Cum se rezolvă sisteme de ecuații exponențiale și inegalități. Ecuații exponențiale și inegalități

Rezolvarea majorității problemelor matematice într-un fel sau altul implică transformarea expresiilor numerice, algebrice sau funcționale. Cele de mai sus se aplică în special deciziei. În versiunile examenului de stat unificat la matematică, acest tip de problemă include, în special, sarcina C3. Învățarea să rezolve sarcinile C3 este importantă nu numai în scopul finalizarea cu succes Examenul de stat unificat, dar și pentru motivul că această abilitate va fi utilă atunci când studiați un curs de matematică în școala superioară.

Când finalizați sarcinile C3, trebuie să decideți tipuri diferite ecuații și inegalități. Printre acestea se numără raționale, iraționale, exponențiale, logaritmice, trigonometrice, care conțin module (valori absolute), precum și combinate. Acest articol discută principalele tipuri de ecuații exponențiale și inegalități, precum și diverse metode deciziile lor. Citiți despre rezolvarea altor tipuri de ecuații și inegalități în secțiunea „” din articolele dedicate metodelor de rezolvare a problemelor C3 din Opțiuni pentru examenul de stat unificat matematică.

Înainte de a începe să analizăm specific ecuații exponențiale și inegalități, în calitate de tutore de matematică, vă sugerez să periați ceva material teoretic de care vom avea nevoie.

Functie exponentiala

Ce este o funcție exponențială?

Funcția formei y = un x, Unde A> 0 și A≠ 1 este numit functie exponentiala.

De bază proprietățile funcției exponențiale y = un x:

Graficul unei funcții exponențiale

Graficul funcției exponențiale este exponent:

Grafice ale funcțiilor exponențiale (exponenți)

Rezolvarea ecuațiilor exponențiale

Indicativ se numesc ecuatii in care variabila necunoscuta se gaseste numai in exponenti ai unor puteri.

Pentru solutii ecuații exponențiale trebuie să cunoașteți și să fiți capabil să utilizați următoarea teoremă simplă:

Teorema 1. Ecuație exponențială A f(X) = A g(X) (Unde A > 0, A≠ 1) este echivalentă cu ecuația f(X) = g(X).

În plus, este util să ne amintim formulele și operațiile de bază cu grade:

Title="Redată de QuickLaTeX.com">!}

Exemplul 1. Rezolvați ecuația:

Soluţie: Folosim formulele de mai sus și înlocuirea:

Ecuația devine atunci:

Discriminantul ecuației patratice rezultate este pozitiv:

Title="Redată de QuickLaTeX.com">!}

Aceasta înseamnă că această ecuație are două rădăcini. Le gasim:

Trecând la înlocuirea inversă, obținem:

A doua ecuație nu are rădăcini, deoarece functie exponentiala este strict pozitivă în întregul domeniu al definiției. Să o rezolvăm pe a doua:

Ținând cont de cele spuse în teorema 1, trecem la ecuația echivalentă: X= 3. Acesta va fi răspunsul la sarcină.

Răspuns: X = 3.

Exemplul 2. Rezolvați ecuația:

Soluţie: restricții asupra zonei valori acceptabile ecuația nu, deoarece expresia radicală are sens pentru orice valoare X(functie exponentiala y = 9 4 -X pozitiv și nu egal cu zero).

Rezolvăm ecuația prin transformări echivalente folosind regulile de înmulțire și împărțire a puterilor:

Ultima tranziție a fost efectuată în conformitate cu teorema 1.

Răspuns:X= 6.

Exemplul 3. Rezolvați ecuația:

Soluţie: ambele părți ale ecuației inițiale pot fi împărțite la 0,2 X. Această tranziție va fi echivalentă, deoarece această expresie este mai mare decât zero pentru orice valoare X(funcția exponențială este strict pozitivă în domeniul său de definire). Atunci ecuația ia forma:

Răspuns: X = 0.

Exemplul 4. Rezolvați ecuația:

Soluţie: simplificăm ecuația la una elementară prin transformări echivalente folosind regulile de împărțire și înmulțire a puterilor date la începutul articolului:

Împărțirea ambelor părți ale ecuației la 4 X, ca în exemplul anterior, este o transformare echivalentă, deoarece această expresie nu este egală cu zero pentru nicio valoare X.

Răspuns: X = 0.

Exemplul 5. Rezolvați ecuația:

Soluţie: funcţie y = 3X, aflat în partea stângă a ecuației, este în creștere. Funcţie y = —X-2/3 din partea dreaptă a ecuației este în scădere. Aceasta înseamnă că dacă graficele acestor funcții se intersectează, atunci cel mult un punct. ÎN în acest caz, nu este greu de ghicit că graficele se intersectează în punct X= -1. Nu vor exista alte rădăcini.

Răspuns: X = -1.

Exemplul 6. Rezolvați ecuația:

Soluţie: simplificăm ecuația prin transformări echivalente, ținând cont peste tot că funcția exponențială este strict mai mare decât zero pentru orice valoare Xși folosind regulile de calcul a produsului și a coeficientului de puteri date la începutul articolului:

Răspuns: X = 2.

Rezolvarea inegalităților exponențiale

Indicativ se numesc inegalităţi în care variabila necunoscută este cuprinsă numai în exponenţii unor puteri.

Pentru solutii inegalități exponențiale este necesară cunoașterea următoarei teoreme:

Teorema 2. Dacă A> 1, apoi inegalitatea A f(X) > A g(X) este echivalentă cu o inegalitate de același sens: f(X) > g(X). Daca 0< A < 1, то показательное неравенство A f(X) > A g(X) este echivalentă cu o inegalitate cu sens invers: f(X) < g(X).

Exemplul 7. Rezolvați inegalitatea:

Soluţie: Să prezentăm inegalitatea inițială sub forma:

Să împărțim ambele părți ale acestei inegalități la 3 2 X, în acest caz (datorită pozitivității funcției y= 3 2X) semnul inegalității nu se va schimba:

Să folosim înlocuirea:

Atunci inegalitatea va lua forma:

Deci, soluția inegalității este intervalul:

Trecând la substituția inversă, obținem:

Datorită pozitivității funcției exponențiale, inegalitatea din stânga este satisfăcută automat. Folosind proprietatea binecunoscută a logaritmului, trecem la inegalitatea echivalentă:

Deoarece baza gradului este un număr mai mare decât unu, echivalentul (prin teorema 2) este trecerea la următoarea inegalitate:

Deci, în sfârșit, obținem Răspuns:

Exemplul 8. Rezolvați inegalitatea:

Soluţie: Folosind proprietățile înmulțirii și împărțirii puterilor, rescriem inegalitatea sub forma:

Să introducem o nouă variabilă:

Ținând cont de această substituție, inegalitatea ia forma:

Înmulțind numărătorul și numitorul fracției cu 7, obținem următoarea inegalitate echivalentă:

Deci, următoarele valori ale variabilei satisfac inegalitatea t:

