Poiščite vozlišče in vozlišče treh številk na spletu. Največji skupni delitelj in najmanjši skupni večkratnik. Spletni kalkulator

Večkratnik je število, ki je deljivo z dano številko brez sledu. Najmanjši skupni večkratnik (LCM) skupine števil je najmanjše število, ki je deljivo z vsakim številom v skupini brez ostanka. Če želite najti najmanjši skupni večkratnik, morate najti prafaktorje danih števil. LCM je mogoče izračunati tudi z uporabo številnih drugih metod, ki veljajo za skupine dveh ali več števil.

Koraki

Serija večkratnikov

    Poglej te številke. Tukaj opisano metodo je najbolje uporabiti, če sta podani dve števili, od katerih je vsako manjše od 10. Če je podano velike številke, uporabite drugo metodo.

    • Na primer, poiščite najmanjši skupni večkratnik 5 in 8. To so majhne številke, zato lahko uporabite to metodo.
  1. Večkratnik je število, ki je deljivo z danim številom brez ostanka. Večkratnike najdete v tabeli množenja.

    • Na primer, števila, ki so večkratnika števila 5, so: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Zapišite niz števil, ki so večkratniki prvega števila. Naredite to pod večkratniki prvega števila, da primerjate dva niza števil.

    • Na primer, števila, ki so večkratnika števila 8, so: 8, 16, 24, 32, 40, 48, 56 in 64.
  3. Poiščite najmanjše število, ki je prisotno v obeh nizih mnogokratnikov. Morda boste morali napisati dolg niz večkratnikov, da boste našli skupno število. Najmanjše število, ki je prisotno v obeh nizih večkratnikov, je najmanjši skupni večkratnik.

    • Na primer, najmanjše število, ki se pojavi v nizu večkratnikov 5 in 8, je število 40. Zato je 40 najmanjši skupni večkratnik 5 in 8.

    Prafaktorizacija

    1. Poglej te številke. Tukaj opisano metodo je najbolje uporabiti, če imate dve števili, od katerih je vsako večje od 10. Če so podane manjše številke, uporabite drugo metodo.

      • Na primer, poiščite najmanjši skupni večkratnik števil 20 in 84. Vsako število je večje od 10, zato lahko uporabite to metodo.
    2. Prvo število razčlenimo na prafaktorje. To pomeni, da morate najti takšna praštevila, ki bodo pomnožena z danim številom. Ko najdete prafaktorje, jih zapišite kot enačbe.

      • na primer 2 × 10 = 20 (\displaystyle (\mathbf (2) )\krat 10=20) in 2 × 5 = 10 (\displaystyle (\mathbf (2) )\krat (\mathbf (5) )=10). Tako so prafaktorji števila 20 števila 2, 2 in 5. Zapiši jih kot izraz: .
    3. Drugo število razčlenite na prafaktorje. Naredite to na enak način, kot ste faktorizirali prvo število, torej poiščite taka praštevila, ki bodo pri množenju dala dano število.

      • na primer 2 × 42 = 84 (\displaystyle (\mathbf (2) )\krat 42=84), 7 × 6 = 42 (\displaystyle (\mathbf (7) )\krat 6=42) in 3 × 2 = 6 (\displaystyle (\mathbf (3) )\krat (\mathbf (2) )=6). Tako so prafaktorji števila 84 števila 2, 7, 3 in 2. Zapiši jih kot izraz: .
    4. Zapišite faktorje, ki so skupni obema številoma. Takšne faktorje zapišite kot operacijo množenja. Ko pišete vsak faktor, ga prečrtajte v obeh izrazih (izrazih, ki opisujejo faktorizacijo števil na prafaktorje).

      • Na primer, obe števili imata skupni faktor 2, zato zapiši 2 × (\displaystyle 2\krat ) in prečrtaj 2 v obeh izrazih.
      • Obema številoma je skupen še faktor 2, zato zapiši 2 × 2 (\displaystyle 2\krat 2) in prečrtaj drugi 2 v obeh izrazih.
    5. Operaciji množenja dodajte preostale faktorje. To so faktorji, ki v obeh izrazih niso prečrtani, torej faktorji, ki obema številoma niso skupni.

