Numărul 50 în tabelul periodic. Caracteristicile generale ale elementelor chimice

Tabel periodic elemente chimice(tabel periodic)- clasificarea elementelor chimice, stabilindu-se dependenţa diferitelor proprietăţi ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice stabilite de chimistul rus D.I Mendeleev în 1869. Versiunea sa originală a fost dezvoltată de D.I Mendeleev în 1869-1871 și a stabilit dependența proprietăților elementelor de greutatea lor atomică (în termeni moderni, de masa atomică). În total, câteva sute de opțiuni pentru reprezentarea tabelului periodic (curbe analitice, tabele, forme geometrice etc.). ÎN versiune modernă sistem, se presupune că elementele sunt reunite într-un tabel bidimensional, în care fiecare coloană (grup) definește principalul fizic proprietăți chimice, iar liniile reprezintă perioade care sunt oarecum asemănătoare între ele.

Tabelul periodic al elementelor chimice de D.I. Mendeleev

PERIOADE RANGURI GRUPURI DE ELEMENTE
eu II III IV V VI VII VIII
eu 1 H
1,00795

4,002602
heliu

II 2 Li
6,9412
Fi
9,01218
B
10,812
CU
12,0108
carbon
N
14,0067
azot
O
15,9994
oxigen
F
18,99840
fluor

20,179
neon

III 3 N / A
22,98977
Mg
24,305
Al
26,98154
Si
28,086
siliciu
P
30,97376
fosfor
S
32,06
sulf
Cl
35,453
clor

Ar 18
39,948
argon

IV 4 K
39,0983
Ca
40,08
Sc
44,9559
Ti
47,90
titan
V
50,9415
vanadiu
Cr
51,996
crom
Mn
54,9380
mangan
Fe
55,847
fier
Co
58,9332
cobalt
Ni
58,70
nichel
Cu
63,546
Zn
65,38
Ga
69,72
Ge
72,59
germaniu
Ca
74,9216
arsenic
Se
78,96
seleniu
Br
79,904
brom

83,80
cripton

V 5 Rb
85,4678
Sr
87,62
Y
88,9059
Zr
91,22
zirconiu
Nb
92,9064
niobiu
lu
95,94
molibden
Tc
98,9062
tehnețiu
Ru
101,07
ruteniu
Rh
102,9055
rodiu
Pd
106,4
paladiu
Ag
107,868
CD
112,41
În
114,82
Sn
118,69
staniu
Sb
121,75
antimoniu
Te
127,60
teluriu
eu
126,9045
iod

131,30
xenon

VI 6 Cs
132,9054
Ba
137,33
La
138,9
Hf
178,49
hafniu
Ta
180,9479
tantal
W
183,85
tungsten
Re
186,207
reniu
Os
190,2
osmiu
Ir
192,22
iridiu
Pt
195,09
platină
Au
196,9665
Hg
200,59
Tl
204,37
taliu
Pb
207,2
duce
Bi
208,9
bismut
Po
209
poloniu
La
210
astatin

222
radon

VII 7 pr
223
Ra
226,0
Ac
227
anemonă de mare ××
Rf
261
rutherfordiu
Db
262
dubniu
Sg
266
seaborgiu
Bh
269
bohrium
Hs
269
hassiy
Mt
268
meitnerium
Ds
271
Darmstadt
Rg
272

Сn
285

Uut 113
284 ununtry

Uug
289
neunquadium

Uup 115
288
ununpentium
Uuh 116
293
unungexium
Uus 117
294
ununseptium

Uuо 118

295
ununoctium

La
138,9
lantan
Ce
140,1
ceriu
Pr
140,9
praseodimiu
Nd
144,2
neodim
P.m
145
prometiu
Sm
150,4
samariu
UE
151,9
europiu
Gd
157,3
gadoliniu
Tb
158,9
terbiu
Dy
162,5
disprozie
Ho
164,9
holmiu
Er
167,3
erbiu
Tm
168,9
tuliu
Yb
173,0
iterbiu
Lu
174,9
lutețiu
Ac
227
actiniu
Th
232,0
toriu
Pa
231,0
protactiniu
U
238,0
Uranus
Np
237
neptuniu
Pu
244
plutoniu
A.m
243
americiu
Cm
247
curiu
Bk
247
berkeliu
Cf
251
californiu
Es
252
einsteiniu
Fm
257
fermiu
MD
258
mendeleviu
Nu
259
nobeliu
Lr
262
lawrencia

Descoperirea făcută de chimistul rus Mendeleev a jucat (de departe) cel mai mult rol importantîn dezvoltarea științei și anume în dezvoltarea științei atomo-moleculare. Această descoperire a făcut posibilă obținerea celor mai înțelese și ușor de învățat idei despre simplu și complex compuși chimici. Doar datorită tabelului avem conceptele despre elementele pe care le folosim lumea modernă. În secolul al XX-lea, a apărut rolul predictiv al sistemului periodic în evaluarea proprietăților chimice ale elementelor transuraniu, arătat de creatorul tabelului.

