Ce formulă este folosită pentru a găsi o progresie aritmetică? Cum să găsiți suma unei progresii aritmetice: formule și un exemplu de utilizare a acestora. Succesiunea de numere matematice

Unii oameni tratează cuvântul „progresie” cu prudență, ca pe un termen foarte complex din secțiuni matematică superioară. Între timp, cea mai simplă progresie aritmetică este munca contorului de taxi (unde există încă). Și înțelegerea esenței (și în matematică nu este nimic mai important decât „obținerea esenței”) a unei secvențe aritmetice nu este atât de dificilă, având în vedere câteva concepte elementare.

Succesiunea de numere matematice

O secvență numerică este de obicei numită o serie de numere, fiecare dintre ele având propriul său număr.

a 1 este primul membru al secvenței;

și 2 este al doilea termen al secvenței;

și 7 este al șaptelea membru al secvenței;

şi n este al n-lea membru al secvenţei;

Cu toate acestea, nu ne interesează niciun set arbitrar de numere și numere. Ne vom concentra atenția asupra unei secvențe numerice în care valoarea celui de-al n-lea termen este legată de numărul său ordinal printr-o relație care poate fi formulată clar matematic. Cu alte cuvinte: valoarea numerică a numărului al n-lea este o funcție a lui n.

a este valoarea unui membru al unei secvențe numerice;

n este numărul său de serie;

f(n) este o funcție, unde numărul ordinal din șirul numeric n este argumentul.

Definiție

O progresie aritmetică se numește de obicei o succesiune numerică în care fiecare termen ulterior este mai mare (mai mic) decât cel anterior cu același număr. Formula pentru al n-lea termen al unei secvențe aritmetice este următoarea:

a n - valoarea membrului curent al progresiei aritmetice;

a n+1 - formula următorului număr;

d - diferenta (numar anumit).

Este ușor de determinat că dacă diferența este pozitivă (d>0), atunci fiecare membru ulterior al seriei luate în considerare va fi mai mare decât precedentul și o astfel de progresie aritmetică va crește.

În graficul de mai jos este ușor de văzut de ce succesiunea de numere se numește „creștere”.

În cazurile în care diferența este negativă (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Valoarea specificată pentru membru

Uneori este necesar să se determine valoarea oricărui termen arbitrar a n al unei progresii aritmetice. Acest lucru se poate face prin calcularea succesivă a valorilor tuturor membrilor progresiei aritmetice, începând de la primul până la cel dorit. Cu toate acestea, această cale nu este întotdeauna acceptabilă dacă, de exemplu, este necesar să se găsească valoarea termenului de cinci mii sau opt milioane. Calculele tradiționale vor dura mult timp. Cu toate acestea, o anumită progresie aritmetică poate fi studiată folosind anumite formule. Există și o formulă pentru al n-lea termen: valoarea oricărui termen al unei progresii aritmetice poate fi determinată ca suma primului termen al progresiei cu diferența progresiei, înmulțită cu numărul termenului dorit, redusă cu unu.

Formula este universală pentru creșterea și scăderea progresiei.

Un exemplu de calcul al valorii unui termen dat

Să rezolvăm următoarea problemă de găsire a valorii celui de-al n-lea termen al unei progresii aritmetice.

Condiție: există o progresie aritmetică cu parametrii:

Primul termen al secvenței este 3;

Diferența în seria de numere este 1,2.

Sarcină: trebuie să găsiți valoarea a 214 termeni

Soluție: pentru a determina valoarea unui termen dat, folosim formula:

a(n) = a1 + d(n-1)

Înlocuind datele din enunțul problemei în expresie, avem:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Răspuns: Al 214-lea termen al secvenței este egal cu 258,6.

Avantajele acestei metode de calcul sunt evidente - întreaga soluție nu necesită mai mult de 2 linii.

Suma unui număr dat de termeni

Foarte des, într-o serie aritmetică dată, este necesar să se determine suma valorilor unora dintre segmentele sale. Pentru a face acest lucru, nu este nevoie să calculați valorile fiecărui termen și apoi să le adăugați. Această metodă este aplicabilă dacă numărul de termeni a căror sumă trebuie găsită este mic. În alte cazuri, este mai convenabil să folosiți următoarea formulă.

Suma termenilor unei progresii aritmetice de la 1 la n este egală cu suma primului și al n-lea termen, înmulțită cu numărul termenului n și împărțită la doi. Dacă în formulă valoarea celui de-al n-lea termen este înlocuită cu expresia din paragraful anterior al articolului, obținem:

Exemplu de calcul

De exemplu, să rezolvăm o problemă cu următoarele condiții:

Primul termen al secvenței este zero;

Diferența este de 0,5.

Problema necesită determinarea sumei termenilor seriei de la 56 la 101.

Soluţie. Să folosim formula pentru a determina valoarea progresiei:

s(n) = (2∙a1 + d∙(n-1))∙n/2

În primul rând, determinăm suma valorilor a 101 termeni ai progresiei prin înlocuirea condițiilor date ale problemei noastre în formula:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2.525

Evident, pentru a afla suma termenilor progresiei de la 56 la 101, este necesar să scădem S 55 din S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Astfel, suma progresiei aritmetice pentru acest exemplu este:

s 101 - s 55 = 2.525 - 742,5 = 1.782,5

Exemplu de aplicare practică a progresiei aritmetice

La sfârșitul articolului, să revenim la exemplul unei secvențe aritmetice prezentate în primul paragraf - un taximetru (contor de mașină de taxi). Să luăm în considerare acest exemplu.

Urcarea într-un taxi (care include 3 km de călătorie) costă 50 de ruble. Fiecare kilometru următor este plătit la rata de 22 de ruble/km. Distanta de parcurs este de 30 km. Calculați costul călătoriei.

1. Să renunțăm la primii 3 km, al căror preț este inclus în costul aterizării.

30 - 3 = 27 km.

2. Calculul suplimentar nu este altceva decât analizarea unei serii de numere aritmetice.

Număr membru - numărul de kilometri parcurși (minus primii trei).

Valoarea membrului este suma.

Primul termen din această problemă va fi egal cu 1 = 50 de ruble.

Diferența de progresie d = 22 r.

numărul care ne interesează este valoarea termenului (27+1) al progresiei aritmetice - citirea contorului la sfârșitul celui de-al 27-lea kilometru este 27,999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Calculele datelor din calendar pentru o perioadă arbitrar de lungă se bazează pe formule care descriu anumite secvențe numerice. În astronomie, lungimea orbitei depinde geometric de distanța dintre corpul ceresc și stea. În plus, diverse serii de numere sunt utilizate cu succes în statistică și în alte domenii aplicate ale matematicii.

Un alt tip de succesiune de numere este geometric

Progresia geometrică este caracterizată de rate mai mari de schimbare în comparație cu progresia aritmetică. Nu întâmplător, în politică, sociologie și medicină, pentru a arăta viteza mare de răspândire a unui anumit fenomen, de exemplu, o boală în timpul unei epidemii, ei spun că procesul se dezvoltă în progresie geometrică.

Al N-lea termen al seriei de numere geometrice diferă de cel precedent prin faptul că este înmulțit cu un număr constant - numitorul, de exemplu, primul termen este 1, numitorul este în mod corespunzător egal cu 2, apoi:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - valoarea termenului curent al progresiei geometrice;

b n+1 - formula următorului termen al progresiei geometrice;

q este numitorul progresiei geometrice (un număr constant).

Dacă graficul unei progresii aritmetice este o linie dreaptă, atunci o progresie geometrică pictează o imagine ușor diferită:

Ca și în cazul aritmeticii, progresia geometrică are o formulă pentru valoarea unui termen arbitrar. Orice al n-lea termen al unei progresii geometrice este egal cu produsul primului termen și numitorul progresiei la puterea lui n redus cu unu:

Exemplu. Avem o progresie geometrică cu primul termen egal cu 3 și numitorul progresiei egal cu 1,5. Să găsim al 5-lea termen al progresiei

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Suma unui număr dat de termeni este de asemenea calculată folosind o formulă specială. Suma primilor n termeni ai unei progresii geometrice este egală cu diferența dintre produsul celui de-al n-lea termen al progresiei și numitorul său și primul termen al progresiei, împărțit la numitorul redus cu unu:

Dacă b n este înlocuit folosind formula discutată mai sus, valoarea sumei primilor n termeni ai seriei de numere luate în considerare va lua forma:

Exemplu. Progresia geometrică începe cu primul termen egal cu 1. Numitorul este setat la 3. Să aflăm suma primilor opt termeni.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

I. V. Yakovlev | Materiale de matematică | MathUs.ru

Progresie aritmetică

O progresie aritmetică este un tip special de secvență. Prin urmare, înainte de a defini progresia aritmetică (și apoi geometrică), trebuie să discutăm pe scurt conceptul important de secvență de numere.

