะโบราณก็บริการดีมาก พวกเขาอนุญาตให้มีการเปลี่ยน การดำเนินงานที่ซับซ้อนสำหรับคนที่ง่ายกว่า - การบวกและการลบ ก้าวสำคัญไปข้างหน้าคือผลงานของนักคณิตศาสตร์ Michael Stiefel ซึ่งตีพิมพ์ในปี 1544 ซึ่งเขาตระหนักถึงความคิดของนักคณิตศาสตร์หลายคน สิ่งนี้ทำให้สามารถใช้ตารางได้ไม่เพียง แต่สำหรับกำลังในรูปแบบของจำนวนเฉพาะเท่านั้น แต่ยังรวมถึงค่าตรรกยะตามอำเภอใจด้วย

ในปี 1614 ชาวสก็อตแลนด์ จอห์น เนเปียร์ ซึ่งพัฒนาแนวคิดเหล่านี้ ได้แนะนำคำศัพท์ใหม่ว่า "ลอการิทึมของตัวเลข" เป็นครั้งแรก มีการรวบรวมตารางที่ซับซ้อนใหม่เพื่อคำนวณลอการิทึมของไซน์และโคไซน์ รวมถึงแทนเจนต์ สิ่งนี้ทำให้การทำงานของนักดาราศาสตร์ลดลงอย่างมาก

ตารางใหม่เริ่มปรากฏขึ้นซึ่งนักวิทยาศาสตร์ใช้สำเร็จมาเป็นเวลาสามศตวรรษ เวลาผ่านไปนานมากแล้ว การดำเนินการใหม่ในพีชคณิตมันได้รูปแบบที่เสร็จสมบูรณ์แล้ว ให้คำจำกัดความของลอการิทึมและศึกษาคุณสมบัติของลอการิทึม

เฉพาะในศตวรรษที่ 20 เท่านั้นที่มีการถือกำเนิดขึ้นของเครื่องคิดเลขและคอมพิวเตอร์ มนุษยชาติจึงละทิ้งโต๊ะโบราณที่ทำงานอย่างประสบความสำเร็จตลอดศตวรรษที่ 13

วันนี้เราเรียกลอการิทึมของ b ว่าเป็นฐานของ x ซึ่งเป็นกำลังของ a ที่ทำให้ b เขียนเป็นสูตร: x = log a(b)

ตัวอย่างเช่น บันทึก 3(9) จะเท่ากับ 2 ซึ่งจะชัดเจนหากคุณปฏิบัติตามคำจำกัดความ ถ้าเรายก 3 ยกกำลัง 2 เราจะได้ 9

ดังนั้น คำจำกัดความที่จัดทำขึ้นจึงกำหนดข้อจำกัดเพียงข้อเดียว คือ ตัวเลข a และ b ต้องเป็นจำนวนจริง

ประเภทของลอการิทึม

คำจำกัดความแบบคลาสสิกเรียกว่าลอการิทึมจริง และจริงๆ แล้วคือคำตอบของสมการ a x = b ตัวเลือก a = 1 ถือเป็นเส้นเขตแดนและไม่เป็นที่สนใจ ข้อควรสนใจ: 1 กำลังใดๆ มีค่าเท่ากับ 1

มูลค่าที่แท้จริงของลอการิทึมกำหนดเฉพาะเมื่อฐานและอาร์กิวเมนต์มากกว่า 0 และฐานต้องไม่เท่ากับ 1

สถานที่พิเศษในสาขาคณิตศาสตร์เล่นลอการิทึม ซึ่งจะตั้งชื่อตามขนาดของฐาน:

กฎและข้อจำกัด

คุณสมบัติพื้นฐานของลอการิทึมคือกฎ: ลอการิทึมของผลิตภัณฑ์เท่ากับผลรวมลอการิทึม บันทึก abp = บันทึก ก(b) + บันทึก ก(p)

รูปแบบหนึ่งของข้อความนี้จะเป็น: log c(b/p) = log c(b) - log c(p) ฟังก์ชันผลหารจะเท่ากับผลต่างของฟังก์ชัน

จากกฎสองข้อก่อนหน้านี้ จะสังเกตได้ง่ายว่า: log a(b p) = p * log a(b)

คุณสมบัติอื่น ๆ ได้แก่ :

ความคิดเห็น ไม่จำเป็นต้องทำผิดพลาดทั่วไป - ลอการิทึมของผลรวมไม่เท่ากับผลรวมของลอการิทึม

เป็นเวลาหลายศตวรรษแล้วที่การค้นหาลอการิทึมเป็นงานที่ค่อนข้างใช้เวลานาน นักคณิตศาสตร์ใช้สูตรที่รู้จักกันดีของทฤษฎีลอการิทึมของการขยายตัวพหุนาม:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n) โดยที่ n - จำนวนธรรมชาติมากกว่า 1 ซึ่งเป็นตัวกำหนดความแม่นยำของการคำนวณ