Dezvoltat în secolul al XIX-lea, tabelul periodic al lui Mendeleev în interesul științei chimiei a oferit o sistematizare gata făcută a tipurilor de atomi pentru dezvoltarea FIZICII în secolul al XX-lea (fizica atomului și a nucleului atomic). La începutul secolului al XX-lea, fizicienii, prin cercetări, au stabilit că numărul atomic (cunoscut și ca număr atomic) este și o măsură a sarcinii electrice a nucleului atomic al acestui element. Și numărul perioadei (adică seria orizontală) determină numărul de învelișuri de electroni ale atomului. De asemenea, s-a dovedit că numărul rândului vertical al tabelului determină structura cuantică a învelișului exterior al elementului (astfel, elementele din același rând sunt obligate să aibă proprietăți chimice similare).

Descoperirea savantului rus a marcat noua eraîn istoria științei mondiale, această descoperire nu numai că a făcut posibilă realizarea unui salt uriaș în chimie, dar a fost și neprețuită pentru o serie de alte domenii ale științei. Tabelul periodic a oferit un sistem coerent de informații despre elemente, pe baza acestuia, a devenit posibil să se tragă concluzii științifice și chiar să anticipeze unele descoperiri.

Tabelul periodic Una dintre caracteristicile tabelului periodic este că grupul (coloana din tabel) are expresii mai semnificative ale tendinței periodice decât pentru perioade sau blocuri. În zilele noastre, teoria mecanicii cuantice și a structurii atomice explică esența grupului de elemente prin faptul că au aceleași configurații electronice ale învelișurilor de valență și, ca urmare, elementele care sunt situate în aceeași coloană au caracteristici foarte asemănătoare (identice). a configurației electronice, cu proprietăți chimice similare. Există, de asemenea, o tendință clară pentru o schimbare stabilă a proprietăților pe măsură ce masa atomică crește. Trebuie remarcat faptul că în unele zone ale tabelului periodic (de exemplu, în blocurile D și F), asemănările orizontale sunt mai vizibile decât cele verticale.

Tabelul periodic conține grupuri cărora li se atribuie numere de serie de la 1 la 18 (de la stânga la dreapta), conform sistemului internațional de denumire a grupurilor. ÎN vremuri vechi, numerele romane au fost folosite pentru a identifica grupurile. În America, a existat o practică de a plasa după cifra romană litera „A” atunci când grupul este situat în blocurile S și P, sau litera „B” pentru grupurile situate în blocul D. Identificatorii utilizați la acel moment sunt la fel ca acesta din urmă numărul indicilor moderni din timpul nostru (de exemplu, numele IVB corespunde elementelor grupului 4 din timpul nostru, iar IVA este al 14-lea grup de elemente). În țările europene din acea vreme, se folosea un sistem similar, dar aici litera „A” se referea la grupuri de până la 10, iar litera „B” - după 10 inclusiv. Dar grupurile 8,9,10 au avut ID VIII, ca un grup triplu. Aceste nume de grupuri au încetat să mai existe după intrarea în vigoare a legii din 1988. sistem nou Notația IUPAC, care este folosită și astăzi.

Multe grupuri au primit denumiri nesistematice de natură pe bază de plante (de exemplu, „metale alcalino-pământoase” sau „halogeni” și alte nume similare). Grupurile de la 3 la 14 nu au primit astfel de nume, din cauza faptului că sunt mai puțin asemănătoare între ele și au mai puțină conformitate cu modelele verticale, de obicei, sunt numite fie după număr, fie după numele primului element al grupului (titan , cobalt etc.).