Urmare

Imaginează-ți un dispozitiv pe ecranul căruia anumite numere sunt afișate unul după altul. Să spunem 2; 7; 13; 1; 6; 0; 3; : : : Acest set de numere este tocmai un exemplu de succesiune.

Definiție. O secvență de numere este un set de numere în care fiecărui număr i se poate atribui un număr unic (adică asociat cu un singur număr natural)1. Numărul n se numește al n-lea termen al șirului.

Deci, în exemplul de mai sus, primul număr este 2, acesta este primul membru al secvenței, care poate fi notat cu a1; numărul cinci are numărul 6 este al cincilea termen al șirului, care poate fi notat cu a5. Deloc, al n-lea termen secvențele sunt notate cu un (sau bn, cn etc.).

O situație foarte convenabilă este atunci când al n-lea termen al secvenței poate fi specificat printr-o formulă. De exemplu, formula an = 2n 3 specifică succesiunea: 1; 1; 3; 5; 7; : : : Formula an = (1)n specifică succesiunea: 1; 1; 1; 1; : : :

Nu orice set de numere este o secvență. Astfel, un segment nu este o succesiune; conține „prea multe” numere pentru a fi renumerotate. Mulțimea R a tuturor numerelor reale nu este, de asemenea, o secvență. Aceste fapte sunt dovedite în cursul analizei matematice.

Progresia aritmetică: definiții de bază

Acum suntem gata să definim o progresie aritmetică.

Definiție. O progresie aritmetică este o succesiune în care fiecare termen (începând cu al doilea) este egal cu suma termenului anterior și a unui număr fix (numit diferența progresiei aritmetice).

De exemplu, secvența 2; 5; 8; unsprezece; : : : este o progresie aritmetică cu primul termen 2 și diferența 3. Secvența 7; 2; 3; 8; : : : este o progresie aritmetică cu primul termen 7 și diferența 5. Secvența 3; 3; 3; : : : este o progresie aritmetică cu o diferență egală cu zero.

Definiție echivalentă: șirul an se numește progresie aritmetică dacă diferența an+1 an este o valoare constantă (independentă de n).

O progresie aritmetică se numește crescătoare dacă diferența este pozitivă și descrescătoare dacă diferența este negativă.

1 Dar iată o definiție mai concisă: o succesiune este o funcție definită pe mulțimea numerelor naturale. De exemplu, o succesiune de numere reale este o funcție f: N ! R.

În mod implicit, secvențele sunt considerate infinite, adică care conțin un număr infinit de numere. Dar nimeni nu ne deranjează să luăm în considerare secvențe finite; de fapt, orice set finit de numere poate fi numită o secvență finită. De exemplu, secvența finală este 1; 2; 3; 4; 5 este format din cinci numere.

Formula pentru al n-lea termen al unei progresii aritmetice

Este ușor de înțeles că o progresie aritmetică este complet determinată de două numere: primul termen și diferența. Prin urmare, se pune întrebarea: cum, cunoscând primul termen și diferența, găsim un termen arbitrar al unei progresii aritmetice?

Nu este dificil să obțineți formula necesară pentru al n-lea termen al unei progresii aritmetice. Lasă an

progresie aritmetică cu diferență d. Avem:

an+1 = an + d (n = 1; 2; : : :):

În special, scriem:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

și acum devine clar că formula pentru an este:

an = a1 + (n 1)d:

Problema 1. În progresia aritmetică 2; 5; 8; unsprezece; : : : găsiți formula pentru al n-lea termen și calculați al sutelea termen.

Soluţie. Conform formulei (1) avem:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Proprietatea și semnul progresiei aritmetice

Proprietatea progresiei aritmetice. În progresie aritmetică an pentru orice

Cu alte cuvinte, fiecare membru al unei progresii aritmetice (începând de la al doilea) este media aritmetică a membrilor săi vecini.

Dovada. Avem:

a n 1 + a n+1

(an d) + (an + d)

care este ceea ce s-a cerut.

Mai general, progresia aritmetică an satisface egalitatea

a n = a n k + a n+k

pentru orice n > 2 și orice k natural< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Se pare că formula (2) servește nu numai ca o condiție necesară, ci și ca o condiție suficientă pentru ca șirul să fie o progresie aritmetică.

Semnul progresiei aritmetice. Dacă egalitatea (2) este valabilă pentru toate n > 2, atunci șirul an este o progresie aritmetică.

Dovada. Să rescriem formula (2) după cum urmează:

a n a n 1 = a n+1 a n:

Din aceasta putem vedea că diferența an+1 an nu depinde de n, și asta înseamnă tocmai că șirul an este o progresie aritmetică.

Proprietatea și semnul unei progresii aritmetice pot fi formulate sub forma unui enunț; Pentru comoditate, vom face acest lucru pentru trei numere (aceasta este situația care apare adesea în probleme).

Caracterizarea unei progresii aritmetice. Trei numere a, b, c formează o progresie aritmetică dacă și numai dacă 2b = a + c.

Problema 2. (MSU, Facultatea de Economie, 2007) Trei numere 8x, 3 x2 și 4 în ordinea indicată formează o progresie aritmetică descrescătoare. Găsiți x și indicați diferența acestei progresii.

Soluţie. Prin proprietatea progresiei aritmetice avem:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Dacă x = 1, atunci obținem o progresie descrescătoare de 8, 2, 4 cu o diferență de 6. Dacă x = 5, atunci obținem o progresie crescătoare de 40, 22, 4; acest caz nu este potrivit.

Răspuns: x = 1, diferența este 6.

Suma primilor n termeni ai unei progresii aritmetice

Legenda spune că într-o zi profesorul le-a spus copiilor să găsească suma numerelor de la 1 la 100 și s-a așezat în liniște să citească ziarul. Cu toate acestea, în câteva minute, un băiat a spus că a rezolvat problema. Acesta a fost Carl Friedrich Gauss, în vârstă de 9 ani, mai târziu unul dintre cei mai mari matematicieni din istorie.

Ideea micuțului Gauss a fost următoarea. Lăsa

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Să scriem această sumă în ordine inversă:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

și adăugați aceste două formule:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Fiecare termen dintre paranteze este egal cu 101 și există 100 de astfel de termeni în total.

2S = 101 100 = 10100;

Folosim această idee pentru a deriva formula sumei

S = a1 + a2 + : : : + an + a n n: (3)

O modificare utilă a formulei (3) se obține dacă înlocuim formula celui de-al n-lea termen an = a1 + (n 1)d în ea:

2a1 + (n 1)d

Problema 3. Aflați suma tuturor numerelor pozitive din trei cifre divizibile cu 13.

Soluţie. Numere cu trei cifre, multipli de 13, formează o progresie aritmetică cu primul termen 104 și diferența 13; Al n-lea termen al acestei progresii are forma:

an = 104 + 13(n 1) = 91 + 13n:

Să aflăm câți termeni conține progresia noastră. Pentru a face acest lucru, rezolvăm inegalitatea:

un 6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13; n 6 69:

Deci, sunt 69 de membri în progresul nostru. Folosind formula (4) găsim cantitatea necesară:

S = 2 104 + 68 13 69 = 37674: 2


De exemplu, secvența \(2\); \(5\); \(8\); \(unsprezece\); \(14\)... este o progresie aritmetică, deoarece fiecare element ulterior diferă de cel anterior cu trei (se poate obține de la precedentul prin adăugarea a trei):

În această progresie, diferența \(d\) este pozitivă (egală cu \(3\)) și, prin urmare, fiecare termen următor este mai mare decât cel anterior. Se numesc astfel de progresii crescând.

Totuși, \(d\) poate fi și un număr negativ. De exemplu, în progresie aritmetică \(16\); \(10\); \(4\); \(-2\); \(-8\)... diferența de progresie \(d\) este egală cu minus șase.

Și în acest caz, fiecare element următor va fi mai mic decât cel anterior. Aceste progresii se numesc in scadere.