Apoi, trecând la substituția inversă, obținem:

Deoarece baza gradului aici este mai mare decât unu, trecerea la inegalitate va fi echivalentă (prin teorema 2):

În sfârșit, obținem Răspuns:

Exemplul 9. Rezolvați inegalitatea:

Soluţie:

Împărțim ambele părți ale inegalității prin expresia:

Este întotdeauna mai mare decât zero (datorită pozitivității funcției exponențiale), deci nu este nevoie să schimbați semnul inegalității. Primim:

t situat în intervalul:

Trecând la substituția inversă, aflăm că inegalitatea inițială se împarte în două cazuri:

Prima inegalitate nu are soluții datorită pozitivității funcției exponențiale. Să o rezolvăm pe a doua:

Exemplul 10. Rezolvați inegalitatea:

Soluţie:

Ramuri de parabolă y = 2X+2-X 2 sunt îndreptate în jos, de aceea este limitată de sus de valoarea pe care o atinge la vârful său:

Ramuri de parabolă y = X 2 -2X+2 din indicator sunt îndreptați în sus, ceea ce înseamnă că este limitat de jos de valoarea pe care o atinge la vârful său:

În același timp, funcția se dovedește a fi mărginită de jos y = 3 X 2 -2X+2, care se află în partea dreaptă a ecuației. Ea își atinge scopul cea mai mică valoareîn același punct cu parabola din exponent, iar această valoare este egală cu 3 1 = 3. Deci, inegalitatea inițială poate fi adevărată numai dacă funcția din stânga și funcția din dreapta iau o valoare egală cu 3 în același punct (prin intersecție Gama de valori ale acestor funcții este doar acest număr). Această condiție este îndeplinită într-un singur punct X = 1.

Răspuns: X= 1.

Pentru a învăța să decidă ecuații exponențiale și inegalități, este necesar să ne antrenăm constant în rezolvarea lor. Diverse lucruri vă pot ajuta în această sarcină dificilă. manuale metodologice, cărți de probleme la matematică elementară, culegeri de probleme competitive, ore de matematică la școală, precum și sesiuni individuale cu un tutore profesionist. Vă doresc din suflet succes în pregătirea dumneavoastră și rezultate excelente la examen.


Serghei Valerievici

P.S. Dragi oaspeți! Vă rugăm să nu scrieți solicitări pentru a vă rezolva ecuațiile în comentarii. Din păcate, nu am absolut timp pentru asta. Astfel de mesaje vor fi șterse. Vă rugăm să citiți articolul. Poate că în el veți găsi răspunsuri la întrebări care nu v-au permis să vă rezolvați singur sarcina.

Mulți oameni cred că inegalitățile exponențiale sunt ceva complex și de neînțeles. Și că a învăța să le rezolvi este aproape o mare artă, pe care numai Aleșii sunt capabili să o înțeleagă...

Prostii complete! Inegalitățile exponențiale sunt ușoare. Și sunt întotdeauna rezolvate simplu. Ei bine, aproape întotdeauna. :)

Astăzi vom analiza acest subiect în interior și în exterior. Această lecție va fi foarte utilă pentru cei care abia încep să înțeleagă această secțiune a matematicii școlare. Să începem cu sarcini simple și să trecem la mai multe probleme complexe. Nu va fi nicio muncă grea astăzi, dar ceea ce urmează să citiți va fi suficient pentru a rezolva majoritatea inegalităților la toate tipurile de teste și teste. muncă independentă. Și la acest examen al tău.

Ca întotdeauna, să începem cu definiția. O inegalitate exponențială este orice inegalitate care conține o funcție exponențială. Cu alte cuvinte, poate fi întotdeauna redusă la o inegalitate a formei

\[((a)^(x)) \gt b\]

Unde poate fi $b$ în rol? număr obișnuit, și poate ceva mai dur. Exemple? Da, te rog:

\[\begin(align) & ((2)^(x)) \gt 4;\quad ((2)^(x-1))\le \frac(1)(\sqrt(2));\ quad ((2)^(((x)^(2))-7x+14)) \lt 16; \\ & ((0,1)^(1-x)) \lt 0,01;\quad ((2)^(\frac(x)(2))) \lt ((4)^(\frac (4) )(X))). \\\end(align)\]

Cred că sensul este clar: există o funcție exponențială $((a)^(x))$, este comparată cu ceva și apoi i se cere să găsească $x$. În special cazuri cliniceîn locul variabilei $x$ pot pune o funcție $f\left(x \right)$ și, prin urmare, pot complica puțin inegalitatea. :)

Desigur, în unele cazuri inegalitatea poate părea mai gravă. De exemplu:

\[((9)^(x))+8 \gt ((3)^(x+2))\]

Sau chiar asta:

În general, complexitatea unor astfel de inegalități poate fi foarte diferită, dar în cele din urmă ele încă se reduc la construcția simplă $((a)^(x)) \gt b$. Și ne vom da seama cumva de o astfel de construcție (în special în cazuri clinice, când nu ne vine nimic în minte, logaritmii ne vor ajuta). Prin urmare, acum vă vom învăța cum să rezolvați astfel de construcții simple.

Rezolvarea inegalităților exponențiale simple

Să luăm în considerare ceva foarte simplu. De exemplu, aceasta:

\[((2)^(x)) \gt 4\]

Evident, numărul din dreapta poate fi rescris ca o putere a doi: $4=((2)^(2))$. Astfel, inegalitatea originală poate fi rescrisă într-o formă foarte convenabilă:

\[((2)^(x)) \gt ((2)^(2))\]

Și acum mâinile mele sunt mâncărime să le „trisească” pe cei doi din bazele puterilor pentru a obține răspunsul $x \gt 2$. Dar înainte de a tăia orice, să ne amintim puterile a doi:

\[((2)^(1))=2;\quad ((2)^(2))=4;\quad ((2)^(3))=8;\quad ((2)^( 4))=16;...\]

După cum vedem, decât număr mai mare este în exponent, cu atât numărul de ieșire este mai mare. — Mulțumesc, Cap! – va exclama unul dintre elevi. Este diferit? Din păcate, se întâmplă. De exemplu:

\[((\left(\frac(1)(2) \right))^(1))=\frac(1)(2);\quad ((\left(\frac(1)(2) \ dreapta))^(2))=\frac(1)(4);\quad ((\left(\frac(1)(2) \right))^(3))=\frac(1)(8 );...\]

Și aici totul este logic: cu cât gradul este mai mare, cu atât numărul 0,5 este înmulțit cu el însuși (adică, împărțit la jumătate). Astfel, succesiunea de numere rezultată este în scădere, iar diferența dintre prima și a doua secvență este doar în bază:

  • Dacă baza gradului $a \gt 1$, atunci pe măsură ce exponentul $n$ crește, va crește și numărul $((a)^(n))$;
  • Și invers, dacă $0 \lt a \lt 1$, atunci pe măsură ce exponentul $n$ crește, numărul $((a)^(n))$ va scădea.