Elementele chimice aparținând aceleiași grupe a tabelului periodic prezintă anumite tendințe în electronegativitate, rază atomică și energie de ionizare. Într-un grup, de sus în jos, raza atomului crește pe măsură ce nivelurile de energie sunt umplute, electronii de valență ai elementului se îndepărtează de nucleu, în timp ce energia de ionizare scade și legăturile din atom se slăbesc, ceea ce simplifică îndepărtarea electronilor. Electronegativitatea scade și ea, aceasta este o consecință a faptului că distanța dintre nucleu și electronii de valență crește. Dar există și excepții de la aceste tipare, de exemplu, electronegativitatea crește, în loc să scadă, în grupa 11, în direcția de sus în jos. Există o linie în tabelul periodic numită „Perioadă”.

Printre grupuri, există acelea în care direcțiile orizontale sunt mai semnificative (spre deosebire de altele în care valoare mai mare au direcții verticale), astfel de grupuri includ blocul F, în care lantanidele și actinidele formează două secvențe orizontale importante.

Elementele arată anumite modele în raza atomică, electronegativitate, energia de ionizare și energia afinității electronilor. Datorită faptului că pentru fiecare element următor crește numărul de particule încărcate, iar electronii sunt atrași de nucleu, raza atomică scade de la stânga la dreapta, împreună cu aceasta crește energia de ionizare, iar pe măsură ce legătura dintre atom crește, creste dificultatea de a scoate un electron. Metalele situate în partea stângă a tabelului sunt caracterizate de un indicator de energie de afinitate electronică mai scăzută și, în consecință, în partea dreaptă indicatorul de energie de afinitate electronică este mai mare pentru nemetale (fără numărarea gazelor nobile).

Diferite regiuni ale tabelului periodic, în funcție de învelișul atomului pe care se află ultimul electron și având în vedere importanța învelișului de electroni, sunt de obicei descrise ca blocuri.

Blocul S include primele două grupe de elemente (metale alcaline și alcalino-pământoase, hidrogen și heliu).
Blocul P include ultimele șase grupe, de la 13 la 18 (conform IUPAC, sau după sistemul adoptat în America - de la IIIA la VIIIA), acest bloc include și toți metaloizii.

Bloc - D, grupele 3 până la 12 (IUPAC, sau IIIB până la IIB în american), acest bloc include toate metalele de tranziție.
Blocul - F, este de obicei plasat în afara tabelului periodic și include lantanide și actinide.

Tabelul periodic este unul dintre cele mai mari descoperiri umanitate, care a făcut posibilă organizarea cunoștințelor despre lumea din jurul nostru și descoperirea elemente chimice noi. Este necesar pentru școlari, precum și pentru oricine este interesat de chimie. În plus, această schemă este indispensabilă în alte domenii ale științei.

Această diagramă conține totul cunoscută omului elemente și sunt grupate în funcție de masa atomică şi număr de serie . Aceste caracteristici afectează proprietățile elementelor. În total, sunt 8 grupuri în versiunea scurtă a tabelului, elementele incluse într-un grup au proprietăți foarte asemănătoare. Primul grup conține hidrogen, litiu, potasiu, cupru, pronunția latinăîn rusă care este cuprum. Și, de asemenea, argentum - argint, cesiu, aur - aurum și francium. Al doilea grup conține beriliu, magneziu, calciu, zinc, urmat de stronțiu, cadmiu, bariu, iar grupul se termină cu mercur și radiu.

Al treilea grup include bor, aluminiu, scandiu, galiu, urmat de ytriu, indiu, lantan, iar grupul se termină cu taliu și actiniu. A patra grupă începe cu carbon, siliciu, titan, continuă cu germaniu, zirconiu, staniu și se termină cu hafniu, plumb și ruterfordiu. A cincea grupă conține elemente precum azotul, fosforul, vanadiul, mai jos sunt arsenicul, niobiul, antimoniul, apoi vine tantalul, bismutul și completează grupul cu dubniu. Al șaselea începe cu oxigen, urmat de sulf, crom, seleniu, apoi molibden, teluriu, apoi wolfram, poloniu și seaborgiu.

În a șaptea grupă, primul element este fluorul, urmat de clor, mangan, brom, tehnețiu, urmat de iod, apoi reniu, astatin și bohrium. Ultimul grup este cele mai numeroase. Include gaze precum heliu, neon, argon, cripton, xenon și radon. Acest grup include și metale fier, cobalt, nichel, rodiu, paladiu, ruteniu, osmiu, iridiu și platină. Urmează hannium și meitnerium. Elementele care formează seria actinidelor și seria lantanidelor. Au proprietăți similare cu lantanul și actiniul.