Notarea progresiei aritmetice

Progresul este indicat de o literă latină mică.

Se numesc numerele care formează o progresie membrii(sau elemente).

Ele sunt notate cu aceeași literă ca o progresie aritmetică, dar cu un indice numeric egal cu numărul elementului în ordine.

De exemplu, progresia aritmetică \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) constă din elementele \(a_1=2\); \(a_2=5\); \(a_3=8\) și așa mai departe.

Cu alte cuvinte, pentru progresia \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Rezolvarea problemelor de progresie aritmetică

În principiu, informațiile prezentate mai sus sunt deja suficiente pentru a rezolva aproape orice problemă de progresie aritmetică (inclusiv cele oferite la OGE).

Exemplu (OGE). Progresia aritmetică este specificată de condițiile \(b_1=7; d=4\). Găsiți \(b_5\).
Soluţie:

Răspuns: \(b_5=23\)

Exemplu (OGE). Primii trei termeni ai unei progresii aritmetice sunt dați: \(62; 49; 36…\) Aflați valoarea primului termen negativ al acestei progresii..
Soluţie:

Ni se dau primele elemente ale secvenței și știm că este o progresie aritmetică. Adică, fiecare element diferă de vecinul său prin același număr. Să aflăm care dintre ele scăzând pe cel precedent din următorul element: \(d=49-62=-13\).

Acum ne putem restabili progresul la (primul element negativ) de care avem nevoie.

Gata. Puteți scrie un răspuns.

Răspuns: \(-3\)

Exemplu (OGE). Având în vedere mai multe elemente consecutive ale unei progresii aritmetice: \(…5; x; 10; 12,5...\) Aflați valoarea elementului desemnat de litera \(x\).
Soluţie:


Pentru a găsi \(x\), trebuie să știm cât de mult diferă următorul element față de cel anterior, cu alte cuvinte, diferența de progresie. Să o găsim din două elemente învecinate cunoscute: \(d=12,5-10=2,5\).

Și acum putem găsi cu ușurință ceea ce căutăm: \(x=5+2.5=7.5\).


Gata. Puteți scrie un răspuns.

Răspuns: \(7,5\).

Exemplu (OGE). Progresia aritmetica este definita de urmatoarele conditii: \(a_1=-11\); \(a_(n+1)=a_n+5\) Aflați suma primilor șase termeni ai acestei progresii.
Soluţie:

Trebuie să găsim suma primilor șase termeni ai progresiei. Dar nu le cunoaștem semnificațiile; ni se dă doar primul element. Prin urmare, mai întâi calculăm valorile unul câte unul, folosind ceea ce ni se oferă:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Și după ce am calculat cele șase elemente de care avem nevoie, găsim suma lor.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

S-a găsit suma necesară.

Răspuns: \(S_6=9\).

Exemplu (OGE). În progresie aritmetică \(a_(12)=23\); \(a_(16)=51\). Găsiți diferența acestei progresii.
Soluţie:

Răspuns: \(d=7\).

Formule importante pentru progresia aritmetică

După cum puteți vedea, multe probleme privind progresia aritmetică pot fi rezolvate pur și simplu prin înțelegerea principalului lucru - că o progresie aritmetică este un lanț de numere și fiecare element ulterior din acest lanț se obține prin adăugarea aceluiași număr la cel precedent ( diferența de progresie).

Cu toate acestea, uneori există situații în care decizia „front-on” este foarte incomod. De exemplu, imaginați-vă că în primul exemplu trebuie să găsim nu al cincilea element \(b_5\), ci al trei sute optzeci și șase \(b_(386)\). Ar trebui să adăugăm de patru \(385\) ori? Sau imaginați-vă că în penultimul exemplu trebuie să găsiți suma primelor șaptezeci și trei de elemente. Te vei sătura să numeri...

Prin urmare, în astfel de cazuri ei nu rezolvă lucrurile „direct”, ci folosesc formule speciale derivate pentru progresia aritmetică. Iar cele principale sunt formula pentru al n-lea termen al progresiei și formula pentru suma \(n\) primilor termeni.

Formula celui de-al \(n\)-lea termen: \(a_n=a_1+(n-1)d\), unde \(a_1\) este primul termen al progresiei;
\(n\) – numărul elementului solicitat;
\(a_n\) – termenul progresiei cu număr \(n\).


Această formulă ne permite să găsim rapid chiar și al trei sutele sau milionul de element, cunoscând doar primul și diferența progresiei.

Exemplu. Progresia aritmetica este specificata de conditiile: \(b_1=-159\); \(d=8,2\). Găsiți \(b_(246)\).
Soluţie:

Răspuns: \(b_(246)=1850\).

Formula pentru suma primilor n termeni: \(S_n=\frac(a_1+a_n)(2) \cdot n\), unde



\(a_n\) – ultimul termen însumat;


Exemplu (OGE). Progresia aritmetică este specificată de condițiile \(a_n=3.4n-0.6\). Aflați suma primilor \(25\) termeni ai acestei progresii.
Soluţie:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Pentru a calcula suma primilor douăzeci și cinci de termeni, trebuie să cunoaștem valoarea primului și a douăzeci și cinci de termeni.
Progresia noastră este dată de formula celui de-al n-lea termen în funcție de numărul acestuia (pentru mai multe detalii, vezi). Să calculăm primul element înlocuind cu unul cu \(n\).

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Acum să găsim al douăzeci și cincilea termen înlocuind douăzeci și cinci în loc de \(n\).

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Ei bine, acum putem calcula cu ușurință suma necesară.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Răspunsul este gata.

Răspuns: \(S_(25)=1090\).

Pentru suma \(n\) primilor termeni, puteți obține o altă formulă: trebuie doar să \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) în loc de \(a_n\) înlocuiți formula \(a_n=a_1+(n-1)d\). Primim:

Formula pentru suma primilor n termeni: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), unde

\(S_n\) – suma necesară a \(n\) primele elemente;
\(a_1\) – primul termen însumat;
\(d\) – diferență de progresie;
\(n\) – numărul de elemente în total.

Exemplu. Aflați suma primilor \(33\)-ex termeni ai progresiei aritmetice: \(17\); \(15,5\); \(14\)…
Soluţie:

Răspuns: \(S_(33)=-231\).

Probleme de progresie aritmetică mai complexe

Acum aveți toate informațiile de care aveți nevoie pentru a rezolva aproape orice problemă de progresie aritmetică. Să încheiem subiectul luând în considerare probleme în care nu trebuie doar să aplicați formule, ci și să vă gândiți puțin (la matematică acest lucru poate fi util ☺)

Exemplu (OGE). Aflați suma tuturor termenilor negativi ai progresiei: \(-19,3\); \(-19\); \(-18,7\)…
Soluţie:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Sarcina este foarte asemănătoare cu cea anterioară. Începem să rezolvăm același lucru: mai întâi găsim \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Acum aș vrea să înlocuiesc \(d\) în formula pentru sumă... și aici apare nuanță mică– nu știm \(n\). Cu alte cuvinte, nu știm câți termeni vor trebui adăugați. Cum să aflu? Să ne gândim. Vom opri adăugarea de elemente când ajungem la primul element pozitiv. Adică, trebuie să aflați numărul acestui element. Cum? Să notăm formula pentru calcularea oricărui element al unei progresii aritmetice: \(a_n=a_1+(n-1)d\) pentru cazul nostru.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Avem nevoie ca \(a_n\) să devină mai mare decât zero. Să aflăm la ce \(n\) se va întâmpla asta.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Împărțim ambele părți ale inegalității la \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Transferăm minus unu, fără a uita să schimbăm semnele

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hai sa calculam...

\(n>65.333…\)

...și se dovedește că primul element pozitiv va avea numărul \(66\). În consecință, ultimul negativ are \(n=65\). Pentru orice eventualitate, hai să verificăm asta.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Deci trebuie să adăugăm primele \(65\) elemente.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Răspunsul este gata.

Răspuns: \(S_(65)=-630,5\).

Exemplu (OGE). Progresia aritmetica este specificata de conditiile: \(a_1=-33\); \(a_(n+1)=a_n+4\). Găsiți suma de la \(26\)-lea până la elementul \(42\) inclusiv.
Soluţie:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

În această problemă trebuie să găsiți și suma elementelor, dar începând nu de la primul, ci de la \(26\)-lea. Pentru un astfel de caz nu avem o formulă. Cum să decizi?
Este ușor - pentru a obține suma de la \(26\)-a la \(42\)-a, trebuie mai întâi să găsiți suma de la \(1\)-a la \(42\)-a, apoi să scădeți din ea suma de la primul la \(25\)-lea (vezi poza).