      • Na primer v izrazu 20 = 2 × 2 × 5 (\displaystyle 20=2\krat 2\krat 5) Oba dvojca (2) sta prečrtana, ker sta skupna faktorja. Faktor 5 ni prečrtan, zato operacijo množenja zapiši takole: 2 × 2 × 5 (\displaystyle 2\krat 2\krat 5)
      • V izrazu 84 = 2 × 7 × 3 × 2 (\displaystyle 84=2\krat 7\krat 3\krat 2) oba dva (2) sta tudi prečrtana. Faktorja 7 in 3 nista prečrtana, zato operacijo množenja zapiši takole: 2 × 2 × 5 × 7 × 3 (\displaystyle 2\krat 2\krat 5\krat 7\krat 3).
    6. Izračunaj najmanjši skupni večkratnik.Če želite to narediti, pomnožite števila v operaciji pisnega množenja.

      • na primer 2 × 2 × 5 × 7 × 3 = 420 (\displaystyle 2\krat 2\krat 5\krat 7\krat 3=420). Torej je najmanjši skupni večkratnik 20 in 84 420.

    Iskanje skupnih dejavnikov

    1. Narišite mrežo kot za igro tic-tac-toe. Takšna mreža je sestavljena iz dveh vzporednih črt, ki se sekata (pod pravim kotom) z drugima dvema vzporednima črtama. Tako boste dobili tri vrstice in tri stolpce (mreža je zelo podobna ikoni #). Napišite prvo številko v prvo vrstico in drugi stolpec. Drugo številko zapišite v prvo vrstico in tretji stolpec.

      • Na primer, poiščite najmanjši skupni večkratnik števil 18 in 30. V prvo vrstico in drugi stolpec zapišite število 18, v prvo vrstico in tretji stolpec pa število 30.
    2. Poišči delitelj, ki je skupen obema številoma. Zapišite v prvo vrstico in prvi stolpec. Bolje je iskati prafaktorje, vendar to ni pogoj.

      • Na primer, 18 in 30 sta Soda števila, zato bo njun skupni faktor 2. Torej zapišite 2 v prvo vrstico in prvi stolpec.
    3. Vsako število delite s prvim deliteljem. Vsak količnik zapiši pod ustrezno številko. Količnik je rezultat deljenja dveh števil.

      • na primer 18 ÷ 2 = 9 (\displaystyle 18\div 2=9), torej pod 18 napišite 9.
      • 30 ÷ 2 = 15 (\displaystyle 30\div 2=15), torej zapišite 15 pod 30.
    4. Poiščite delitelj, ki je skupen obema količnikoma.Če takega delitelja ni, preskočite naslednja dva koraka. V nasprotnem primeru delitelj vpiši v drugo vrstico in prvi stolpec.

      • Na primer, 9 in 15 sta deljiva s 3, zato zapišite 3 v drugo vrstico in prvi stolpec.
    5. Vsak količnik delite z njegovim drugim deliteljem. Vsak rezultat deljenja zapišite pod pripadajoči količnik.

      • na primer 9 ÷ 3 = 3 (\displaystyle 9\div 3=3), torej pod 9 napišite 3.
      • 15 ÷ 3 = 5 (\displaystyle 15\div 3=5), torej pod 15 napišite 5.
    6. Po potrebi dodajte dodatne celice v mrežo. Ponavljaj opisane korake, dokler imata količnika skupni delitelj.

    7. Obkroži številke v prvem stolpcu in zadnji vrstici mreže. Nato izbrana števila zapiši kot operacijo množenja.

      • Na primer, števili 2 in 3 sta v prvem stolpcu, števili 3 in 5 pa v zadnji vrstici, zato operacijo množenja zapišite takole: 2 × 3 × 3 × 5 (\displaystyle 2\krat 3\krat 3\krat 5).
    8. Poiščite rezultat množenja števil. To bo izračunalo najmanjši skupni večkratnik dveh danih števil.

      • na primer 2 × 3 × 3 × 5 = 90 (\displaystyle 2\krat 3\krat 3\krat 5=90). Torej je najmanjši skupni večkratnik 18 in 30 90.

    Evklidov algoritem

    1. Zapomnite si terminologijo, povezano z operacijo deljenja. Dividenda je število, ki se deli. Delitelj je število, s katerim se deli. Količnik je rezultat deljenja dveh števil. Ostanek je število, ki ostane, ko dve števili delimo.