Această schemă include toate tipurile de elemente care sunt împărțite în 2 grupuri marimetale și nemetale, având proprietăți diferite. Modul de a determina dacă un element aparține unui grup sau altuia va fi ajutat de o linie convențională care trebuie trasă de la bor la astatin. Trebuie amintit că o astfel de linie poate fi trasă numai în interior versiunea completă mesele. Toate elementele care se află deasupra acestei linii și sunt situate în subgrupele principale sunt considerate nemetale. Iar cele de mai jos, în principalele subgrupe, sunt metale. Metalele sunt, de asemenea, substanțe găsite în subgrupuri laterale. Există imagini și fotografii speciale în care vă puteți familiariza în detaliu cu poziția acestor elemente. Este demn de remarcat faptul că acele elemente care se află pe această linie prezintă aceleași proprietăți atât ale metalelor, cât și ale nemetalelor.

O listă separată este formată din elemente amfotere, care au proprietăți duble și pot forma 2 tipuri de compuși în urma reacțiilor. În același timp, se manifestă atât de bază, cât și proprietăți acide. Predominanța anumitor proprietăți depinde de condițiile de reacție și de substanțele cu care reacționează elementul amfoter.


Este de remarcat faptul că această schemă, în designul său tradițional de bună calitate, este colorată. În același timp culori diferite pentru ușurința orientării sunt indicate subgrupe principale și secundare. Elementele sunt, de asemenea, grupate în funcție de asemănarea proprietăților lor.
Cu toate acestea, în zilele noastre, împreună cu schema de culori, tabelul periodic alb-negru al lui Mendeleev este foarte comun. Acest tip este folosit pentru imprimarea alb-negru. În ciuda complexității sale aparente, lucrul cu acesta este la fel de convenabil dacă țineți cont de unele dintre nuanțe. Deci, în acest caz, puteți distinge subgrupul principal de cel secundar prin diferențe de nuanțe care sunt clar vizibile. În plus, în varianta color, sunt indicate elemente cu prezența electronilor pe diferite straturi culori diferite.
Este demn de remarcat faptul că într-un design cu o singură culoare nu este foarte dificil să navighezi în schemă. În acest scop, informațiile indicate în fiecare celulă individuală a elementului vor fi suficiente.


Examenul de stat unificat de astăzi este principalul tip de test de la sfârșitul școlii, ceea ce înseamnă că pregătirea pentru acesta trebuie făcută o atenție deosebită. Prin urmare, atunci când alegeți examen final la chimie, trebuie să fii atent la materialele care te pot ajuta să-l treci. De regulă, elevilor li se permite să folosească unele tabele în timpul examenului, în special, tabelul periodic din de bună calitate. Prin urmare, pentru ca acesta să aducă numai beneficii în timpul testării, trebuie acordată atenție în prealabil structurii sale și studiului proprietăților elementelor, precum și secvenței acestora. De asemenea, trebuie să înveți utilizați versiunea alb-negru a tabelului pentru a nu întâmpina unele dificultăţi la examen.


Pe lângă tabelul principal care caracterizează proprietățile elementelor și dependența lor de masa atomică, există și alte diagrame care pot ajuta la studiul chimiei. De exemplu, există tabele de solubilitate și electronegativitate a substanțelor. Primul poate fi folosit pentru a determina cât de solubil este un anumit compus în apă la temperatură normală. În acest caz, anionii sunt localizați orizontal - ionii încărcați negativ, iar cationii - adică ionii încărcați pozitiv - sunt localizați vertical. Pentru a afla gradul de solubilitate a unuia sau altui compus, este necesar să găsiți componentele acestuia folosind tabelul. Și la locul intersecției lor va exista desemnarea necesară.

Dacă este litera „r”, atunci substanța este complet solubilă în apă conditii normale. Dacă litera „m” este prezentă, substanța este ușor solubilă, iar dacă litera „n” este prezentă, este aproape insolubilă. Dacă există semnul „+”, compusul nu formează un precipitat și reacționează cu solventul fără reziduuri. Dacă este prezent un semn „-”, înseamnă că o astfel de substanță nu există. Uneori puteți vedea și semnul „?” în tabel, atunci aceasta înseamnă că gradul de solubilitate al acestui compus nu este cunoscut cu siguranță. Electronegativitatea elementelor poate varia de la 1 la 8 există și un tabel special pentru a determina acest parametru.