Pentru progresia noastră \(a_1=-33\), și diferența \(d=4\) (la urma urmei, sunt cele patru pe care le adăugăm elementului anterior pentru a găsi următorul). Știind acest lucru, găsim suma primelor elemente \(42\)-y.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Acum suma primelor \(25\) elemente.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Și în sfârșit, calculăm răspunsul.

\(S=S_(42)-S_(25)=2058-375=1683\)

Răspuns: \(S=1683\).

Pentru progresia aritmetică, există mai multe formule pe care nu le-am luat în considerare în acest articol din cauza utilității lor practice scăzute. Cu toate acestea, le puteți găsi cu ușurință.


Da, da: progresia aritmetică nu este o jucărie pentru tine :)

Ei bine, prieteni, dacă citiți acest text, atunci dovada internă a capacului îmi spune că încă nu știți ce este o progresie aritmetică, dar chiar (nu, așa: SOOOOO!) doriți să știți. Prin urmare, nu vă voi chinui cu prezentări lungi și voi ajunge direct la obiect.

În primul rând, câteva exemple. Să ne uităm la mai multe seturi de numere:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ce au în comun toate aceste seturi? La prima vedere, nimic. Dar de fapt există ceva. Și anume: fiecare element următor diferă de cel precedent prin același număr.

Judecă singur. Primul set este pur și simplu numere consecutive, fiecare următor fiind cu unul mai mult decât precedentul. În al doilea caz, diferența dintre serii numere în picioare este deja egală cu cinci, dar această diferență este încă constantă. În al treilea caz, există rădăcini cu totul. Cu toate acestea, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ și $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, adică. și în acest caz, fiecare element următor crește pur și simplu cu $\sqrt(2)$ (și nu vă fie teamă că acest număr este irațional).

Deci: toate astfel de secvențe se numesc progresii aritmetice. Să dăm o definiție strictă:

Definiție. O succesiune de numere în care fiecare următor diferă de precedentul prin exact aceeași cantitate se numește progresie aritmetică. Însuși valoarea cu care numerele diferă se numește diferență de progresie și este cel mai adesea notă cu litera $d$.

Notație: $\left(((a)_(n)) \right)$ este progresia în sine, $d$ este diferența acesteia.

Și doar câteva note importante. În primul rând, progresia este luată în considerare ordonat succesiune de numere: au voie să fie citite strict în ordinea în care sunt scrise - și nimic altceva. Numerele nu pot fi rearanjate sau schimbate.

În al doilea rând, succesiunea în sine poate fi fie finită, fie infinită. De exemplu, mulțimea (1; 2; 3) este în mod evident o progresie aritmetică finită. Dar dacă scrieți ceva în spirit (1; 2; 3; 4; ...) - aceasta este deja o progresie infinită. Elipsele de după cele patru par să sugereze că mai urmează destul de multe numere. Infinit multe, de exemplu. :)

De asemenea, aș dori să remarc că progresiile pot fi în creștere sau în scădere. Am văzut deja crescătoare - același set (1; 2; 3; 4; ...). Iată exemple de progresii în scădere:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Bine, bine: ultimul exemplu poate părea excesiv de complicat. Dar restul cred că ai înțeles. Prin urmare, introducem noi definiții:

Definiție. O progresie aritmetica se numeste:

  1. crescând dacă fiecare element următor este mai mare decât cel anterior;
  2. descrescătoare dacă, dimpotrivă, fiecare element ulterior este mai mic decât cel anterior.

În plus, există așa-numitele secvențe „staționare” - ele constau din același număr care se repetă. De exemplu, (3; 3; 3; ...).

Rămâne o singură întrebare: cum să distingem o progresie crescătoare de una în scădere? Din fericire, totul aici depinde doar de semnul numărului $d$, adică. diferente de progresie:

  1. Dacă $d \gt 0$, atunci progresia crește;
  2. Dacă $d \lt 0$, atunci progresia este în mod evident în scădere;
  3. În sfârșit, există cazul $d=0$ - în acest caz întreaga progresie se reduce la o succesiune staționară de numere identice: (1; 1; 1; 1; ...), etc.

Să încercăm să calculăm diferența $d$ pentru cele trei progresii descrescătoare prezentate mai sus. Pentru a face acest lucru, este suficient să luați oricare două elemente adiacente (de exemplu, primul și al doilea) și să scădeți numărul din stânga din numărul din dreapta. Va arata asa:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

După cum putem vedea, în toate cele trei cazuri diferența sa dovedit a fi de fapt negativă. Și acum că ne-am dat seama mai mult sau mai puțin definițiile, este timpul să ne dăm seama cum sunt descrise progresiile și ce proprietăți au acestea.

Termeni de progresie și formula de recurență

Deoarece elementele secvențelor noastre nu pot fi schimbate, ele pot fi numerotate:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3) )),... \dreapta\)\]

Elementele individuale ale acestui set sunt numite membri ai unei progresii. Ele sunt indicate printr-un număr: primul membru, al doilea membru etc.

În plus, după cum știm deja, termenii învecinați ai progresiei sunt legați prin formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Pe scurt, pentru a găsi al $n$-lea termen al unei progresii, trebuie să cunoașteți $n-1$-lea termen și diferența $d$. Această formulă se numește recurentă, deoarece cu ajutorul ei poți găsi orice număr doar cunoscând-o pe precedentul (și de fapt, pe toate precedentele). Acest lucru este foarte incomod, deci există o formulă mai vicleană care reduce orice calcul la primul termen și diferența:

\[((a)_(n))=((a)_(1))+\stanga(n-1 \dreapta)d\]

Probabil că ați întâlnit deja această formulă. Le place să-l ofere în tot felul de cărți de referință și cărți de soluții. Și în orice manual de matematică sensibil este unul dintre primele.

Totuși, vă sugerez să exersați puțin.

Sarcina nr. 1. Notați primii trei termeni ai progresiei aritmetice $\left(((a)_(n)) \right)$ dacă $((a)_(1))=8,d=-5$.

Soluţie. Deci, cunoaștem primul termen $((a)_(1))=8$ și diferența de progresie $d=-5$. Să folosim formula tocmai dată și să înlocuim $n=1$, $n=2$ și $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Răspuns: (8; 3; −2)

Asta e tot! Vă rugăm să rețineți: progresul nostru este în scădere.

Desigur, $n=1$ nu a putut fi înlocuit - primul termen este deja cunoscut de noi. Totuși, înlocuind unitatea, am fost convinși că și pentru primul termen formula noastră funcționează. În alte cazuri, totul s-a rezumat la aritmetică banală.

Sarcina nr. 2. Scrieți primii trei termeni ai unei progresii aritmetice dacă al șaptelea termen este egal cu -40 și al șaptesprezecelea termen este egal cu -50.

Soluţie. Să scriem condiția problemei în termeni familiari:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \dreapta.\]

Am pus semnul de sistem pentru că aceste cerințe trebuie îndeplinite simultan. Acum să observăm că, dacă o scădem pe prima din a doua ecuație (avem dreptul să facem asta, deoarece avem un sistem), obținem asta:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Așa este de ușor să găsești diferența de progresie! Tot ce rămâne este să înlocuiți numărul găsit în oricare dintre ecuațiile sistemului. De exemplu, în primul:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrice)\]

Acum, cunoscând primul termen și diferența, rămâne să găsim al doilea și al treilea termen:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gata! Problema este rezolvată.

Răspuns: (−34; −35; −36)

Observați proprietatea interesantă a progresiei pe care am descoperit-o: dacă luăm termenii $n$th și $m$th și îi scădem unul de celălalt, obținem diferența de progresie înmulțită cu numărul $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simplu dar foarte proprietate utilă, pe care trebuie neapărat să-l cunoașteți - cu ajutorul lui puteți accelera semnificativ rezolvarea multor probleme de progresie. Iată un exemplu clar în acest sens:

Sarcina nr. 3. Al cincilea termen al unei progresii aritmetice este 8,4, iar al zecelea termen este 14,4. Găsiți al cincisprezecelea termen al acestei progresii.