      • Na primer v izrazu 15 ÷ 6 = 2 (\displaystyle 15\div 6=2) ost. 3:
        15 je dividenda
        6 je delitelj
        2 je količnik
        3 je ostanek.

Nadaljujmo pogovor o najmanjšem skupnem večkratniku, ki smo ga začeli v razdelku "LCM - najmanjši skupni večkratnik, definicija, primeri." V tej temi si bomo ogledali načine, kako najti LCM za tri ali več števil, in preučili bomo vprašanje, kako najti LCM negativnega števila.

Yandex.RTB R-A-339285-1

Izračun najmanjšega skupnega večkratnika (LCM) prek GCD

Razmerje med najmanjšim skupnim večkratnikom in največjim skupnim deliteljem smo že ugotovili. Zdaj pa se naučimo, kako določiti LCM prek GCD. Najprej ugotovimo, kako to narediti za pozitivna števila.

Definicija 1

Poišči najmanjši skupni večkratnik skozi največjega skupni delilnik se lahko izvede z uporabo formule LCM (a , b) = a · b: GCD (a , b) .

Primer 1

Najti morate LCM števil 126 in 70.

rešitev

Vzemimo a = 126, b = 70. Nadomestimo vrednosti v formulo za izračun najmanjšega skupnega večkratnika skozi največji skupni delitelj LCM (a, b) = a · b: GCD (a, b) .

Poišče gcd števil 70 in 126. Za to potrebujemo evklidski algoritem: 126 = 70 1 + 56, 70 = 56 1 + 14, 56 = 14 4, torej GCD (126 , 70) = 14 .

Izračunajmo LCM: LCD (126, 70) = 126 70: GCD (126, 70) = 126 70: 14 = 630.

odgovor: LCM(126, 70) = 630.

Primer 2

Poišči število 68 in 34.

rešitev

GCD v v tem primeru To ni težko, saj je 68 deljivo s 34. Izračunajmo najmanjši skupni večkratnik po formuli: LCM (68, 34) = 68 34 : NTO (68, 34) = 68 34 : 34 = 68.

odgovor: LCM(68, 34) = 68.

V tem primeru smo uporabili pravilo za iskanje najmanjšega skupnega večkratnika pozitivnih celih števil a in b: če je prvo število deljivo z drugim, bo LCM teh števil enak prvemu številu.

Iskanje LCM z razlaganjem števil na prafaktorje

Zdaj pa si poglejmo metodo iskanja LCM, ki temelji na faktoriziranju števil na prafaktorje.

Definicija 2

Da bi našli najmanjši skupni večkratnik, moramo opraviti nekaj preprostih korakov:

  • sestavimo produkt vseh glavni dejavnikištevila, za katera moramo najti LCM;
  • iz njihovih produktov izključimo vse prafaktorje;
  • zmnožek, dobljen po izločitvi skupnih prafaktorjev, bo enak LCM danih števil.

Ta metoda iskanja najmanjšega skupnega večkratnika temelji na enakosti LCM (a, b) = a · b: GCD (a, b). Če pogledate formulo, bo postalo jasno: produkt števil a in b je enak produktu vseh faktorjev, ki sodelujejo pri razgradnji teh dveh števil. V tem primeru je gcd dveh števil enak produktu vseh prafaktorjev, ki so hkrati prisotni v faktorizacijah teh dveh števil.

Primer 3

Imamo dve številki 75 in 210. Lahko jih faktoriziramo na naslednji način: 75 = 3 5 5 in 210 = 2 3 5 7. Če sestavite produkt vseh faktorjev obeh izvirnih števil, dobite: 2 3 3 5 5 5 7.

Če izločimo faktorje, ki so skupni številkama 3 in 5, dobimo produkt naslednje oblike: 2 3 5 5 7 = 1050. Ta izdelek bo naš LCM za številki 75 in 210.

Primer 4

Poiščite LCM števil 441 in 700 , pri čemer obe števili razložimo na prafaktorje.

rešitev

Poiščimo vse prafaktorje števil, navedenih v pogoju:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Dobimo dve verigi števil: 441 = 3 3 7 7 in 700 = 2 2 5 5 7.

Produkt vseh faktorjev, ki so sodelovali pri razgradnji teh števil, bo imel obliko: 2 2 3 3 5 5 7 7 7. Poiščimo skupne dejavnike. To je številka 7. Izključimo ga iz celotnega izdelka: 2 2 3 3 5 5 7 7. Izkazalo se je, da NOC (441, 700) = 2 2 3 3 5 5 7 7 = 44 100.

odgovor: LOC(441, 700) = 44.100.