încă unul tabel util– seria de activitate a metalelor. Toate metalele sunt aranjate în ea în ordinea gradelor crescătoare potențial electrochimic. Seria tensiunilor metalice începe cu litiu și se termină cu aur. Se crede că, cu cât mai la stânga un metal ocupă un loc într-un rând dat, cu atât este mai activ în reacțiile chimice. Astfel, cel mai activ metal Litiul este considerat un metal alcalin. Lista de elemente conține și hidrogen spre final. Se crede că metalele situate după el sunt practic inactive. Acestea includ elemente precum cuprul, mercurul, argintul, platina și aurul.

Imagini din tabelul periodic de bună calitate

Această schemă este una dintre cele mai mari realizări în domeniul chimiei. În același timp există multe tipuri de acest tabel– versiune scurtă, lungă, precum și extra-lungă. Cel mai comun este tabelul scurt, dar varianta lungă a diagramei este și ea comună. Este de remarcat faptul că versiunea scurtă a circuitului nu este recomandată în prezent pentru utilizare de către IUPAC.
În total au fost Au fost dezvoltate peste o sută de tipuri de mese, diferă prin prezentare, formă și reprezentare grafică. Sunt folosite în diferite domenii ale științei sau nu sunt folosite deloc. În prezent, noi configurații de circuite continuă să fie dezvoltate de către cercetători. Opțiunea principală este fie un circuit scurt, fie un circuit lung de calitate excelentă.

    Vezi și: Lista elementelor chimice după numărul atomic și Lista alfabetică a elementelor chimice Cuprins 1 Simboluri utilizate în în acest moment... Wikipedia

    Vezi și: Lista elementelor chimice după numărul atomic și Lista elementelor chimice după simbol Lista alfabetică a elementelor chimice. Azot N Actiniu Ac Aluminiu Al Americiu Am Argon Ar Astatin At ... Wikipedia

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

    Elemente chimice (tabel periodic) clasificarea elementelor chimice, stabilindu-se dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice stabilite de... ... Wikipedia rusă

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

    Sistemul periodic de elemente chimice (tabelul lui Mendeleev) este o clasificare a elementelor chimice care stabilește dependența diferitelor proprietăți ale elementelor de sarcina nucleului atomic. Sistemul este o expresie grafică a legii periodice, ... ... Wikipedia

Cărți

  • Dicționar japoneză-engleză-rusă pentru instalarea echipamentelor industriale. Aproximativ 8.000 de termeni, Popova I.S.. Dicționarul este destinat unei game largi de utilizatori și în primul rând traducătorilor și specialiștilor tehnici implicați în furnizarea și implementarea echipamentelor industriale din Japonia sau...

Există multe secvențe care se repetă în natură:

  • anotimpuri;
  • Partea zilei;
  • zilele saptamanii...

La mijlocul secolului al XIX-lea, D.I Mendeleev a observat că și proprietățile chimice ale elementelor au o anumită succesiune (se spune că această idee i-a venit în vis). Rezultatul viselor minunate ale omului de știință a fost Tabelul periodic al elementelor chimice, în care D.I. Mendeleev a aranjat elementele chimice în ordinea creșterii masei atomice. În tabelul modern, elementele chimice sunt aranjate în ordinea crescătoare a numărului atomic al elementului (numărul de protoni din nucleul unui atom).

Numărul atomic este afișat deasupra simbolului unui element chimic, sub simbol este masa atomică a acestuia (suma protonilor și neutronilor). Vă rugăm să rețineți că masa atomică a unor elemente nu este un număr întreg! Amintiți-vă de izotopi! Masa atomică este o medie ponderată a tuturor izotopilor unui element găsit în natură în condiții naturale.

Sub tabel sunt lantanide și actinide.

Metale, nemetale, metaloizi


Situat în Tabelul Periodic în stânga liniei diagonale în trepte care începe cu Bor (B) și se termină cu poloniu (Po) (excepțiile sunt germaniul (Ge) și antimoniul (Sb). Este ușor de observat că metalele ocupă cea mai mare parte Tabel periodic. Proprietățile de bază ale metalelor: solide (cu excepția mercurului); strălucire; buni conductori electrici și termici; plastic; maleabil; renunta usor la electroni.

Elementele situate în dreapta diagonalei trepte B-Po sunt numite nemetale. Proprietățile nemetalelor sunt exact opuse celor ale metalelor: conductoare slabe de căldură și electricitate; fragil; nemaleabil; non-plastic; acceptă de obicei electroni.