Rezumând aceste fapte, obținem cea mai importantă afirmație pe care se bazează întreaga soluție a inegalităților exponențiale:

Dacă $a \gt 1$, atunci inegalitatea $((a)^(x)) \gt ((a)^(n))$ este echivalentă cu inegalitatea $x \gt n$. Dacă $0 \lt a \lt 1$, atunci inegalitatea $((a)^(x)) \gt ((a)^(n))$ este echivalentă cu inegalitatea $x \lt n$.

Cu alte cuvinte, dacă baza este mai mare decât unu, o puteți elimina pur și simplu - semnul inegalității nu se va schimba. Și dacă baza este mai mică de unu, atunci poate fi și eliminată, dar în același timp va trebui să schimbați semnul inegalității.

Vă rugăm să rețineți că nu am luat în considerare opțiunile $a=1$ și $a\le 0$. Pentru că în aceste cazuri apare incertitudinea. Să spunem cum se rezolvă o inegalitate de forma $((1)^(x)) \gt 3$? Unul pentru orice putere va da din nou unul - nu vom primi niciodată trei sau mai multe. Acestea. nu exista solutii.

Din motive negative, totul este și mai interesant. De exemplu, luați în considerare această inegalitate:

\[((\left(-2 \right))^(x)) \gt 4\]

La prima vedere, totul este simplu:

Dreapta? Dar nu! Este suficient să înlocuiți câteva numere pare și câteva impare în loc de $x$ pentru a vă asigura că soluția este incorectă. Aruncă o privire:

\[\begin(align) & x=4\Rightarrow ((\left(-2 \right))^(4))=16 \gt 4; \\ & x=5\Rightarrow ((\left(-2 \right))^(5))=-32 \lt 4; \\ & x=6\Rightarrow ((\left(-2 \right))^(6))=64 \gt 4; \\ & x=7\Rightarrow ((\left(-2 \right))^(7))=-128 \lt 4. \\\end(align)\]

După cum puteți vedea, semnele se alternează. Dar există și puteri fracționale și alte prostii. Cum, de exemplu, ați ordona să calculați $((\left(-2 \right))^(\sqrt(7)))$ (minus doi la puterea lui șapte)? În nici un caz!

Prin urmare, pentru certitudine, presupunem că în toate inegalitățile exponențiale (și ecuațiile, apropo, de asemenea) $1\ne a \gt 0$. Și apoi totul este rezolvat foarte simplu:

\[((a)^(x)) \gt ((a)^(n))\Rightarrow \left[ \begin(align) & x \gt n\quad \left(a \gt 1 \right), \\ & x \lt n\quad \left(0 \lt a \lt 1 \right). \\\end(aliniere) \dreapta.\]

În general, amintiți-vă încă o dată regula principală: dacă baza într-o ecuație exponențială este mai mare decât unu, o puteți elimina pur și simplu; iar dacă baza este mai mică de unu, poate fi, de asemenea, îndepărtată, dar semnul inegalității se va schimba.

Exemple de soluții

Deci, să ne uităm la câteva inegalități exponențiale simple:

\[\begin(align) & ((2)^(x-1))\le \frac(1)(\sqrt(2)); \\ & ((0,1)^(1-x)) \lt 0,01; \\ & ((2)^(((x)^(2))-7x+14)) \lt 16; \\ & ((0,2)^(1+((x)^(2))))\ge \frac(1)(25). \\\end(align)\]

Sarcina principală în toate cazurile este aceeași: reducerea inegalităților la cea mai simplă formă $((a)^(x)) \gt ((a)^(n))$. Este exact ceea ce vom face acum cu fiecare inegalitate și, în același timp, vom repeta proprietățile gradelor și ale funcțiilor exponențiale. Deci să mergem!

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\]

Ce poți face aici? Ei bine, în stânga avem deja o expresie orientativă - nimic nu trebuie schimbat. Dar în dreapta este un fel de porcărie: o fracție și chiar o rădăcină în numitor!

Cu toate acestea, să ne amintim regulile de lucru cu fracții și puteri:

\[\begin(align) & \frac(1)(((a)^(n)))=((a)^(-n)); \\ & \sqrt[k](a)=((a)^(\frac(1)(k))). \\\end(align)\]

Ce înseamnă? În primul rând, putem scăpa cu ușurință de fracțiune transformând-o într-o putere cu exponent negativ. Și în al doilea rând, deoarece numitorul are o rădăcină, ar fi bine să-l transformăm într-o putere - de data aceasta cu un exponent fracționar.

Să aplicăm secvențial aceste acțiuni în partea dreaptă a inegalității și să vedem ce se întâmplă:

\[\frac(1)(\sqrt(2))=((\left(\sqrt(2) \right))^(-1))=((\left(((2)^(\frac() 1)(3))) \right))^(-1))=((2)^(\frac(1)(3)\cdot \left(-1 \right)))=((2)^ (-\frac(1)(3)))\]

Nu uitați că atunci când ridicați un grad la o putere, exponenții acestor grade se adună. Și, în general, atunci când lucrați cu ecuații și inegalități exponențiale, este absolut necesar să cunoașteți cel puțin cele mai simple reguli pentru lucrul cu puteri:

\[\begin(align) & ((a)^(x))\cdot ((a)^(y))=((a)^(x+y)); \\ & \frac(((a)^(x)))(((a)^(y)))=((a)^(x-y)); \\ & ((\left(((a)^(x)) \right))^(y))=((a)^(x\cdot y)). \\\end(align)\]

De fapt, tocmai am aplicat ultima regulă. Prin urmare, inegalitatea noastră inițială va fi rescrisă după cum urmează:

\[((2)^(x-1))\le \frac(1)(\sqrt(2))\Rightarrow ((2)^(x-1))\le ((2)^(-\ frac(1)(3)))\]

Acum scăpăm de cele două de la bază. Deoarece 2 > 1, semnul inegalității va rămâne același:

\[\begin(align) & x-1\le -\frac(1)(3)\Rightarrow x\le 1-\frac(1)(3)=\frac(2)(3); \\ & x\in \left(-\infty ;\frac(2)(3) \right]. \\\end(align)\]

Asta e solutia! Principala dificultate nu este deloc în funcția exponențială, ci în transformarea competentă a expresiei originale: trebuie să o aduceți cu atenție și rapid la forma sa cea mai simplă.