Soluţie. Deoarece $((a)_(5))=8,4$, $((a)_(10))=14,4$ și trebuie să găsim $((a)_(15))$, observăm următoarele:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Dar prin condiția $((a)_(10))-((a)_(5))=14.4-8.4=6$, deci $5d=6$, din care avem:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Răspuns: 20.4

Asta e tot! Nu a fost nevoie să creăm sisteme de ecuații și să calculăm primul termen și diferența - totul a fost rezolvat în doar câteva linii.

Acum să ne uităm la un alt tip de problemă - căutarea termenilor negativi și pozitivi ai unei progresii. Nu este un secret că, dacă o progresie crește, iar primul său termen este negativ, atunci mai devreme sau mai târziu vor apărea termeni pozitivi în ea. Și invers: termenii unei progresii în scădere vor deveni mai devreme sau mai târziu negativi.

În același timp, nu este întotdeauna posibil să găsiți acest moment „în față” parcurgând secvențial elementele. Adesea, problemele sunt scrise în așa fel încât, fără a cunoaște formulele, calculele ar dura mai multe coli de hârtie – pur și simplu am adormi în timp ce găsim răspunsul. Prin urmare, să încercăm să rezolvăm aceste probleme într-un mod mai rapid.

Sarcina nr. 4. Câți termeni negativi există în progresia aritmetică −38,5; −35,8; ...?

Soluţie. Deci, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, de unde găsim imediat diferența:

Rețineți că diferența este pozitivă, deci progresia crește. Primul termen este negativ, așa că într-adevăr, la un moment dat, ne vom împiedica de numere pozitive. Singura întrebare este când se va întâmpla asta.

Să încercăm să aflăm: până când (adică până ce numar natural$n$) negativitatea termenilor se păstrează:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \dreapta. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ultima linie necesită câteva explicații. Deci știm că $n \lt 15\frac(7)(27)$. Pe de altă parte, ne mulțumim doar cu valori întregi ale numărului (mai mult: $n\in \mathbb(N)$), deci cel mai mare număr permis este tocmai $n=15$ și în niciun caz 16 .

Sarcina nr. 5. În progresie aritmetică $(()_(5))=-150,(()_(6))=-147$. Aflați numărul primului termen pozitiv al acestei progresii.

Aceasta ar fi exact aceeași problemă ca cea anterioară, dar nu știm $((a)_(1))$. Dar termenii vecini sunt cunoscuți: $((a)_(5))$ și $((a)_(6))$, așa că putem găsi cu ușurință diferența de progresie:

În plus, să încercăm să exprimăm al cincilea termen prin primul și diferența folosind formula standard:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Acum procedăm prin analogie cu sarcina anterioară. Să aflăm în ce moment în succesiunea noastră vor apărea numerele pozitive:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Soluția întreagă minimă a acestei inegalități este numărul 56.

Vă rugăm să rețineți: în ultima sarcină totul s-a rezumat la inegalitate strictă, deci opțiunea $n=55$ nu ne va potrivi.

Acum că am învățat cum să rezolvăm probleme simple, să trecem la altele mai complexe. Dar mai întâi, să studiem o altă proprietate foarte utilă a progresiilor aritmetice, care ne va economisi mult timp și celule inegale în viitor. :)

Media aritmetică și indentări egale

Să luăm în considerare câțiva termeni consecutivi ai progresiei aritmetice crescătoare $\left(((a)_(n)) \right)$. Să încercăm să le marchem pe linia numerică:

Termenii unei progresii aritmetice pe dreapta numerică

Am marcat în mod special termeni arbitrari $((a)_(n-3)),...,((a)_(n+3))$, și nu niște $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Pentru că regula despre care vă voi spune acum funcționează la fel pentru orice „segment”.

Și regula este foarte simplă. Să ne amintim formula recurentă și să o notăm pentru toți termenii marcați:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Cu toate acestea, aceste egalități pot fi rescrise diferit:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Ei bine, ce? Și faptul că termenii $((a)_(n-1))$ și $((a)_(n+1))$ se află la aceeași distanță de $((a)_(n)) $ . Și această distanță este egală cu $d$. Același lucru se poate spune despre termenii $((a)_(n-2))$ și $((a)_(n+2))$ - sunt, de asemenea, eliminați din $((a)_(n) )$ la aceeași distanță egală cu $2d$. Putem continua la infinit, dar sensul este bine ilustrat de imagine


Termenii progresiei se află la aceeași distanță de centru

Ce înseamnă asta pentru noi? Aceasta înseamnă că $((a)_(n))$ poate fi găsit dacă numerele învecinate sunt cunoscute:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Am obținut o afirmație excelentă: fiecare termen al unei progresii aritmetice este egal cu media aritmetică a termenilor învecinați! Mai mult decât atât: ne putem întoarce de la $((a)_(n))$ la stânga și la dreapta nu cu un pas, ci cu $k$ pași - și formula va fi în continuare corectă:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Acestea. putem găsi cu ușurință câțiva $((a)_(150))$ dacă știm $((a)_(100))$ și $((a)_(200))$, deoarece $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. La prima vedere, poate părea că acest fapt nu ne oferă nimic util. Cu toate acestea, în practică, multe probleme sunt special adaptate pentru a utiliza media aritmetică. Aruncă o privire:

Sarcina nr. 6. Găsiți toate valorile lui $x$ pentru care numerele $-6((x)^(2))$, $x+1$ și $14+4((x)^(2))$ sunt termeni consecutivi ai o progresie aritmetică (în ordinea indicată).

Soluţie. Deoarece aceste numere sunt membre ale unei progresii, condiția mediei aritmetice este îndeplinită pentru ele: elementul central $x+1$ poate fi exprimat în termeni de elemente învecinate:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

A ieșit clasic ecuație pătratică. Rădăcinile sale: $x=2$ și $x=-3$ sunt răspunsurile.

Răspuns: −3; 2.

Sarcina nr. 7. Găsiți valorile lui $$ pentru care numerele $-1;4-3;(()^(2))+1$ formează o progresie aritmetică (în această ordine).

Soluţie. Să exprimăm din nou termenul mijlociu prin media aritmetică a termenilor vecini:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Din nou ecuația cuadratică. Și din nou există două rădăcini: $x=6$ și $x=1$.

Raspunsul 1; 6.

Dacă în procesul de rezolvare a unei probleme vii cu niște numere brutale, sau nu ești complet sigur de corectitudinea răspunsurilor găsite, atunci există o tehnică minunată care îți permite să verifici: am rezolvat corect problema?

Să presupunem că în problema nr. 6 am primit răspunsurile −3 și 2. Cum putem verifica dacă aceste răspunsuri sunt corecte? Să le conectăm la starea originală și să vedem ce se întâmplă. Permiteți-mi să vă reamintesc că avem trei numere ($-6(()^(2))$, $+1$ și $14+4(()^(2))$), care trebuie să formeze o progresie aritmetică. Să înlocuim $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Am obținut numerele −54; −2; 50 care diferă cu 52 este, fără îndoială, o progresie aritmetică. Același lucru se întâmplă și pentru $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Din nou o progresie, dar cu o diferență de 27. Astfel, problema a fost rezolvată corect. Cei care doresc pot verifica singuri a doua problemă, dar voi spune imediat: totul este corect și acolo.

În general, rezolvând ultimele probleme, am dat peste alta fapt interesant, care trebuie reținut și:

Dacă trei numere sunt astfel încât al doilea este mijlocul mai întâi aritmeticași în sfârșit, atunci aceste numere formează o progresie aritmetică.

În viitor, înțelegerea acestei afirmații ne va permite să „construim” literalmente progresiile necesare pe baza condițiilor problemei. Dar înainte de a ne angaja într-o astfel de „construcție”, ar trebui să fim atenți la încă un fapt, care decurge direct din ceea ce a fost deja discutat.