Metaloizi

Între metale și nemetale există semimetale(metaloizi). Ele se caracterizează prin proprietățile atât ale metalelor, cât și ale nemetalelor. Semimetalele și-au găsit aplicația principală în industrie în producția de semiconductori, fără de care nu se poate concepe un singur microcircuit sau microprocesor modern.

Perioade și grupuri

După cum am menționat mai sus, tabelul periodic este format din șapte perioade. În fiecare perioadă, numerele atomice ale elementelor cresc de la stânga la dreapta.

Proprietățile elementelor se modifică secvențial în perioade: astfel sodiul (Na) și magneziul (Mg), situate la începutul celei de-a treia perioade, renunță la electroni (Na cedează un electron: 1s 2 2s 2 2p 6 3s 1 ; Mg dă sus doi electroni: 1s 2 2s 2 2p 6 3s 2). Dar clorul (Cl), situat la sfârșitul perioadei, ia un element: 1s 2 2s 2 2p 6 3s 2 3p 5.

În grupuri, dimpotrivă, toate elementele au aceleași proprietăți. De exemplu, în grupul IA(1), toate elementele de la litiu (Li) la franciu (Fr) donează un electron. Și toate elementele grupului VIIA(17) au un singur element.

Unele grupuri sunt atât de importante încât au primit nume speciale. Aceste grupuri sunt discutate mai jos.

Grupa IA(1). Atomii elementelor acestui grup au un singur electron în stratul lor exterior de electroni, așa că renunță ușor la un electron.

Cele mai importante metale alcaline sunt sodiul (Na) și potasiul (K), deoarece joacă un rol important în viața umană și fac parte din săruri.

Configuratii electronice:

  • Li- 1s 2 2s 1 ;
  • N / A- 1s 2 2s 2 2p 6 3s 1 ;
  • K- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Grupa IIA(2). Atomii elementelor acestui grup au doi electroni în stratul lor exterior de electroni, la care renunță și în timpul reacțiilor chimice. Cele mai multe element important- calciul (Ca) este baza oaselor si a dintilor.

Configuratii electronice:

  • Fi- 1s 2 2s 2 ;
  • Mg- 1s 2 2s 2 2p 6 3s 2 ;
  • Ca- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Grupa VIIA(17). Atomii elementelor acestui grup primesc de obicei câte un electron, deoarece Există cinci elemente pe stratul electronic exterior și doar un electron lipsește din „setul complet”.

Cele mai cunoscute elemente din această grupă: clorul (Cl) - face parte din sare și înălbitor; iodul (I) este un element care joacă un rol important în activitatea de glanda tiroida persoană.

Configuratie electronica:

  • F- 1s 2 2s 2 2p 5 ;
  • Cl- 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Grupa VIII(18). Atomii elementelor acestui grup au un strat de electroni exterior complet „complet”. Prin urmare, ei „nu” trebuie să accepte electroni. Și ei „nu vor” să le ofere. Prin urmare, elementele acestui grup sunt foarte „reticente” să se alăture reactii chimice. Pentru o lungă perioadă de timp se credea că nu au reacționat deloc (de unde și numele „inert”, adică „inactiv”). Dar chimistul Neil Bartlett a descoperit că unele dintre aceste gaze pot reacţiona în continuare cu alte elemente în anumite condiţii.

Configuratii electronice:

  • Ne- 1s 2 2s 2 2p 6 ;
  • Ar- 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Elemente de valență în grupuri

Este ușor de observat că în cadrul fiecărei grupe elementele sunt similare între ele în ceea ce privește electronii de valență (electronii orbitalilor s și p situati la nivelul energetic exterior).

Metalele alcaline au 1 electron de valență:

  • Li- 1s 2 2s 1 ;
  • N / A- 1s 2 2s 2 2p 6 3s 1 ;
  • K- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1

Metalele alcalino-pământoase au 2 electroni de valență:

  • Fi- 1s 2 2s 2 ;
  • Mg- 1s 2 2s 2 2p 6 3s 2 ;
  • Ca- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Halogenii au 7 electroni de valență:

  • F- 1s 2 2s 2 2p 5 ;
  • Cl- 1s 2 2s 2 2p 6 3s 2 3p 5 ;
  • Br- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5

Gazele inerte au 8 electroni de valență:

  • Ne- 1s 2 2s 2 2p 6 ;
  • Ar- 1s 2 2s 2 2p 6 3s 2 3p 6 ;
  • Kr- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6

Pentru mai multe informații, consultați articolul Valența și tabelul configurațiilor electronice ale atomilor elementelor chimice în funcție de perioadă.