Luați în considerare a doua inegalitate:

\[((0,1)^(1-x)) \lt 0,01\]

Asa si asa. Fracțiile zecimale ne așteaptă aici. După cum am spus de multe ori, în orice expresii cu puteri ar trebui să scapi de zecimale - aceasta este adesea singura modalitate de a vedea o soluție rapidă și simplă. Aici vom scăpa de:

\[\begin(align) & 0.1=\frac(1)(10);\quad 0.01=\frac(1)(100)=((\left(\frac(1)(10) \ right))^ (2)); \\ & ((0,1)^(1-x)) \lt 0,01\Rightarrow ((\left(\frac(1)(10) \right))^(1-x)) \lt ( (\left(\frac(1)(10) \right))^(2)). \\\end(align)\]

Aici avem din nou cea mai simplă inegalitate și chiar și cu o bază de 1/10, i.e. mai putin de unul. Ei bine, eliminăm bazele, schimbând simultan semnul de la „mai puțin” la „mai mult”, și obținem:

\[\begin(align) & 1-x \gt 2; \\ & -x \gt 2-1; \\ & -x \gt 1; \\& x \lt -1. \\\end(align)\]

Am primit răspunsul final: $x\in \left(-\infty ;-1 \right)$. Vă rugăm să rețineți: răspunsul este tocmai o mulțime, și în niciun caz o construcție de forma $x \lt -1$. Pentru că formal, o astfel de construcție nu este deloc o mulțime, ci o inegalitate față de variabila $x$. Da, este foarte simplu, dar nu este răspunsul!

Notă importantă. Această inegalitate ar putea fi rezolvată într-un alt mod - prin reducerea ambelor părți la o putere cu o bază mai mare decât unu. Aruncă o privire:

\[\frac(1)(10)=((10)^(-1))\Rightarrow ((\left(((10)^(-1)) \right))^(1-x)) \ lt ((\left(((10)^(-1)) \right))^(2))\Rightarrow ((10)^(-1\cdot \left(1-x \right))) \lt ((10)^(-1\cdot 2))\]

După o astfel de transformare, vom obține din nou o inegalitate exponențială, dar cu o bază de 10 > 1. Aceasta înseamnă că putem tăia pur și simplu zece - semnul inegalității nu se va schimba. Primim:

\[\begin(align) & -1\cdot \left(1-x \right) \lt -1\cdot 2; \\ & x-1 \lt -2; \\ & x \lt -2+1=-1; \\ & x \lt -1. \\\end(align)\]

După cum puteți vedea, răspunsul a fost exact același. În același timp, ne-am salvat de nevoia de a schimba semnul și, în general, ne-am amintit orice reguli. :)

\[((2)^(((x)^(2))-7x+14)) \lt 16\]

Cu toate acestea, nu lăsați acest lucru să vă sperie. Indiferent de ce se află în indicatori, tehnologia de rezolvare a inegalității în sine rămâne aceeași. Prin urmare, să remarcăm mai întâi că 16 = 2 4. Să rescriem inegalitatea inițială ținând cont de acest fapt:

\[\begin(align) & ((2)^(((x)^(2))-7x+14)) \lt ((2)^(4)); \\ & ((x)^(2))-7x+14 \lt 4; \\ & ((x)^(2))-7x+10 \lt 0. \\\end(align)\]

Ura! Avem cele obișnuite inegalitatea pătratică! Semnul nu s-a schimbat nicăieri, deoarece baza este doi - un număr mai mare decât unu.

Zerourile unei funcții pe linia numerică

Aranjam semnele functiei $f\left(x \right)=((x)^(2))-7x+10$ - evident, graficul acesteia va fi o parabolă cu ramuri în sus, deci vor exista „plusuri”. ” pe laterale. Ne interesează regiunea în care funcția este mai mică decât zero, adică. $x\in \left(2;5 \right)$ este răspunsul la problema inițială.

În cele din urmă, luați în considerare o altă inegalitate:

\[(((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\]

Din nou vedem o funcție exponențială cu o fracție zecimală la bază. Să transformăm această fracție într-o fracție comună:

\[\begin(align) & 0.2=\frac(2)(10)=\frac(1)(5)=((5)^(-1))\Rightarrow \\ & \Rightarrow ((0 ,2) )^(1+((x)^(2))))=((\left(((5)^(-1)) \right))^(1+((x)^(2) )) )=((5)^(-1\cdot \left(1+((x)^(2)) \right)))\end(align)\]

În acest caz, am folosit observația dată mai devreme - am redus baza la numărul 5 > 1 pentru a simplifica soluția noastră ulterioară. Să facem același lucru cu partea dreaptă:

\[\frac(1)(25)=((\left(\frac(1)(5) \right))^(2))=((\left(((5)^(-1)) \ dreapta))^(2))=((5)^(-1\cdot 2))=((5)^(-2))\]

Să rescriem inegalitatea inițială ținând cont de ambele transformări:

\[((0,2)^(1+((x)^(2))))\ge \frac(1)(25)\Rightarrow ((5)^(-1\cdot \left(1+) ((x)^(2)) \dreapta)))\ge ((5)^(-2))\]

Bazele de pe ambele părți sunt aceleași și depășesc unul. Nu există alți termeni la dreapta și la stânga, așa că pur și simplu „tașăm” cei cinci și obținem o expresie foarte simplă:

\[\begin(align) & -1\cdot \left(1+((x)^(2)) \right)\ge -2; \\ & -1-((x)^(2))\ge -2; \\ & -((x)^(2))\ge -2+1; \\ & -((x)^(2))\ge -1;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))\le 1. \\\end(align)\]

Aici trebuie să fii mai atent. Mulți studenți le place să extragă pur și simplu Rădăcină pătrată de ambele părți ale inegalității și scrieți ceva de genul $x\le 1\Rightarrow x\in \left(-\infty ;-1 \right]$. În niciun caz nu ar trebui să faceți acest lucru, deoarece rădăcina unui pătrat exact este modul, și în niciun caz variabila originală:

\[\sqrt(((x)^(2)))=\left| x\dreapta|\]

Cu toate acestea, lucrul cu module nu este cea mai plăcută experiență, nu-i așa? Deci nu vom lucra. În schimb, pur și simplu mutăm toți termenii la stânga și rezolvăm inegalitatea obișnuită folosind metoda intervalului:

$\begin(align) & ((x)^(2))-1\le 0; \\ & \left(x-1 \right)\left(x+1 \right)\le 0 \\ & ((x)_(1))=1;\quad ((x)_(2)) =-1; \\\end(align)$

Marcam din nou punctele obținute pe linia numerică și ne uităm la semnele:

Vă rugăm să rețineți: punctele sunt umbrite

Deoarece rezolvăm o inegalitate nestrictă, toate punctele din grafic sunt umbrite. Prin urmare, răspunsul va fi: $x\in \left[ -1;1 \right]$ nu este un interval, ci un segment.

În general, aș dori să observ că nu este nimic complicat în ceea ce privește inegalitățile exponențiale. Semnificația tuturor transformărilor pe care le-am efectuat astăzi se rezumă la un algoritm simplu:

  • Găsiți baza la care vom reduce toate gradele;
  • Efectuați cu atenție transformările pentru a obține o inegalitate de forma $((a)^(x)) \gt ((a)^(n))$. Desigur, în loc de variabilele $x$ și $n$ pot fi mult mai multe funcții complexe, dar sensul nu se va schimba;
  • Tăiați bazele gradelor. În acest caz, semnul de inegalitate se poate schimba dacă baza $a \lt 1$.