Gruparea și însumarea elementelor

Să revenim din nou la axa numerelor. Să notăm acolo câțiva membri ai progresiei, între care, poate. valorează mulți alți membri:

Pe linia numerică sunt marcate 6 elemente

Să încercăm să exprimăm „coada din stânga” prin $((a)_(n))$ și $d$, iar „coada din dreapta” prin $((a)_(k))$ și $d$. E foarte simplu:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Acum rețineți că următoarele sume sunt egale:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mai simplu spus, dacă considerăm ca început două elemente ale progresiei, care în total sunt egale cu un anumit număr $S$, și apoi începem să pășim din aceste elemente în direcții opuse (unul către celălalt sau invers pentru a se îndepărta), apoi sumele elementelor de care ne vom împiedica vor fi de asemenea egale$S$. Acest lucru poate fi cel mai clar reprezentat grafic:


Indentațiile egale dau cantități egale

Înţelegere Acest lucru ne va permite să rezolvăm probleme cu un nivel fundamental de complexitate mai mare decât cele pe care le-am considerat mai sus. De exemplu, acestea:

Sarcina nr. 8. Determinați diferența unei progresii aritmetice în care primul termen este 66, iar produsul dintre al doilea și al doisprezecelea termeni este cel mai mic posibil.

Soluţie. Să scriem tot ce știm:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Deci, nu cunoaștem diferența de progresie $d$. De fapt, întreaga soluție va fi construită în jurul diferenței, deoarece produsul $((a)_(2))\cdot ((a)_(12))$ poate fi rescris după cum urmează:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Pentru cei din rezervor: am luat multiplicatorul total de 11 din a doua paranteză. Astfel, produsul dorit este o funcție pătratică față de variabila $d$. Prin urmare, luați în considerare funcția $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - graficul său va fi o parabolă cu ramuri în sus, deoarece dacă extindem parantezele, obținem:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

După cum puteți vedea, coeficientul celui mai mare termen este 11 - acesta este un număr pozitiv, deci avem de-a face cu o parabolă cu ramuri în sus:


programa funcţie pătratică- parabola

Vă rugăm să rețineți: această parabolă își ia valoarea minimă la vârful său cu abscisa $((d)_(0))$. Desigur, putem calcula această abscisă folosind schema standard (există formula $((d)_(0))=(-b)/(2a)\;$), dar ar fi mult mai rezonabil să remarcăm că vârful dorit se află pe axa de simetrie a parabolei, prin urmare punctul $((d)_(0))$ este echidistant de rădăcinile ecuației $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

De aceea nu m-am grăbit să deschid parantezele: în forma lor originală, rădăcinile erau foarte, foarte ușor de găsit. Prin urmare, abscisa este egală cu media numere aritmetice−66 și −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ce ne oferă numărul descoperit? Cu ea, produsul necesar ia cea mai mică valoare(apropo, nu am calculat niciodată $((y)_(\min ))$ - nu ni se cere acest lucru). În același timp, acest număr este diferența progresiei inițiale, adică. am gasit raspunsul. :)

Răspuns: −36

Sarcina nr. 9. Între numerele $-\frac(1)(2)$ și $-\frac(1)(6)$ introduceți trei numere astfel încât împreună cu aceste numere să formeze o progresie aritmetică.

Soluţie. În esență, trebuie să facem o secvență de cinci numere, cu primul și ultimul număr deja cunoscute. Să notăm numerele lipsă prin variabilele $x$, $y$ și $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Rețineți că numărul $y$ este „mijlocul” secvenței noastre - este echidistant de numerele $x$ și $z$ și de numerele $-\frac(1)(2)$ și $-\frac (1)( 6)$. Și dacă din numerele $x$ și $z$ ne aflăm acest moment nu putem obține $y$, atunci situația este diferită cu sfârșitul progresiei. Să ne amintim media aritmetică:

Acum, cunoscând $y$, vom găsi numerele rămase. Rețineți că $x$ se află între numerele $-\frac(1)(2)$ și $y=-\frac(1)(3)$ pe care tocmai le-am găsit. De aceea

Folosind un raționament similar, găsim numărul rămas:

Gata! Am găsit toate cele trei numere. Să le scriem în răspuns în ordinea în care ar trebui să fie introduse între numerele originale.

Răspuns: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Sarcina nr. 10. Între numerele 2 și 42, introduceți mai multe numere care, împreună cu aceste numere, formează o progresie aritmetică, dacă știți că suma primului, al doilea și ultimul dintre numerele introduse este 56.

Soluţie. Chiar mai mult sarcină dificilă, care însă se rezolvă după aceeași schemă ca și cele precedente - prin media aritmetică. Problema este că nu știm exact câte numere trebuie introduse. Prin urmare, să presupunem pentru certitudine că după ce ați inserat totul vor fi exact $n$ numere, iar primul dintre ele este 2, iar ultimul este 42. În acest caz, progresia aritmetică necesară poate fi reprezentată sub forma:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \dreapta\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Rețineți, totuși, că numerele $((a)_(2))$ și $((a)_(n-1))$ sunt obținute din numerele 2 și 42 de la margini cu un pas unul spre celălalt, adică . spre centrul secvenței. Și asta înseamnă că

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Dar atunci expresia scrisă mai sus poate fi rescrisă după cum urmează:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Cunoscând $((a)_(3))$ și $((a)_(1))$, putem găsi cu ușurință diferența progresiei:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Săgeată la dreapta d=5. \\ \end(align)\]

Tot ce rămâne este să găsiți termenii rămași:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Astfel, deja la pasul 9 vom ajunge la capătul din stânga secvenței – numărul 42. În total, au trebuit introduse doar 7 numere: 7; 12; 17; 22; 27; 32; 37.

Răspuns: 7; 12; 17; 22; 27; 32; 37

Probleme de cuvinte cu progresii

În concluzie, aș dori să iau în considerare câteva probleme relativ simple. Ei bine, la fel de simplu: pentru majoritatea elevilor care studiază matematica la școală și nu au citit ce este scris mai sus, aceste probleme pot părea grele. Cu toate acestea, acestea sunt tipurile de probleme care apar în OGE și examenul de stat unificat la matematică, așa că vă recomand să vă familiarizați cu ele.

Sarcina nr. 11. Echipa a produs 62 de piese în ianuarie, iar în fiecare lună următoare a produs cu 14 piese mai multe decât în ​​luna precedentă. Câte piese a produs echipa în noiembrie?

Soluţie. Evident, numărul de piese enumerate pe lună va reprezenta o progresie aritmetică din ce în ce mai mare. În plus:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Noiembrie este a 11-a lună a anului, așa că trebuie să găsim $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Prin urmare, în noiembrie vor fi produse 202 piese.

Sarcina nr. 12. Atelierul de legătorie a legat 216 cărți în ianuarie, iar în fiecare lună următoare a legat cu 4 cărți mai multe decât în ​​luna precedentă. Câte cărți a legat atelierul în decembrie?

Soluţie. Tot la fel:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Decembrie este ultima, a 12-a lună a anului, așa că căutăm $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Acesta este răspunsul - 260 de cărți vor fi legate în decembrie.

Ei bine, dacă ați citit până aici, mă grăbesc să vă felicit: „desigur tânăr luptător„În progresiile aritmetice ai trecut cu succes. Puteți trece în siguranță la următoarea lecție, unde vom studia formula pentru suma progresiei, precum și consecințele importante și foarte utile din aceasta.

Atenţie!
Există suplimentare
materiale din secțiunea specială 555.
Pentru cei care sunt foarte „nu foarte...”
Și pentru cei care „foarte mult...”)

O progresie aritmetică este o serie de numere în care fiecare număr este mai mare (sau mai mic) decât cel anterior cu aceeași cantitate.

Acest subiect pare adesea complex și de neînțeles. Indicii literelor, al n-lea termen al progresiei, diferența progresiei - toate acestea sunt oarecum confuze, da... Să ne dăm seama ce înseamnă progresia aritmetică și totul se va îmbunătăți imediat.)

Conceptul de progresie aritmetică.

Progresia aritmetică este un concept foarte simplu și clar. Ai vreo îndoială? Degeaba.) Vezi singur.

Voi scrie o serie neterminată de numere:

1, 2, 3, 4, 5, ...

Poți extinde această serie? Ce numere vor urma, după cele cinci? Toată lumea... uh..., pe scurt, toată lumea își va da seama că vor urma numerele 6, 7, 8, 9 etc.

Să complicăm sarcina. Vă dau o serie neterminată de numere:

2, 5, 8, 11, 14, ...

Veți putea să prindeți modelul, să extindeți seria și să denumiți al șaptelea numărul rândului?

Dacă ți-ai dat seama că acest număr este 20, felicitări! Nu numai că ai simțit puncte cheie ale progresiei aritmetice, dar și le-a folosit cu succes în afaceri! Dacă nu ți-ai dat seama, citește mai departe.