Să ne îndreptăm acum atenția asupra elementelor situate în grupuri cu simboluri ÎN. Ele sunt situate în centrul tabelului periodic și sunt numite metale de tranziție.

O caracteristică distinctivă a acestor elemente este prezența în atomii a electronilor care se umplu d-orbitali:

  1. Sc- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 1 ;
  2. Ti- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2

Separat de masa principală sunt amplasate lantanideŞi actinide- acestea sunt așa-numitele metale de tranziție interne. În atomii acestor elemente, electronii se umplu orbitali f:

  1. Ce- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 1 5d 1 6s 2 ;
  2. Th- 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 4d 10 5s 2 5p 6 4f 14 5d 10 6s 2 6p 6 6d 2 7s 2

Elementul 115 al tabelului periodic - moscoviul - este un element sintetic supergreu cu simbolul Mc și numărul atomic 115. A fost obținut pentru prima dată în 2003 de o echipă comună de oameni de știință ruși și americani de la Institutul Comun. cercetare nucleară(JINR) în Dubna, Rusia. În decembrie 2015, a fost recunoscut ca unul dintre cele patru elemente noi de către Grupul de lucru comun al organizațiilor științifice internaționale IUPAC/IUPAP. Pe 28 noiembrie 2016, a fost numit oficial în onoarea regiunii Moscova, unde se află JINR.

Caracteristică

Elementul 115 al tabelului periodic este o substanță extrem de radioactivă: cel mai stabil izotop cunoscut al său, moscoviul-290, are un timp de înjumătățire de doar 0,8 secunde. Oamenii de știință clasifică moscoviul ca un metal netranzițional, cu o serie de caracteristici similare cu bismutul. În tabelul periodic, aparține elementelor transactinide ale blocului p din a 7-a perioadă și este plasat în grupul 15 ca cel mai greu pnictogen (element de subgrup de azot), deși nu a fost confirmat să se comporte ca un om mai greu al bismutului. .

Conform calculelor, elementul are unele proprietăți similare omologilor mai ușoare: azot, fosfor, arsen, antimoniu și bismut. În același timp, demonstrează câteva diferențe semnificative față de acestea. Până în prezent, au fost sintetizați aproximativ 100 de atomi de moscoviu, care au numere de masă de la 287 la 290.

Proprietăți fizice

Electronii de valență ai elementului 115 din tabelul periodic, moscoviul, sunt împărțiți în trei subcopii: 7s (doi electroni), 7p 1/2 (doi electroni) și 7p 3/2 (un electron). Primele două dintre ele sunt stabilizate relativistic și, prin urmare, se comportă ca gazele nobile, în timp ce ultimele sunt destabilizate relativistic și pot participa cu ușurință la interacțiuni chimice. Astfel, potențialul de ionizare primară al moscoviului ar trebui să fie de aproximativ 5,58 eV. Conform calculelor, moscoviul ar trebui să fie un metal dens datorită greutății sale atomice mari, cu o densitate de aproximativ 13,5 g/cm 3 .

Caracteristici estimate de proiectare:

  • Faza: solida.
  • Punct de topire: 400°C (670°K, 750°F).
  • Punct de fierbere: 1100°C (1400°K, 2000°F).
  • Căldura specifică de fuziune: 5,90-5,98 kJ/mol.
  • Căldura specifică de vaporizare și condensare: 138 kJ/mol.

Proprietăți chimice

Elementul 115 al tabelului periodic este al treilea în seria 7p de elemente chimice și este cel mai greu membru al grupului 15 din tabelul periodic, clasându-se sub bismut. Interacțiune chimică Moscova în soluție apoasă datorită caracteristicilor ionilor Mc + și Mc 3+. Primele sunt, probabil, ușor hidrolizate și formează legături ionice cu halogeni, cianuri și amoniac. Hidroxidul de Moscovy(I) (McOH), carbonatul (Mc 2 CO 3 ), oxalatul (Mc 2 C 2 O 4) și fluorura (McF) trebuie dizolvate în apă. Sulfura (Mc 2 S) trebuie să fie insolubilă. Clorura (McCl), bromura (McBr), iodura (McI) și tiocianatul (McSCN) sunt compuși ușor solubili.