De fapt, acesta este un algoritm universal pentru rezolvarea tuturor acestor inegalități. Și tot ceea ce vă vor spune despre acest subiect este doar tehnici și trucuri specifice care vor simplifica și accelera transformarea. Vom vorbi acum despre una dintre aceste tehnici. :)

Metoda raționalizării

Să luăm în considerare un alt set de inegalități:

\[\begin(align) & ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi \!\!\text( ))^(((x)^(2))-3x+2)); \\ & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1; \\ & ((\left(\frac(1)(3) \right))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9)) \dreapta))^(16-x)); \\ & ((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt 1. \\\end(align)\]

Deci, ce este atât de special la ei? Sunt usoare. Deși, oprește-te! Este numărul π ridicat la o anumită putere? Ce nonsens?

Cum se ridică numărul $2\sqrt(3)-3$ la o putere? Sau $3-2\sqrt(2)$? Scriitorii cu probleme au băut, evident, prea mult păducel înainte de a se așeza la muncă. :)

De fapt, nu este nimic înfricoșător în aceste sarcini. Permiteți-mi să vă reamintesc: o funcție exponențială este o expresie de forma $((a)^(x))$, unde baza $a$ este orice număr pozitiv, cu excepția unuia. Numărul π este pozitiv - știm deja asta. Numerele $2\sqrt(3)-3$ și $3-2\sqrt(2)$ sunt de asemenea pozitive - acest lucru este ușor de observat dacă le compari cu zero.

Se pare că toate aceste inegalități „înfricoșătoare” sunt rezolvate cu nimic diferit de cele simple discutate mai sus? Și sunt rezolvate în același mod? Da, este absolut corect. Cu toate acestea, folosind exemplul lor, aș dori să iau în considerare o tehnică care economisește mult timp pentru munca independentă și examene. Vom vorbi despre metoda raționalizării. Deci, atentie:

Orice inegalitate exponențială de forma $((a)^(x)) \gt ((a)^(n))$ este echivalentă cu inegalitatea $\left(x-n \right)\cdot \left(a-1 \ dreapta) \gt 0 $.

Asta e toată metoda. :) Te-ai gândit că va exista un fel de alt joc? Nimic de genul asta! Dar acest fapt simplu, scris literalmente într-o singură linie, ne va simplifica foarte mult munca. Aruncă o privire:

\[\begin(matrix) ((\text( )\!\!\pi\!\!\text( ))^(x+7)) \gt ((\text( )\!\!\pi\ !\!\text( ))^(((x)^(2))-3x+2)) \\ \Downarrow \\ \left(x+7-\left(((x)^(2)) -3x+2 \right) \right)\cdot \left(\text( )\!\!\pi\!\!\text( )-1 \right) \gt 0 \\\end(matrix)\]

Deci nu mai există funcții exponențiale! Și nu trebuie să vă amintiți dacă semnul se schimbă sau nu. Dar apare noua problema: ce să faci cu multiplicatorul nenorocit \[\left(\text( )\!\!\pi\!\!\text( )-1 \right)\]? Nu știm care este valoarea exactă a numărului π. Cu toate acestea, căpitanul pare să sugereze ceea ce este evident:

\[\text( )\!\!\pi\!\!\text( )\aprox 3.14... \gt 3\Rightarrow \text( )\!\!\pi\!\!\text( )- 1\gt 3-1=2\]

În general, valoarea exactă a lui π nu ne privește cu adevărat - este important doar pentru noi să înțelegem că, în orice caz, $\text( )\!\!\pi\!\!\text( )-1 \gt 2 $, t .e. aceasta este o constantă pozitivă și putem împărți ambele părți ale inegalității cu aceasta:

\[\begin(align) & \left(x+7-\left(((x)^(2))-3x+2 \right) \right)\cdot \left(\text( )\!\! \pi\!\!\text( )-1 \right) \gt 0 \\ & x+7-\left(((x)^(2))-3x+2 \right) \gt 0; \\ & x+7-((x)^(2))+3x-2 \gt 0; \\ & -((x)^(2))+4x+5 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-4x-5 \lt 0; \\ & \left(x-5 \right)\left(x+1 \right) \lt 0. \\\end(align)\]

După cum puteți vedea, la un moment dat a trebuit să împărțim cu minus unu - și semnul inegalității s-a schimbat. La final, am extins trinomul pătratic folosind teorema lui Vieta - este evident că rădăcinile sunt egale cu $((x)_(1))=5$ și $((x)_(2))=-1$ . Apoi totul este rezolvat folosind metoda clasică a intervalului:

Rezolvarea inegalității folosind metoda intervalului

Toate punctele sunt eliminate deoarece inegalitatea originală este strictă. Ne interesează regiunea cu valori negative, deci răspunsul este $x\in \left(-1;5 \right)$. asta e solutia. :)

Să trecem la următoarea sarcină:

\[((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1\]

Totul aici este în general simplu, deoarece există o unitate în dreapta. Și ne amintim că unu este orice număr ridicat la puterea zero. Chiar dacă acest număr este o expresie irațională la baza din stânga:

\[\begin(align) & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt 1=((\left(2) \sqrt(3)-3 \right))^(0)); \\ & ((\left(2\sqrt(3)-3 \right))^(((x)^(2))-2x)) \lt ((\left(2\sqrt(3)-3) \dreapta))^(0)); \\\end(align)\]

Ei bine, hai să raționalizăm:

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-3-1 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \right)\cdot \left(2\sqrt(3)-4 \right) \lt 0; \\ & \left(((x)^(2))-2x-0 \right)\cdot 2\left(\sqrt(3)-2 \right) \lt 0. \\\end(align)\ ]

Tot ce rămâne este să descoperi semnele. Factorul $2\left(\sqrt(3)-2 \right)$ nu conține variabila $x$ - este doar o constantă și trebuie să aflăm semnul acesteia. Pentru a face acest lucru, rețineți următoarele:

\[\begin(matrix) \sqrt(3) \lt \sqrt(4)=2 \\ \Downarrow \\ 2\left(\sqrt(3)-2 \right) \lt 2\cdot \left(2 -2 \right)=0 \\\end(matrice)\]

Se pare că al doilea factor nu este doar o constantă, ci o constantă negativă! Și la împărțirea la ea, semnul inegalității originale se schimbă în opus:

\[\begin(align) & \left(((x)^(2))-2x-0 \right)\cdot 2\left(\sqrt(3)-2 \right) \lt 0; \\ & ((x)^(2))-2x-0 \gt 0; \\ & x\left(x-2 \right) \gt 0. \\\end(align)\]

Acum totul devine complet evident. Rădăcini trinom pătratic, stând în dreapta: $((x)_(1))=0$ și $((x)_(2))=2$. Le marchem pe linia numerică și ne uităm la semnele funcției $f\left(x \right)=x\left(x-2 \right)$:

Cazul când ne interesează intervalele laterale

Ne interesează intervalele marcate cu semnul plus. Rămâne doar să scrieți răspunsul:

Să trecem la următorul exemplu:

\[((\left(\frac(1)(3) \right)))^(((x)^(2))+2x)) \gt ((\left(\frac(1)(9) \ dreapta))^(16-x))\]

Ei bine, totul este complet evident aici: bazele conțin puteri de același număr. Prin urmare, voi scrie totul pe scurt:

\[\begin(matrix) \frac(1)(3)=((3)^(-1));\quad \frac(1)(9)=\frac(1)(((3)^( 2)))=((3)^(-2)) \\ \În jos \\ ((\left(((3)^(-1)) \right))^(((x)^(2) )+2x)) \gt ((\left(((3)^(-2)) \right))^(16-x)) \\\end(matrice)\]

\[\begin(align) & ((3)^(-1\cdot \left(((x)^(2))+2x \right))) \gt ((3)^(-2\cdot \ stânga(16-x \dreapta))); \\ & ((3)^(-((x)^(2))-2x)) \gt ((3)^(-32+2x)); \\ & \left(-((x)^(2))-2x-\left(-32+2x \right) \right)\cdot \left(3-1 \right) \gt 0; \\ & -((x)^(2))-2x+32-2x \gt 0; \\ & -((x)^(2))-4x+32 \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))+4x-32 \lt 0; \\ & \left(x+8 \right)\left(x-4 \right) \lt 0. \\\end(align)\]

După cum puteți vedea, în timpul procesului de transformare a trebuit să înmulțim cu un număr negativ, așa că semnul de inegalitate s-a schimbat. La final, am aplicat din nou teorema lui Vieta pentru a factoriza trinomul pătratic. Ca urmare, răspunsul va fi următorul: $x\in \left(-8;4 \right)$ - oricine poate verifica acest lucru prin trasarea unei linii numerice, marcarea punctelor și numărarea semnelor. Între timp, vom trece la ultima inegalitate din „setul” nostru:

\[((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt 1\]

După cum puteți vedea, la bază există din nou un număr irațional, iar în dreapta este din nou o unitate. Prin urmare, rescriem inegalitatea noastră exponențială după cum urmează:

\[((\left(3-2\sqrt(2) \right))^(3x-((x)^(2)))) \lt ((\left(3-2\sqrt(2)) \ dreapta))^(0))\]

Aplicam rationalizarea:

\[\begin(align) & \left(3x-((x)^(2))-0 \right)\cdot \left(3-2\sqrt(2)-1 \right) \lt 0; \\ & \left(3x-((x)^(2))-0 \right)\cdot \left(2-2\sqrt(2) \right) \lt 0; \\ & \left(3x-((x)^(2))-0 \right)\cdot 2\left(1-\sqrt(2) \right) \lt 0. \\\end(align)\ ]

Cu toate acestea, este destul de evident că $1-\sqrt(2) \lt 0$, deoarece $\sqrt(2)\aprox 1,4... \gt 1$. Prin urmare, al doilea factor este din nou o constantă negativă, prin care ambele părți ale inegalității pot fi împărțite:

\[\begin(matrix) \left(3x-((x)^(2))-0 \right)\cdot 2\left(1-\sqrt(2) \right) \lt 0 \\ \Downarrow \ \\end(matrice)\]

\[\begin(align) & 3x-((x)^(2))-0 \gt 0; \\ & 3x-((x)^(2)) \gt 0;\quad \left| \cdot \left(-1 \right) \right. \\ & ((x)^(2))-3x \lt 0; \\ & x\left(x-3 \right) \lt 0. \\\end(align)\]

Mutați-vă la altă bază

O problemă separată la rezolvarea inegalităților exponențiale este căutarea bazei „corecte”. Din păcate, nu este întotdeauna evident la prima vedere asupra unei sarcini ce să ia ca bază și ce să facă în funcție de gradul acestei baze.

Dar nu vă faceți griji: aici nu există magie sau tehnologie „secretă”. În matematică, orice abilitate care nu poate fi algoritmizată poate fi dezvoltată cu ușurință prin practică. Dar pentru aceasta va trebui să rezolvați probleme de diferite niveluri de complexitate. De exemplu, așa:

\[\begin(align) & ((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x))); \\ & ((\left(\frac(1)(3) \right))^(\frac(3)(x)))\ge ((3)^(2+x)); \\ & ((\left(0,16 \right))^(1+2x))\cdot ((\left(6,25 \right))^(x))\ge 1; \\ & ((\left(\frac(27)(\sqrt(3)) \right))^(-x)) \lt ((9)^(4-2x))\cdot 81. \\\ sfârşitul (alinierea)\]

Dificil? Infricosator? E mai ușor decât să lovești un pui pe asfalt! Sa incercam. Prima inegalitate:

\[((2)^(\frac(x)(2))) \lt ((4)^(\frac(4)(x)))\]

Ei bine, cred că totul este clar aici:

Rescriem inegalitatea originală, reducând totul la baza două:

\[((2)^(\frac(x)(2))) \lt ((2)^(\frac(8)(x)))\Rightarrow \left(\frac(x)(2)- \frac(8)(x) \right)\cdot \left(2-1 \right) \lt 0\]

Da, da, ați auzit bine: tocmai am aplicat metoda de raționalizare descrisă mai sus. Acum trebuie să lucrăm cu atenție: avem o inegalitate fracțională-rațională (aceasta este una care are o variabilă la numitor), așa că înainte de a echivala ceva cu zero, trebuie să aducem totul la un numitor comun și să scăpăm de factorul constant .

\[\begin(align) & \left(\frac(x)(2)-\frac(8)(x) \right)\cdot \left(2-1 \right) \lt 0; \\ & \left(\frac(((x)^(2))-16)(2x) \right)\cdot 1 \lt 0; \\ & \frac(((x)^(2))-16)(2x) \lt 0. \\\end(align)\]

Acum folosim metoda intervalului standard. Zerourile numeratorului: $x=\pm 4$. Numitorul ajunge la zero numai atunci când $x=0$. Există trei puncte în total care trebuie marcate pe linia numerică (toate punctele sunt fixate deoarece semnul inegalității este strict). Primim:


Mai mult caz dificil: trei rădăcini

După cum ați putea ghici, umbrirea marchează acele intervale la care ia expresia din stânga valori negative. Prin urmare, răspunsul final va include două intervale simultan:

Capetele intervalelor nu sunt incluse în răspuns deoarece inegalitatea inițială a fost strictă. Nu este necesară verificarea suplimentară a acestui răspuns. În acest sens, inegalitățile exponențiale sunt mult mai simple decât cele logaritmice: fără ODZ, fără restricții etc.