Dajmo še eno formulacijo metode za iskanje LCM z razgradnjo števil na prafaktorje.

Definicija 3

Prej smo iz skupnega števila faktorjev izključili skupne obema številkama. Zdaj bomo to storili drugače:

  • Razložimo obe števili na prafaktorje:
  • zmnožku prafaktorjev prvega števila prišteti manjkajoče faktorje drugega števila;
  • dobimo produkt, ki bo želeni LCM dveh števil.

Primer 5

Vrnimo se k številkama 75 in 210, za katera smo LCM iskali že v enem od prejšnjih primerov. Razčlenimo jih na preproste dejavnike: 75 = 3 5 5 in 210 = 2 3 5 7. Zmnožku faktorjev 3, 5 in 5 številki 75 seštejte manjkajoče faktorje 2 in 7 številke 210. Dobimo: 2 · 3 · 5 · 5 · 7 . To je LCM števil 75 in 210.

Primer 6

Izračunati je treba LCM števil 84 in 648.

rešitev

Razložimo števila iz pogoja na preproste faktorje: 84 = 2 2 3 7 in 648 = 2 2 2 3 3 3 3. Zmnožku prištejmo faktorje 2, 2, 3 in 7 števila 84 manjkajoči faktorji 2, 3, 3 in
3 številke 648. Dobimo izdelek 2 2 2 3 3 3 3 7 = 4536. To je najmanjši skupni večkratnik 84 in 648.

odgovor: LCM(84, 648) = 4,536.

Iskanje LCM treh ali več števil

Ne glede na to, s koliko številkami imamo opravka, bo algoritem naših dejanj vedno enak: zaporedno bomo našli LCM dveh števil. Za ta primer obstaja izrek.

1. izrek

Predpostavimo, da imamo cela števila a 1 , a 2 , … , a k. NOC m k ta števila se najdejo z zaporednim izračunom m 2 = LCM (a 1, a 2), m 3 = LCM (m 2, a 3), ..., m k = LCM (m k − 1, a k).

Zdaj pa poglejmo, kako lahko izrek uporabimo za reševanje specifičnih problemov.

Primer 7

Izračunati morate najmanjši skupni večkratnik štirih števil 140, 9, 54 in 250 .

rešitev

Uvedemo zapis: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Začnimo z izračunom m 2 = LCM (a 1 , a 2) = LCM (140, 9). Uporabimo evklidski algoritem za izračun GCD števil 140 in 9: 140 = 9 15 + 5, 9 = 5 1 + 4, 5 = 4 1 + 1, 4 = 1 4. Dobimo: GCD (140, 9) = 1, GCD (140, 9) = 140 9: GCD (140, 9) = 140 9: 1 = 1.260. Zato je m 2 = 1,260.

Zdaj pa izračunajmo z istim algoritmom m 3 = LCM (m 2 , a 3) = LCM (1 260, 54). Med izračuni dobimo m 3 = 3 780.

Izračunati moramo le m 4 = LCM (m 3 , a 4) = LCM (3 780, 250). Delujemo po istem algoritmu. Dobimo m 4 = 94 500.

LCM štirih števil iz vzorčnega pogoja je 94500.

odgovor: NOC (140, 9, 54, 250) = 94.500.

Kot lahko vidite, so izračuni preprosti, a precej delovno intenzivni. Če želite prihraniti čas, lahko greste drugače.

Definicija 4

Ponujamo vam naslednji algoritem dejanj:

  • vsa števila razstavimo na prafaktorje;
  • zmnožku faktorjev prvega števila prištejemo manjkajoče faktorje iz zmnožka drugega števila;
  • produktu, dobljenemu na prejšnji stopnji, dodamo manjkajoče faktorje tretje številke itd.;
  • dobljeni produkt bo najmanjši skupni večkratnik vseh števil iz pogoja.

Primer 8

Najti morate LCM petih števil 84, 6, 48, 7, 143.

rešitev

Razštejmo vseh pet števil na prafaktorje: 84 = 2 2 3 7, 6 = 2 3, 48 = 2 2 2 2 3, 7, 143 = 11 13. Praštevil, ki je število 7, ni mogoče razložiti na praštevila. Takšna števila sovpadajo z njihovo razgradnjo na prafaktorje.