Fluorura de Moscovium(III) (McF 3) și tiosonida (McS 3) sunt probabil insolubile în apă (similar cu compușii de bismut corespunzători). În timp ce clorura (III) (McCl 3), bromura (McBr 3) și iodura (McI 3) ar trebui să fie ușor solubile și ușor hidrolizate pentru a forma oxohalogenuri, cum ar fi McOCl și McOBr (de asemenea, similar cu bismutul). Oxizii de Moscovium(I) și (III) au stări de oxidare similare, iar stabilitatea lor relativă depinde în mare măsură de elementele cu care reacționează.

Incertitudine

Datorită faptului că elementul 115 din tabelul periodic este sintetizat experimental o singură dată, caracteristicile sale exacte sunt problematice. Oamenii de știință trebuie să se bazeze pe calcule teoretice și să le compare cu elemente mai stabile cu proprietăți similare.

În 2011, au fost efectuate experimente pentru a crea izotopi de nihonium, flerovium și moscovium în reacții între „acceleratori” (calciu-48) și „ținte” (american-243 și plutoniu-244) pentru a studia proprietățile acestora. Cu toate acestea, „țintele” au inclus impurități de plumb și bismut și, prin urmare, unii izotopi de bismut și poloniu au fost obținuți în reacțiile de transfer de nucleoni, ceea ce a complicat experimentul. Între timp, datele obținute vor ajuta oamenii de știință în viitor să studieze mai detaliat omologii grei de bismut și poloniu, cum ar fi moscovium și livermorium.

Deschidere

Prima sinteză de succes a elementului 115 din tabelul periodic a fost o lucrare comună a oamenilor de știință ruși și americani în august 2003 la JINR din Dubna. Echipa condusă de fizicianul nuclear Yuri Oganesyan, pe lângă specialiștii interni, a inclus și colegi de la Laboratorul Național Lawrence Livermore. Cercetătorii au publicat informații în Physical Review pe 2 februarie 2004 că au bombardat americiu-243 cu ioni de calciu-48 la ciclotronul U-400 și au obținut patru atomi din noua substanță (un nucleu de 287 Mc și trei nuclee de 288 Mc). Acești atomi se descompun (dezintegrare) prin emiterea de particule alfa către elementul nihonium în aproximativ 100 de milisecunde. Doi izotopi mai grei ai moscoviului, 289 Mc și 290 Mc, au fost descoperiți în 2009–2010.

Inițial, IUPAC nu a putut aproba descoperirea noului element. A fost necesară confirmarea din alte surse. În următorii câțiva ani, experimentele ulterioare au fost evaluate în continuare și afirmația echipei Dubna că a descoperit elementul 115 a fost din nou prezentată.

În august 2013, o echipă de cercetători de la Universitatea Lund și Institutul cu ioni grei din Darmstadt (Germania) a anunțat că au repetat experimentul din 2004, confirmând rezultatele obținute la Dubna. O confirmare suplimentară a fost publicată de o echipă de oameni de știință care lucrează la Berkeley în 2015. În decembrie 2015, o articulație grup de lucru IUPAC/IUPAP a recunoscut descoperirea acestui element și a acordat prioritate echipei ruso-americane de cercetători în descoperire.

Nume

În 1979, conform recomandării IUPAC, s-a decis să se numească elementul 115 din tabelul periodic „ununpentium” și să-l noteze cu simbolul corespunzător UUP. Deși numele a fost folosit pe scară largă de atunci pentru a se referi la elementul nedescoperit (dar prezis teoretic), el nu a prins în comunitatea fizicii. Cel mai adesea, substanța a fost numită astfel - elementul nr. 115 sau E115.

La 30 decembrie 2015, descoperirea unui nou element a fost recunoscută de Uniunea Internațională de Chimie Pură și Aplicată. Conform noilor reguli, descoperitorii au dreptul de a-și propune propriul nume pentru o substanță nouă. La început s-a planificat să se numească elementul 115 din tabelul periodic „langevinium” în onoarea fizicianului Paul Langevin. Ulterior, o echipă de oameni de știință din Dubna, ca opțiune, a propus numele „Moscova” în onoarea regiunii Moscova, unde a fost făcută descoperirea. În iunie 2016, IUPAC a aprobat inițiativa și a aprobat oficial denumirea „moscovium” pe 28 noiembrie 2016.