Acum să traducem punctele cheie din senzații în matematică.)

Primul punct cheie.

Progresia aritmetică se ocupă de serii de numere. Acest lucru este confuz la început. Suntem obișnuiți să rezolvăm ecuații, să desenăm grafice și toate astea... Dar aici extindem seria, găsim numărul seriei...

E bine. Doar că progresiile sunt prima cunoaștere cu o nouă ramură a matematicii. Secțiunea se numește „Serii” și funcționează în mod specific cu serii de numere și expresii. Obisnuieste-te.)

Al doilea punct cheie.

Într-o progresie aritmetică, orice număr este diferit de cel precedent cu aceeași sumă.

În primul exemplu, această diferență este una. Indiferent de numărul pe care îl luați, este cu unul mai mult decât cel anterior. În al doilea - trei. Orice număr este cu trei mai mult decât precedentul. De fapt, acest moment ne oferă posibilitatea de a înțelege modelul și de a calcula numerele ulterioare.

Al treilea punct cheie.

Acest moment nu este izbitor, da... Dar este foarte, foarte important. Aici era: Fiecare număr de progresie este la locul său. Există primul număr, există al șaptelea, există al patruzeci și cinci, etc. Dacă le amesteci la întâmplare, modelul va dispărea. De asemenea, progresia aritmetică va dispărea. Ceea ce a mai rămas este doar o serie de numere.

Asta e toată ideea.

Desigur, noi termeni și denumiri apar într-un subiect nou. Trebuie să le cunoști. Altfel nu vei înțelege sarcina. De exemplu, va trebui să decideți ceva de genul:

Notați primii șase termeni ai progresiei aritmetice (a n), dacă a 2 = 5, d = -2,5.

Inspirant?) Scrisori, niște indexuri... Și sarcina, apropo, nu ar putea fi mai simplă. Trebuie doar să înțelegeți semnificația termenilor și a denumirilor. Acum vom stăpâni această chestiune și ne vom întoarce la sarcină.

Termeni și denumiri.

Progresie aritmetică este o serie de numere în care fiecare număr este diferit de cel precedent cu aceeași sumă.

Această cantitate se numește . Să ne uităm la acest concept mai detaliat.

Diferența de progresie aritmetică.

Diferența de progresie aritmetică este valoarea cu care orice număr de progresie Mai mult precedentul.

unu punct important. Vă rugăm să acordați atenție cuvântului "Mai mult". Din punct de vedere matematic, aceasta înseamnă că fiecare număr de progresie este prin adăugarea diferența de progresie aritmetică față de numărul anterior.

Pentru a calcula, să zicem al doilea numerele seriei, trebuie primul număr adăuga tocmai această diferență a unei progresii aritmetice. Pentru calcul a cincea- este necesara diferenta adăuga La Al patrulea, bine, etc.

Diferența de progresie aritmetică Pot fi pozitiv, atunci fiecare număr din serie se va dovedi a fi real mai mult decât precedentul. Această progresie se numește crescând. De exemplu:

8; 13; 18; 23; 28; .....

Aici se obține fiecare număr prin adăugarea număr pozitiv, +5 față de cel precedent.

Diferența poate fi negativ, atunci fiecare număr din serie va fi mai puțin decât precedentul. Această progresie se numește (nu o să crezi!) in scadere.

De exemplu:

8; 3; -2; -7; -12; .....

Aici se obține și fiecare număr prin adăugarea la precedentul, dar deja un număr negativ, -5.

Apropo, atunci când lucrați cu progresie, este foarte util să determinați imediat natura acesteia - dacă este în creștere sau în scădere. Acest lucru vă ajută foarte mult să navigați prin decizie, să vă identificați greșelile și să le corectați înainte de a fi prea târziu.

Diferența de progresie aritmetică notată de obicei prin literă d.

Cum să găsești d? Foarte simplu. Este necesar să se scadă din orice număr din serie anterior număr. Scădea. Apropo, rezultatul scăderii se numește „diferență”.)

Să definim, de exemplu, d pentru creșterea progresiei aritmetice:

2, 5, 8, 11, 14, ...

Luăm orice număr din serie pe care îl dorim, de exemplu, 11. Scădem din el numărul anterior acestea. 8:

Acesta este răspunsul corect. Pentru această progresie aritmetică, diferența este de trei.

O poți lua orice număr de progresie, deoarece pentru o anumită progresie d-întotdeauna la fel. Cel puțin undeva la începutul rândului, cel puțin la mijloc, cel puțin oriunde. Nu poți lua doar primul număr. Pur și simplu pentru că primul număr nici unul precedent.)

Apropo, știind asta d=3, găsirea celui de-al șaptelea număr al acestei progresii este foarte simplă. Să adăugăm 3 la al cincilea număr - obținem al șaselea, va fi 17. Să adăugăm trei la al șaselea număr, obținem al șaptelea număr - douăzeci.

Să definim d pentru progresia aritmetică descrescătoare:

8; 3; -2; -7; -12; .....

Vă reamintesc că, indiferent de semne, să se determine d nevoie de la orice număr ia-l pe cel precedent. Alegeți orice număr de progres, de exemplu -7. Numărul său anterior este -2. Apoi:

d = -7 - (-2) = -7 + 2 = -5

Diferența unei progresii aritmetice poate fi orice număr: întreg, fracțional, irațional, orice număr.

Alți termeni și denumiri.

Fiecare număr din serie este numit membru al unei progresii aritmetice.

Fiecare membru al progresiei are propriul număr. Cifrele sunt strict în ordine, fără trucuri. Primul, al doilea, al treilea, al patrulea etc. De exemplu, în progresia 2, 5, 8, 11, 14, ... doi este primul termen, cinci este al doilea, unsprezece este al patrulea, bine, înțelegeți...) Vă rugăm să înțelegeți clar - numerele în sine poate fi absolut orice, întreg, fracționat, negativ, orice, dar numerotarea numerelor- strict în ordine!

Cum se scrie o progresie în vedere generala? Nici o problemă! Fiecare număr dintr-o serie este scris ca o literă. Pentru a desemna o progresie aritmetică, se folosește de obicei litera A. Numărul membrului este indicat printr-un index în dreapta jos. Scriem termeni separați prin virgule (sau punct și virgulă), astfel:

un 1, un 2, un 3, un 4, un 5, .....

a 1- acesta este primul număr, a 3- al treilea etc. Nimic de lux. Această serie poate fi scrisă pe scurt astfel: (un n).

Se întâmplă progrese finit și infinit.

Final progresia are un număr limitat de membri. Cinci, treizeci și opt, orice. Dar este un număr finit.

Infinit progresie - are un număr infinit de membri, după cum ați putea ghici.)

Puteți scrie progresia finală printr-o serie ca aceasta, toți termenii și un punct la sfârșit:

un 1, un 2, un 3, un 4, un 5.

Sau așa, dacă sunt mulți membri:

un 1, un 2, ... un 14, un 15.

În intrarea scurtă va trebui să indicați suplimentar numărul de membri. De exemplu (pentru douăzeci de membri), astfel:

(a n), n = 20

O progresie infinită poate fi recunoscută prin punctele de suspensie de la sfârșitul rândului, ca în exemplele din această lecție.

Acum puteți rezolva sarcinile. Sarcinile sunt simple, doar pentru înțelegerea semnificației unei progresii aritmetice.

Exemple de sarcini privind progresia aritmetică.

Să ne uităm la sarcina dată mai sus în detaliu:

1. Scrieți primii șase termeni ai progresiei aritmetice (a n), dacă a 2 = 5, d = -2,5.

Traducem sarcina într-un limbaj ușor de înțeles. Este dată o progresie aritmetică infinită. Al doilea număr al acestei progresii este cunoscut: a 2 = 5. Diferența de progresie este cunoscută: d = -2,5. Trebuie să găsim primul, al treilea, al patrulea, al cincilea și al șaselea termen al acestei progresii.