Zdaj pa vzemimo produkt prafaktorjev 2, 2, 3 in 7 števila 84 in jim prištejmo manjkajoče faktorje drugega števila. Število 6 smo razstavili na 2 in 3. Ti faktorji so že v produktu prve številke. Zato jih izpuščamo.

Nadaljujemo z dodajanjem manjkajočih množiteljev. Pojdimo k številu 48, od produkta prafaktorjev katerega vzamemo 2 in 2. Nato dodamo prafaktor 7 iz četrtega števila ter faktorja 11 in 13 iz petega. Dobimo: 2 2 2 2 3 7 11 13 = 48.048. To je najmanjši skupni večkratnik prvotnih petih števil.

odgovor: LCM(84, 6, 48, 7, 143) = 48.048.

Iskanje najmanjšega skupnega večkratnika negativnih števil

Da bi našli najmanjši skupni večkratnik negativnih števil, je treba ta števila najprej zamenjati s števili z nasprotnim predznakom, nato pa izvesti izračune z zgornjimi algoritmi.

Primer 9

LCM (54, − 34) = LCM (54, 34) in LCM (− 622, − 46, − 54, − 888) = LCM (622, 46, 54, 888).

Takšna dejanja so dopustna zaradi dejstva, da če to sprejmemo a in − a– nasprotna števila,
nato množica večkratnikov števila a se ujema z množico večkratnikov števila − a.

Primer 10

Izračunati je treba LCM negativnih števil − 145 in − 45 .

rešitev

Zamenjajmo številke − 145 in − 45 nasprotnim številkam 145 in 45 . Sedaj z uporabo algoritma izračunamo NKT (145, 45) = 145 · 45: NKT (145, 45) = 145 · 45: 5 = 1,305, pri čemer smo predhodno določili NKT z evklidskim algoritmom.

Dobimo, da je LCM števil − 145 in − 45 enako 1 305 .

odgovor: LCM (− 145, − 45) = 1,305.

Če v besedilu opazite napako, jo označite in pritisnite Ctrl+Enter

Opredelitev. Največji naravno število, s katerim sta števili a in b deljeni brez ostanka, imenujemo največji skupni delitelj (GCD) te številke.

Poiščimo največji skupni delitelj števil 24 in 35.
Delitelji števila 24 so števila 1, 2, 3, 4, 6, 8, 12, 24, delitelji števila 35 pa števila 1, 5, 7, 35.
Vidimo, da imata števili 24 in 35 le en skupni delitelj - število 1. Takšni števili se imenujeta medsebojno prime.

Opredelitev. Naravna števila imenujemo medsebojno prime, če je njihov največji skupni delitelj (GCD) 1.

Največji skupni delitelj (GCD) lahko najdete, ne da bi izpisali vse delitelje danih števil.

Če števili 48 in 36 faktoriziramo, dobimo:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Izmed dejavnikov, vključenih v razširitev prvega od teh števil, prečrtamo tiste, ki niso vključeni v razširitev drugega števila (tj. dve dvojki).
Preostala faktorja sta 2 * 2 * 3. Njun produkt je enak 12. To število je največji skupni delitelj števil 48 in 36. Najden je tudi največji skupni delitelj treh ali več števil.

Najti največji skupni delitelj

2) izmed dejavnikov, vključenih v razširitev enega od teh števil, prečrtajte tiste, ki niso vključeni v razširitev drugih številk;
3) poiščite produkt preostalih faktorjev.

Če so vsa dana števila deljiva z enim od njih, potem je to število deljivo največji skupni delitelj podane številke.
Na primer, največji skupni delitelj števil 15, 45, 75 in 180 je število 15, saj so z njim deljiva vsa druga števila: 45, 75 in 180.

Najmanjši skupni večkratnik (LCM)

Opredelitev. Najmanjši skupni večkratnik (LCM) naravni števili a in b je najmanjše naravno število, ki je večkratnik obeh a in b. Najmanjši skupni večkratnik (LCM) števil 75 in 60 je mogoče najti, ne da bi zaporedoma zapisali večkratnike teh števil. Da bi to naredili, faktorizirajmo 75 in 60 na prafaktorje: 75 = 3 * 5 * 5 in 60 = 2 * 2 * 3 * 5.
Zapišimo faktorje, vključene v razširitev prvega od teh števil, in jim prištejmo manjkajoča faktorja 2 in 2 iz razširitve drugega števila (torej faktorje združimo).
Dobimo pet faktorjev 2 * 2 * 3 * 5 * 5, katerih produkt je 300. To število je najmanjši skupni večkratnik števil 75 in 60.