Să trecem la următoarea sarcină:

\[((\left(\frac(1)(3) \right)))^(\frac(3)(x)))\ge ((3)^(2+x))\]

Nici aici nu există probleme, deoarece știm deja că $\frac(1)(3)=((3)^(-1))$, deci întreaga inegalitate poate fi rescrisă după cum urmează:

\[\begin(align) & ((\left(((3)^(-1)) \right))^(\frac(3)(x)))\ge ((3)^(2+x ))\Rightarrow ((3)^(-\frac(3)(x)))\ge ((3)^(2+x)); \\ & \left(-\frac(3)(x)-\left(2+x \right) \right)\cdot \left(3-1 \right)\ge 0; \\ & \left(-\frac(3)(x)-2-x \right)\cdot 2\ge 0;\quad \left| :\stânga(-2 \dreapta) \dreapta. \\ & \frac(3)(x)+2+x\le 0; \\ & \frac(((x)^(2))+2x+3)(x)\le 0. \\\end(align)\]

Vă rugăm să rețineți: în a treia linie am decis să nu pierd timpul cu fleacuri și să împart imediat totul la (−2). Minul a intrat în prima paranteză (acum sunt plusuri peste tot), iar două au fost reduse cu un factor constant. Este exact ceea ce ar trebui să faceți atunci când pregătiți afișaje reale pe independent și teste— nu este nevoie să descriem fiecare acțiune și transformare.

În continuare, intră în joc metoda familiară a intervalelor. Zerouri ale numărătorului: dar nu există. Pentru că discriminantul va fi negativ. La rândul său, numitorul este resetat numai când $x=0$ - la fel ca data trecută. Ei bine, este clar că la dreapta lui $x=0$ va lua fracția valori pozitive, iar în stânga sunt negative. Deoarece ne interesează valorile negative, răspunsul final este: $x\in \left(-\infty ;0 \right)$.

\[((\left(0,16 \right))^(1+2x))\cdot ((\left(6,25 \right))^(x))\ge 1\]

Ce ar trebui să faci cu fracțiile zecimale din inegalitățile exponențiale? Așa este: scapă de ele, transformându-le în altele obișnuite. Aici vom traduce:

\[\begin(align) & 0.16=\frac(16)(100)=\frac(4)(25)\Rightarrow ((\left(0.16 \right))^(1+2x)) =((\ stânga(\frac(4)(25) \right))^(1+2x)); \\ & 6,25=\frac(625)(100)=\frac(25)(4)\Rightarrow ((\left(6,25 \right))^(x))=((\left(\ frac(25)) (4)\dreapta))^(x)). \\\end(align)\]

Deci, ce am obținut în bazele funcțiilor exponențiale? Și avem două numere reciproc inverse:

\[\frac(25)(4)=((\left(\frac(4)(25) \right))^(-1))\Rightarrow ((\left(\frac(25)(4) \ dreapta))^(x))=((\left(((\left(\frac(4)(25) \right))^(-1)) \right))^(x))=((\ stânga(\frac(4)(25) \dreapta))^(-x))\]

Astfel, inegalitatea originală poate fi rescrisă după cum urmează:

\[\begin(align) & ((\left(\frac(4)(25) \right))^(1+2x))\cdot ((\left(\frac(4)(25) \right) )^(-x))\ge 1; \\ & ((\left(\frac(4)(25) \right))^(1+2x+\left(-x \right)))\ge ((\left(\frac(4)(25) \dreapta))^(0)); \\ & ((\left(\frac(4)(25) \right))^(x+1))\ge ((\left(\frac(4)(25) \right))^(0) ). \\\end(align)\]

Desigur, la înmulțirea puterilor cu aceeași bază, exponenții acestora se adună, ceea ce s-a întâmplat în a doua linie. În plus, am reprezentat unitatea din dreapta, tot ca putere în baza 4/25. Rămâne doar să raționalizezi:

\[((\left(\frac(4)(25) \right))^(x+1))\ge ((\left(\frac(4)(25) \right))^(0)) \Rightarrow \left(x+1-0 \right)\cdot \left(\frac(4)(25)-1 \right)\ge 0\]

Rețineți că $\frac(4)(25)-1=\frac(4-25)(25) \lt 0$, adică. al doilea factor este o constantă negativă, iar la împărțirea la acesta, semnul inegalității se va schimba:

\[\begin(align) & x+1-0\le 0\Rightarrow x\le -1; \\ & x\în \left(-\infty ;-1 \right]. \\\end(align)\]

În cele din urmă, ultima inegalitate din „mulțimea” actuală:

\[((\left(\frac(27)(\sqrt(3)) \right))^(-x)) \lt ((9)^(4-2x))\cdot 81\]

În principiu, ideea soluției de aici este de asemenea clară: toate funcțiile exponențiale incluse în inegalitate trebuie reduse la baza „3”. Dar pentru asta va trebui să te chinui puțin cu rădăcini și puteri:

\[\begin(align) & \frac(27)(\sqrt(3))=\frac((((3)^(3)))(((3)^(\frac(1)(3)) ))=((3)^(3-\frac(1)(3)))=((3)^(\frac(8)(3))); \\ & 9=((3)^(2));\quad 81=((3)^(4)). \\\end(align)\]

Luând în considerare aceste fapte, inegalitatea inițială poate fi rescrisă după cum urmează:

\[\begin(align) & ((\left(((3)^(\frac(8)(3))) \right))^(-x)) \lt ((\left(((3)) ^(2))\dreapta))^(4-2x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x))\cdot ((3)^(4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(8-4x+4)); \\ & ((3)^(-\frac(8x)(3))) \lt ((3)^(4-4x)). \\\end(align)\]

Atenție la rândurile 2 și 3 ale calculelor: înainte de a face ceva cu inegalitatea, asigurați-vă că o aduceți la forma despre care am vorbit încă de la începutul lecției: $((a)^(x)) \ lt ((a)^(n))$. Atâta timp cât aveți niște factori stângaci, constante suplimentare etc. în stânga sau în dreapta, nu poate fi efectuată nicio raționalizare sau „radiere” a terenurilor! Nenumărate sarcini au fost finalizate incorect din cauza lipsei de înțelegere a acestui lucru simplu fapt. Eu însumi observ constant această problemă cu studenții mei când abia începem să analizăm inegalitățile exponențiale și logaritmice.

Dar să revenim la sarcina noastră. Să încercăm de data asta să facem fără raționalizare. Să ne amintim: baza gradului este mai mare decât unu, astfel încât triplele pot fi pur și simplu tăiate - semnul inegalității nu se va schimba. Primim:

\[\begin(align) & -\frac(8x)(3) \lt 4-4x; \\ & 4x-\frac(8x)(3) \lt 4; \\ & \frac(4x)(3) \lt 4; \\ & 4x \lt 12; \\ & x \lt 3. \\\end(align)\]

Asta e tot. Răspuns final: $x\in \left(-\infty ;3 \right)$.