ลอการิทึมที่มีฐานอื่นคำนวณโดยใช้ทฤษฎีบทเกี่ยวกับการเปลี่ยนจากฐานหนึ่งไปอีกฐานหนึ่งและคุณสมบัติของลอการิทึมของผลิตภัณฑ์

เนื่องจากวิธีนี้ใช้แรงงานเข้มข้นมากและ เมื่อแก้ไขปัญหาเชิงปฏิบัติยากต่อการนำไปใช้ เราใช้ตารางลอการิทึมที่คอมไพล์ไว้ล่วงหน้า ซึ่งทำให้งานทั้งหมดเร็วขึ้นอย่างเห็นได้ชัด

ในบางกรณีมีการใช้กราฟลอการิทึมที่ออกแบบมาเป็นพิเศษซึ่งให้ความแม่นยำน้อยกว่า แต่ช่วยเร่งความเร็วในการค้นหาค่าที่ต้องการได้อย่างมาก เส้นโค้งของฟังก์ชัน y = log a(x) ซึ่งสร้างขึ้นบนหลายจุด ทำให้คุณสามารถใช้ไม้บรรทัดธรรมดาเพื่อค้นหาค่าของฟังก์ชันที่จุดอื่นได้ วิศวกร เวลานานเพื่อจุดประสงค์เหล่านี้จึงใช้สิ่งที่เรียกว่ากระดาษกราฟ

ในศตวรรษที่ 17 เงื่อนไขการคำนวณแอนะล็อกเสริมครั้งแรกปรากฏขึ้นซึ่ง ศตวรรษที่ 19ได้รับการดูเสร็จแล้ว อุปกรณ์ที่ประสบความสำเร็จสูงสุดเรียกว่ากฎสไลด์ แม้จะมีความเรียบง่ายของอุปกรณ์ แต่รูปลักษณ์ของมันช่วยเร่งกระบวนการทั้งหมดได้อย่างมาก การคำนวณทางวิศวกรรมและนี่เป็นเรื่องยากที่จะประเมินค่าสูงไป ปัจจุบันมีเพียงไม่กี่คนที่คุ้นเคยกับอุปกรณ์นี้

การถือกำเนิดขึ้นของเครื่องคิดเลขและคอมพิวเตอร์ทำให้การใช้อุปกรณ์อื่นๆ ไร้จุดหมาย

สมการและอสมการ

ในการแก้สมการและอสมการต่างๆ โดยใช้ลอการิทึม จะใช้สูตรต่อไปนี้:

  • การเปลี่ยนจากฐานหนึ่งไปอีกฐานหนึ่ง: log a(b) = log c(b) / log c(a);
  • อันเป็นผลมาจากตัวเลือกก่อนหน้า: log a(b) = 1 / log b(a)

เพื่อแก้ความไม่เท่าเทียมกัน มีประโยชน์ที่จะรู้:

  • ค่าลอการิทึมจะเป็นค่าบวกก็ต่อเมื่อฐานและอาร์กิวเมนต์มีค่ามากกว่าหรือน้อยกว่าหนึ่งเท่านั้น หากมีการละเมิดเงื่อนไขอย่างน้อยหนึ่งข้อ ค่าลอการิทึมจะเป็นลบ
  • หากใช้ฟังก์ชันลอการิทึมกับด้านขวาและด้านซ้ายของอสมการ และฐานของลอการิทึมมากกว่า 1 แสดงว่าสัญญาณของอสมการยังคงอยู่ ไม่อย่างนั้นมันจะเปลี่ยนไป

ตัวอย่างของปัญหา

พิจารณาหลายตัวเลือกสำหรับการใช้ลอการิทึมและคุณสมบัติต่างๆ ตัวอย่างที่มีการแก้สมการ:

พิจารณาตัวเลือกในการวางลอการิทึมลงในกำลัง:

  • ปัญหาที่ 3 คำนวณ 25^log 5(3) วิธีแก้ไข: ในเงื่อนไขของปัญหา รายการจะคล้ายกับรายการต่อไปนี้ (5^2)^log5(3) หรือ 5^(2 * log 5(3)) ลองเขียนให้แตกต่างออกไป: 5^log 5(3*2) หรือกำลังสองของตัวเลขเป็นอาร์กิวเมนต์ของฟังก์ชันสามารถเขียนเป็นกำลังสองของฟังก์ชันได้ (5^log 5(3))^2 การใช้คุณสมบัติของลอการิทึม นิพจน์นี้จะเท่ากับ 3^2 คำตอบ: จากการคำนวณเราได้ 9