Poiščejo tudi najmanjši skupni večkratnik treh ali več števil.

Za poiščite najmanjši skupni večkratnik več naravnih števil, potrebujete:
1) jih razložite na prafaktorje;
2) zapišite faktorje, vključene v razširitev enega od števil;
3) dodajte jim manjkajoče faktorje iz razširitev preostalih števil;
4) poiščite produkt nastalih faktorjev.

Upoštevajte, da če je eno od teh števil deljivo z vsemi drugimi števili, potem je to število najmanjši skupni večkratnik teh števil.
Na primer, najmanjši skupni večkratnik števil 12, 15, 20 in 60 je 60, ker je deljivo z vsemi temi števili.

Pitagora (VI. stol. pr. n. št.) in njegovi učenci so preučevali vprašanje deljivosti števil. številka, enaka vsoti Vse njegove delitelje (brez samega števila) so imenovali popolno število. Na primer, številke 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) so ​​popolne. Naslednja popolna števila so 496, 8128, 33 550 336. Pitagorejci so poznali le prva tri popolna števila. Četrti - 8128 - je postal znan v 1. stoletju. n. e. Petega - 33.550.336 - so našli v 15. stoletju. Do leta 1983 je bilo znanih že 27 popolnih števil. Toda znanstveniki še vedno ne vedo, ali obstajajo liha popolna števila ali obstaja največje popolno število.
Zanimanje starodavnih matematikov za praštevila je posledica dejstva, da je vsako število praštevilo ali pa ga je mogoče predstaviti kot produkt praštevil, tj. praštevila so kot opeke, iz katerih so zgrajena ostala naravna števila.
Verjetno ste opazili, da se praštevila v nizu naravnih števil pojavljajo neenakomerno - v nekaterih delih niza jih je več, v drugih - manj. Toda dlje kot se premikamo po številski vrsti, manj pogosta so praštevila. Postavlja se vprašanje: ali obstaja zadnje (največje) praštevilo? Starogrški matematik Evklid (3. stoletje pr. n. št.) je v svoji knjigi Elementi, ki je bila dva tisoč let glavni učbenik matematike, dokazal, da je praštevil neskončno veliko, tj. za vsakim praštevilom stoji še večje praštevilo. število.
Da bi našli praštevila, je drug grški matematik iz istega časa, Eratosten, prišel do te metode. Zapisal je vsa števila od 1 do nekega števila, nato pa prečrtal eno, ki ni ne praštevilo ne sestavljeno število, nato pa prečrtal skozi 1 vsa števila, ki prihajajo za 2 (števila, ki so večkratniki 2, tj. 4, 6, 8 itd.). Prva preostala številka po 2 je bila 3. Nato so bile po dve prečrtane vse številke za 3 (števila, ki so bila večkratnika 3, tj. 6, 9, 12 itd.). na koncu so ostala samo praštevila neprečrtana.

Druga številka: b=

Ločilo tisočic Brez ločila presledkov "´

rezultat:

Največji skupni delitelj gcd( a,b)=6

Najmanjši skupni večkratnik LCM( a,b)=468

Največje naravno število, ki ga lahko brez ostanka delimo s številoma a in b, imenujemo največji skupni delitelj(GCD) teh številk. Označeno z gcd(a,b), (a,b), gcd(a,b) ali hcf(a,b).

Najmanjši skupni večkratnik LCM dveh celih števil a in b je najmanjše naravno število, ki je deljivo z a in b brez ostanka. Označeno z LCM(a,b) ali lcm(a,b).

Celi števili a in b se imenujeta medsebojno prime, če nimata skupnih deliteljev, razen +1 in −1.

Največji skupni delitelj

Naj sta podani dve pozitivni števili a 1 in a 2 1). Najti je treba skupni delitelj teh števil, tj. najti tako številko λ , ki deli števila a 1 in a 2 hkrati. Opišimo algoritem.

1) V tem članku bomo besedo številka razumeli kot celo število.