Pentru claritate, voi scrie o serie în funcție de condițiile problemei. Primii șase termeni, în care al doilea termen este cinci:

un 1, 5, un 3, un 4, un 5, un 6,...

a 3 = a 2 + d

Înlocuiți în expresie a 2 = 5Și d = -2,5. Nu uita de minus!

a 3=5+(-2,5)=5 - 2,5 = 2,5

Al treilea termen s-a dovedit a fi mai mic decât al doilea. Totul este logic. Dacă numărul este mai mare decât cel precedent negativ valoare, ceea ce înseamnă că numărul în sine va fi mai mic decât cel anterior. Progresia este în scădere. Bine, să luăm în considerare.) Numărăm al patrulea termen al seriei noastre:

a 4 = a 3 + d

a 4=2,5+(-2,5)=2,5 - 2,5 = 0

un 5 = a 4 + d

un 5=0+(-2,5)= - 2,5

a 6 = un 5 + d

a 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

Deci, au fost calculati termeni de la al treilea la al saselea. Rezultatul este următoarea serie:

a 1, 5, 2,5, 0, -2,5, -5, ....

Rămâne de găsit primul termen a 1 conform binecunoscutei secunde. Acesta este un pas în cealaltă direcție, spre stânga.) Deci, diferența de progresie aritmetică d nu trebuie adăugată a 2, A la pachet:

a 1 = a 2 - d

a 1=5-(-2,5)=5 + 2,5=7,5

Asta este. Răspuns la sarcină:

7,5, 5, 2,5, 0, -2,5, -5, ...

În treacăt, aș dori să notez că am rezolvat această sarcină recurent cale. Acest cuvânt teribil înseamnă doar căutarea unui membru al progresiei conform numărului anterior (adiacent). Vom analiza mai jos alte moduri de a lucra cu progresia.

Din această sarcină simplă se poate trage o concluzie importantă.

Tine minte:

Dacă cunoaștem cel puțin un termen și diferența unei progresii aritmetice, putem găsi orice termen al acestei progresii.

Vă amintiți? Această concluzie simplă vă permite să rezolvați majoritatea problemelor cursului școlar pe această temă. Toate sarcinile se învârt în jurul a trei parametri principali: membru al unei progresii aritmetice, diferență a unei progresii, număr al unui membru al progresiei. Toate.

Desigur, toată algebra anterioară nu este anulată.) Inegalitățile, ecuațiile și alte lucruri sunt atașate progresiei. Dar conform progresiei în sine- totul se învârte în jurul a trei parametri.

De exemplu, să ne uităm la câteva sarcini populare pe acest subiect.

2. Scrieți progresia aritmetică finită ca o serie dacă n=5, d = 0,4 și a 1 = 3,6.

Totul este simplu aici. Totul a fost deja dat. Trebuie să vă amintiți cum sunt numărați membrii unei progresii aritmetice, să-i numărați și să le scrieți. Este recomandabil să nu pierdeți cuvintele din condițiile sarcinii: „final” și „ n=5". Pentru a nu număra până nu ești complet albastru la față.) Există doar 5 (cinci) membri în această progresie:

a 2 = a 1 + d = 3,6 + 0,4 = 4

a 3 = a 2 + d = 4 + 0,4 = 4,4

a 4 = a 3 + d = 4,4 + 0,4 = 4,8

un 5 = a 4 + d = 4,8 + 0,4 = 5,2

Rămâne de scris răspunsul:

3,6; 4; 4,4; 4,8; 5,2.

O altă sarcină:

3. Stabiliți dacă numărul 7 va fi membru al progresiei aritmetice (a n), dacă a 1 = 4,1; d = 1,2.

Hmm... Cine știe? Cum să determine ceva?

Cum-cum... Notează progresia sub forma unei serii și vezi dacă va fi un șapte acolo sau nu! Numaram:

a 2 = a 1 + d = 4,1 + 1,2 = 5,3

a 3 = a 2 + d = 5,3 + 1,2 = 6,5

a 4 = a 3 + d = 6,5 + 1,2 = 7,7

4,1; 5,3; 6,5; 7,7; ...

Acum se vede clar că suntem doar șapte strecurat prin intre 6,5 si 7,7! Șapte nu s-au înscris în seria noastră de numere și, prin urmare, șapte nu vor fi un membru al progresiei date.

Raspuns: nu.

Iată o problemă bazată pe opțiune reală GIA:

4. Se scriu mai mulți termeni consecutivi ai progresiei aritmetice:

...; 15; X; 9; 6; ...

Iată o serie scrisă fără sfârșit și fără început. Fără numere de membri, fără diferențe d. E bine. Pentru a rezolva problema, este suficient să înțelegeți semnificația unei progresii aritmetice. Să ne uităm și să vedem ce este posibil a sti din seria asta? Care sunt cei trei parametri principali?

Numerele membrilor? Nu există un singur număr aici.

Dar sunt trei numere și - atenție! - cuvânt "consistent" in conditie. Aceasta înseamnă că numerele sunt strict în ordine, fără lacune. Sunt două în acest rând? vecine numere cunoscute? Da, am! Acestea sunt 9 și 6. Prin urmare, putem calcula diferența progresiei aritmetice! Scădeți din șase anterior număr, adică nouă:

Au mai rămas doar fleacuri. Ce număr va fi cel anterior pentru X? Cincisprezece. Aceasta înseamnă că X poate fi găsit cu ușurință prin simplă adăugare. Adăugați diferența progresiei aritmetice la 15:

Asta e tot. Răspuns: x=12

Următoarele probleme le rezolvăm singuri. Notă: aceste probleme nu se bazează pe formule. Pur și simplu pentru a înțelege semnificația unei progresii aritmetice.) Scriem doar o serie de numere și litere, ne uităm și ne dăm seama.

5. Aflați primul termen pozitiv al progresiei aritmetice dacă a 5 = -3; d = 1,1.

6. Se știe că numărul 5,5 este membru al progresiei aritmetice (a n), unde a 1 = 1,6; d = 1,3. Determinați numărul n al acestui membru.

7. Se știe că în progresia aritmetică a 2 = 4; a 5 = 15,1. Găsiți un 3.

8. Se scriu mai mulți termeni consecutivi ai progresiei aritmetice:

...; 15,6; X; 3,4; ...

Găsiți termenul progresiei indicat de litera x.

9. Trenul a început să se deplaseze din gară, crescând uniform viteza cu 30 de metri pe minut. Care va fi viteza trenului în cinci minute? Dati raspunsul in km/ora.

10. Se știe că în progresia aritmetică a 2 = 5; a 6 = -5. Găsiți un 1.

Răspunsuri (în dezordine): 7,7; 7,5; 9,5; 9; 0,3; 4.

S-a rezolvat totul? Uimitor! Puteți stăpâni progresia aritmetică pentru mai mult nivel inalt, în lecțiile următoare.

Nu a mers totul? Nici o problemă. În Secțiunea Specială 555, toate aceste probleme sunt rezolvate bucată cu bucată.) Și, desigur, este descrisă o tehnică practică simplă care evidențiază imediat soluția la astfel de sarcini clar, clar, dintr-o privire!

Apropo, în puzzle-ul trenului există două probleme de care oamenii se poticnesc adesea. Unul este pur în termeni de progresie, iar al doilea este general pentru orice problemă de matematică și fizică. Aceasta este o traducere a dimensiunilor de la una la alta. Arată cum trebuie rezolvate aceste probleme.

În această lecție am analizat semnificația elementară a unei progresii aritmetice și principalii ei parametri. Acest lucru este suficient pentru a rezolva aproape toate problemele pe această temă. Adăuga d la numere, scrie o serie, totul se va rezolva.

Soluția cu degetul funcționează bine pentru bucăți foarte scurte dintr-un rând, ca în exemplele din această lecție. Dacă seria este mai lungă, calculele devin mai complicate. De exemplu, dacă în problema 9 din întrebare înlocuim "cinci minute" pe „treizeci și cinci de minute” problema se va agrava semnificativ.)

Și există și sarcini simple în esență, dar absurde în ceea ce privește calculele, de exemplu:

Este dată o progresie aritmetică (a n). Aflați un 121 dacă a 1 =3 și d=1/6.

Deci ce, vom adăuga 1/6 de multe, de multe ori?! Poți să te sinucizi!?

Puteți.) Dacă nu cunoașteți o formulă simplă prin care puteți rezolva astfel de sarcini într-un minut. Această formulă va fi în lecția următoare. Și acolo se rezolvă această problemă. Intr-un minut.)

Daca va place acest site...

Apropo, mai am câteva site-uri interesante pentru tine.)

Puteți exersa rezolvarea exemplelor și puteți afla nivelul dvs. Testare cu verificare instantanee. Să învățăm - cu interes!)

Vă puteți familiariza cu funcțiile și derivatele.