การประยุกต์ใช้ในทางปฏิบัติ

เนื่องจากเป็นเครื่องมือทางคณิตศาสตร์ล้วนๆ จึงดูเหมือนห่างไกลจากความเป็นจริง ชีวิตจริงที่ลอการิทึมได้มาอย่างกะทันหัน คุ้มค่ามากเพื่ออธิบายวัตถุในโลกแห่งความเป็นจริง เป็นการยากที่จะหาวิทยาศาสตร์ที่ไม่ได้ใช้ นี้อยู่ใน อย่างเต็มที่ไม่เพียงแต่ใช้กับธรรมชาติเท่านั้น แต่ยังใช้กับสาขาความรู้ด้านมนุษยธรรมด้วย

การพึ่งพาลอการิทึม

นี่คือตัวอย่างบางส่วนของการขึ้นต่อกันของตัวเลข:

กลศาสตร์และฟิสิกส์

ในอดีต กลศาสตร์และฟิสิกส์ได้รับการพัฒนาโดยใช้วิธีการวิจัยทางคณิตศาสตร์มาโดยตลอด และในขณะเดียวกันก็ทำหน้าที่เป็นแรงจูงใจในการพัฒนาคณิตศาสตร์ รวมถึงลอการิทึมด้วย ทฤษฎีกฎฟิสิกส์ส่วนใหญ่เขียนด้วยภาษาคณิตศาสตร์ ขอให้เรายกตัวอย่างเพียงสองตัวอย่างในการอธิบายกฎฟิสิกส์โดยใช้ลอการิทึม

ปัญหาในการคำนวณปริมาณที่ซับซ้อนเช่นความเร็วของจรวดสามารถแก้ไขได้โดยใช้สูตร Tsiolkovsky ซึ่งวางรากฐานสำหรับทฤษฎีการสำรวจอวกาศ:

V = I * ln (M1/M2) โดยที่

  • V คือความเร็วสุดท้ายของเครื่องบิน
  • ฉัน – แรงกระตุ้นเฉพาะของเครื่องยนต์
  • M 1 – มวลเริ่มต้นของจรวด
  • M 2 – มวลสุดท้าย

อีกตัวอย่างที่สำคัญ- ใช้ในสูตรของนักวิทยาศาสตร์ผู้ยิ่งใหญ่อีกคนอย่าง Max Planck ซึ่งทำหน้าที่ประเมินสถานะสมดุลในอุณหพลศาสตร์

S = k * ln (Ω) โดยที่

  • S – คุณสมบัติทางอุณหพลศาสตร์
  • k – ค่าคงที่ของ Boltzmann
  • Ω คือน้ำหนักทางสถิติของสถานะต่างๆ

เคมี

ไม่ชัดเจนคือการใช้สูตรในวิชาเคมีที่มีอัตราส่วนของลอการิทึม ขอยกตัวอย่างเพียงสองตัวอย่าง:

  • สมการเนิร์สต์ คือสภาวะของศักย์รีดอกซ์ของตัวกลางที่สัมพันธ์กับแอคติวิตีของสารและค่าคงที่สมดุล
  • การคำนวณค่าคงที่เช่นดัชนีการสลายอัตโนมัติและความเป็นกรดของสารละลายก็ไม่สามารถทำได้หากไม่มีฟังก์ชันของเรา

จิตวิทยาและชีววิทยา

และยังไม่ชัดเจนว่าจิตวิทยาเกี่ยวข้องกับเรื่องนี้อย่างไร ปรากฎว่าฟังก์ชันนี้อธิบายความแรงของความรู้สึกได้ดีว่าเป็นอัตราส่วนผกผันของค่าความเข้มของการกระตุ้นต่อค่าความเข้มที่ต่ำกว่า

หลังจากตัวอย่างข้างต้น จึงไม่น่าแปลกใจอีกต่อไปที่หัวข้อลอการิทึมมีการใช้กันอย่างแพร่หลายในวิชาชีววิทยา ปริมาตรทั้งหมดสามารถเขียนเกี่ยวกับรูปแบบทางชีววิทยาที่สอดคล้องกับเกลียวลอการิทึม

พื้นที่อื่นๆ

ดูเหมือนว่าการดำรงอยู่ของโลกจะเป็นไปไม่ได้หากปราศจากความเกี่ยวข้องกับหน้าที่นี้ และมันจะควบคุมกฎทั้งหมด โดยเฉพาะเมื่อกฎแห่งธรรมชาติเกี่ยวข้องกัน ความก้าวหน้าทางเรขาคณิต- คุ้มค่าที่จะหันมาใช้เว็บไซต์ MatProfi และมีตัวอย่างมากมายในกิจกรรมต่อไปนี้:

รายการสามารถไม่มีที่สิ้นสุด เมื่อเข้าใจหลักการพื้นฐานของฟังก์ชันนี้แล้ว คุณสามารถดำดิ่งสู่โลกแห่งปัญญาอันไม่มีที่สิ้นสุด