Pustiti a 1 ≥ a 2 in pustite

Kje m 1 , a 3 je nekaj celih števil, a 3 <a 2 (ostanek delitve a 1 na a 2 mora biti manj a 2).

Pretvarjajmo se, da λ deli a 1 in a 2 potem λ deli m 1 a 2 in λ deli a 1 −m 1 a 2 =a 3 (2. trditev članka »Deljivost števil. Preizkus deljivosti«). Iz tega sledi, da vsak skupni delitelj a 1 in a 2 je skupni delitelj a 2 in a 3. Tudi obratno velja, če λ skupni delilnik a 2 in a 3 potem m 1 a 2 in a 1 =m 1 a 2 +a 3 je tudi deljivo s λ . Torej skupni delitelj a 2 in a 3 je tudi skupni delitelj a 1 in a 2. Ker a 3 <a 2 ≤a 1, potem lahko rečemo, da je rešitev problema iskanja skupnega delitelja števil a 1 in a 2 zmanjšana na preprostejši problem iskanja skupnega delitelja števil a 2 in a 3 .

če a 3 ≠0, potem lahko delimo a 2 naprej a 3. Potem

,

Kje m 1 in a 4 je nekaj celih števil, ( a 4 ostanek pri deljenju a 2 naprej a 3 (a 4 <a 3)). S podobnim razmišljanjem pridemo do zaključka, da skupni delitelji števil a 3 in a 4 sovpada s skupnimi delitelji števil a 2 in a 3, pa tudi s skupnimi delilniki a 1 in a 2. Ker a 1 , a 2 , a 3 , a 4, ... so števila, ki nenehno padajo, in ker je med njimi končno število celih števil a 2 in 0, nato na nekem koraku n, ostanek delitve a n naprej a n+1 bo enako nič ( a n+2 =0).

.

Vsak skupni delitelj λ številke a 1 in a 2 je tudi delitelj števil a 2 in a 3 , a 3 in a 4 , .... a n in a n+1 . Velja tudi obratno, skupni delitelji števil a n in a n+1 so tudi delitelji števil a n−1 in a n, ...., a 2 in a 3 , a 1 in a 2. Toda skupni delitelj števil a n in a n+1 je število a n+1, ker a n in a n+1 so deljivi s a n+1 (zapomni si to a n+2 =0). Zato a n+1 je tudi delitelj števil a 1 in a 2 .

Upoštevajte, da je številka a n+1 je največji delitelj števil a n in a n+1 , saj je največji delitelj a n+1 je sam a n+1 . če a n+1 lahko predstavimo kot zmnožek celih števil, potem so ta števila tudi običajni delitelji števil a 1 in a 2. številka a n+1 se imenuje največji skupni deliteljštevilke a 1 in a 2 .

Številke a 1 in a 2 so lahko pozitivna ali negativna števila. Če je eno od števil enako nič, potem bo največji skupni delitelj teh števil enak absolutni vrednosti drugega števila. Največji skupni delitelj števil nič je nedefiniran.

Pokliče se zgornji algoritem Evklidski algoritem najti največji skupni delitelj dveh celih števil.

Primer iskanja največjega skupnega delitelja dveh števil

Poiščite največji skupni delitelj dveh števil 630 in 434.

  • Korak 1. Število 630 delite s 434. Ostanek je 196.
  • Korak 2. Število 434 delite s 196. Ostanek je 42.
  • Korak 3. Število 196 razdelite na 42. Ostanek je 28.
  • Korak 4. Število 42 delite z 28. Ostanek je 14.
  • Korak 5. Število 28 delite s 14. Ostanek je 0.

V 5. koraku je ostanek deljenja 0. Zato je največji skupni delitelj števil 630 in 434 14. Upoštevajte, da sta števili 2 in 7 tudi delitelja števil 630 in 434.

Kopraštevila

Opredelitev 1. Naj bo največji skupni delitelj števil a 1 in a 2 je enako ena. Nato se pokličejo te številke soprosta števila, ki nima skupnega delitelja.

Izrek 1. če a 1 in a 2 soprosti števili in λ neko število, nato poljuben skupni delitelj števil λa 1 in a 2 je tudi skupni delitelj števil λ in a 2 .

Dokaz. Razmislite o evklidskem algoritmu za iskanje največjega skupnega delitelja števil a 1 in a 2 (glej zgoraj).

.

Iz pogojev izreka sledi, da je največji skupni delitelj števil a 1 in a 2 in zato a n in a n+1 je 1. To je a n+1 =1.

Pomnožimo vse te enakosti z λ , Potem

.

Naj skupni delilec a 1 λ in a 2 da δ . Potem δ je vključen kot množitelj v a 1 λ , m 1 a 2 λ in v a 1 λ -m 1 a 2 λ =a 3 λ (glej "Deljivost števil", trditev 2). Nadalje δ je vključen kot množitelj v a 2 λ in m 2 a 3 λ , in je zato dejavnik pri a 2 λ -m 2 a 3 λ =a 4 λ .

Če tako razmišljamo, smo prepričani, da δ je vključen kot množitelj v a n−1 λ in m n−1 a n λ , torej v a n−1 λ m n−1 a n λ =a n+1 λ . Ker a n+1 =1, torej δ je vključen kot množitelj v λ . Zato število δ je skupni delitelj števil λ in a 2 .

Oglejmo si posebne primere izreka 1.

Posledica 1. Pustiti a in c Praštevila so relativna b. Nato njihov izdelek ac je praštevilo glede na b.

res. Iz izreka 1 ac in b imajo enake skupne delitelje kot c in b. Ampak številke c in b razmeroma preprosto, tj. imajo en sam skupni delitelj 1. Potem ac in b imajo tudi en sam skupni delitelj 1. Zato ac in b medsebojno preprosta.

Posledica 2. Pustiti a in b soprosta števila in pustimo b deli ak. Potem b deli in k.

res. Iz pogoja odobritve ak in b imajo skupni delitelj b. Na podlagi izreka 1, b mora biti skupni delitelj b in k. Zato b deli k.

Posledico 1 lahko posplošimo.

Posledica 3. 1. Naj številke a 1 , a 2 , a 3 , ..., a m so praštevila glede na število b. Potem a 1 a 2 , a 1 a 2 · a 3 , ..., a 1 a 2 a 3 ··· a m, je produkt teh števil praštevil glede na število b.

2. Naj imamo dve vrstici številk

tako, da je vsako število v prvem nizu praštevilo v razmerju vsakega števila v drugem nizu. Nato izdelek

Poiskati morate števila, ki so deljiva z vsakim od teh števil.

Če je število deljivo z a 1, potem ima obliko sa 1 kje s neko število. če q je največji skupni delitelj števil a 1 in a 2, torej

Kje s 1 je neko celo število. Potem

je najmanjši skupni večkratnik števil a 1 in a 2 .

a 1 in a 2 so relativno praštevila, potem najmanjši skupni večkratnik števil a 1 in a 2:

Najti moramo najmanjši skupni večkratnik teh števil.

Iz zgoraj navedenega sledi, da vsak večkratnik števil a 1 , a 2 , a 3 mora biti večkratnik številk ε in a 3 in nazaj. Najmanjši skupni večkratnik števil ε in a 3 da ε 1. Nato večkratniki števil a 1 , a 2 , a 3 , a 4 mora biti večkratnik številk ε 1 in a 4. Najmanjši skupni večkratnik števil ε 1 in a 4 da ε 2. Tako smo ugotovili, da so vsi večkratniki števil a 1 , a 2 , a 3 ,...,a m sovpadajo z večkratniki določenega števila ε n, ki se imenuje najmanjši skupni večkratnik danih števil.

V posebnem primeru, ko so številke a 1 , a 2 , a 3 ,...,a m relativno praštevila, potem najmanjši skupni večkratnik števil a 1 , a 2, kot je prikazano zgoraj, ima obliko (3). Naprej, saj a 3 praštevila glede na števila a 1 , a 2 potem a 3 praštevilo a 1 · a 2 (posledica 1). Pomeni najmanjši skupni večkratnik števil a 1 ,a 2 ,a 3 je številka a 1 · a 2 · a 3. Če sklepamo na podoben način, pridemo do naslednjih trditev.

Izjava 1. Najmanjši skupni večkratnik soprostih števil a 1 , a 2 , a 3 ,...,a m je enak njihovemu produktu a 1 · a 2 · a 3 ··· a m.

Izjava 2. Vsako število, ki je deljivo z vsakim od soprostih števil a 1 , a 2 , a 3 ,...,a m je tudi deljiv z njihovim produktom a 1 · a 2 · a 3 ··· a m.