Izolarea unei expresii stabile și înlocuirea unei variabile

În concluzie, propun rezolvarea a încă patru inegalități exponențiale, care sunt deja destul de dificile pentru elevii nepregătiți. Pentru a le face față, trebuie să vă amintiți regulile de lucru cu grade. În special, scoaterea din paranteze a factorilor comuni.

Dar cel mai important lucru este să înveți să înțelegi ce anume poate fi scos dintre paranteze. O astfel de expresie se numește stabilă - poate fi notată printr-o nouă variabilă și astfel scăpați de funcția exponențială. Deci, să ne uităm la sarcini:

\[\begin(align) & ((5)^(x+2))+((5)^(x+1))\ge 6; \\ & ((3)^(x))+((3)^(x+2))\ge 90; \\ & ((25)^(x+1,5))-((5)^(2x+2)) \gt 2500; \\ & ((\left(0,5 \right))^(-4x-8))-((16)^(x+1,5)) \gt 768. \\\end(align)\]

Să începem de la prima linie. Să scriem separat această inegalitate:

\[((5)^(x+2))+((5)^(x+1))\ge 6\]

Rețineți că $((5)^(x+2))=((5)^(x+1+1))=((5)^(x+1))\cdot 5$, deci mâna dreaptă partea poate fi rescrisa:

Rețineți că nu există alte funcții exponențiale cu excepția $((5)^(x+1))$ în inegalitate. Și, în general, variabila $x$ nu apare nicăieri altundeva, așa că să introducem o nouă variabilă: $((5)^(x+1))=t$. Obținem următoarea construcție:

\[\begin(align) & 5t+t\ge 6; \\&6t\ge 6; \\ & t\ge 1. \\\end(align)\]

Revenim la variabila originală ($t=((5)^(x+1))$), și în același timp ne amintim că 1=5 0 . Avem:

\[\begin(align) & ((5)^(x+1))\ge ((5)^(0)); \\ & x+1\ge 0; \\ & x\ge -1. \\\end(align)\]

Asta e solutia! Răspuns: $x\în \left[ -1;+\infty \right)$. Să trecem la a doua inegalitate:

\[((3)^(x))+((3)^(x+2))\ge 90\]

Totul este la fel aici. Rețineți că $((3)^(x+2))=((3)^(x))\cdot ((3)^(2))=9\cdot ((3)^(x))$ . Apoi partea stângă poate fi rescrisă:

\[\begin(align) & ((3)^(x))+9\cdot ((3)^(x))\ge 90;\quad \left| ((3)^(x))=t \dreapta. \\&t+9t\ge 90; \\ & 10t\ge 90; \\ & t\ge 9\Rightarrow ((3)^(x))\ge 9\Rightarrow ((3)^(x))\ge ((3)^(2)); \\ & x\ge 2\Rightarrow x\in \left[ 2;+\infty \right). \\\end(align)\]

Cam așa trebuie să elaborezi o soluție pentru teste reale și muncă independentă.

Ei bine, hai să încercăm ceva mai complicat. De exemplu, iată inegalitatea:

\[((25)^(x+1,5))-((5)^(2x+2)) \gt 2500\]

Care este problema aici? În primul rând, bazele funcțiilor exponențiale din stânga sunt diferite: 5 și 25. Totuși, 25 = 5 2, deci primul termen poate fi transformat:

\[\begin(align) & ((25)^(x+1.5))=((\left((((5)^(2)) \right))^(x+1.5))= ((5) ^(2x+3)); \\ & ((5)^(2x+3))=((5)^(2x+2+1))=((5)^(2x+2))\cdot 5. \\\end(align) )\]

După cum puteți vedea, la început am adus totul la aceeași bază, apoi am observat că primul termen poate fi redus cu ușurință la al doilea - trebuie doar să extindeți exponentul. Acum puteți introduce în siguranță o nouă variabilă: $((5)^(2x+2))=t$, iar întreaga inegalitate va fi rescrisă după cum urmează:

\[\begin(align) & 5t-t\ge 2500; \\&4t\ge 2500; \\ & t\ge 625=((5)^(4)); \\ & ((5)^(2x+2))\ge ((5)^(4)); \\ & 2x+2\ge 4; \\&2x\ge 2; \\ & x\ge 1. \\\end(align)\]

Și din nou, fără dificultăți! Răspuns final: $x\in \left[ 1;+\infty \right)$. Să trecem la inegalitatea finală în lecția de astăzi:

\[((\left(0,5 \right))^(-4x-8))-((16)^(x+1,5)) \gt 768\]

Primul lucru la care ar trebui să acordați atenție este, desigur, zecimal la baza gradului I. Este necesar să scăpați de el și, în același timp, să aduceți toate funcțiile exponențiale la aceeași bază - numărul „2”:

\[\begin(align) & 0.5=\frac(1)(2)=((2)^(-1))\Rightarrow ((\left(0.5 \right))^(-4x- 8))= ((\left(((2)^(-1)) \right))^(-4x-8))=((2)^(4x+8)); \\ & 16=((2)^(4))\Rightarrow ((16)^(x+1,5))=((\left(((2)^(4)) \right))^( x+ 1,5))=((2)^(4x+6)); \\ & ((2)^(4x+8))-((2)^(4x+6)) \gt 768. \\\end(align)\]

Grozav, am făcut primul pas – totul a dus la aceeași fundație. Acum trebuie să selectați o expresie stabilă. Rețineți că $((2)^(4x+8))=((2)^(4x+6+2))=((2)^(4x+6))\cdot 4$. Dacă introducem o nouă variabilă $((2)^(4x+6))=t$, atunci inegalitatea originală poate fi rescrisă după cum urmează:

\[\begin(align) & 4t-t \gt 768; \\ & 3t \gt 768; \\ & t \gt 256=((2)^(8)); \\ & ((2)^(4x+6)) \gt ((2)^(8)); \\ & 4x+6 \gt 8; \\ & 4x \gt 2; \\ & x \gt \frac(1)(2)=0,5. \\\end(align)\]

Desigur, poate apărea întrebarea: cum am descoperit că 256 = 2 8? Din păcate, aici trebuie doar să cunoști puterile lui doi (și în același timp puterile lui trei și cinci). Ei bine, sau împărțiți 256 la 2 (puteți împărți, deoarece 256 este număr par) până când obținem rezultatul. Va arata cam asa:

\[\begin(align) & 256=128\cdot 2= \\ & =64\cdot 2\cdot 2= \\ & =32\cdot 2\cdot 2\cdot 2= \\ & =16\cdot 2 \cdot 2\cdot 2\cdot 2= \\ & =8\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =4\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2= \\ & =((2)^(8)).\end(align )\]

Același lucru este valabil și cu trei (numerele 9, 27, 81 și 243 sunt gradele sale) și cu șapte (numerele 49 și 343 ar fi, de asemenea, bine de reținut). Ei bine, cele cinci au și grade „frumoase” pe care trebuie să le știi:

\[\begin(align) & ((5)^(2))=25; \\ & ((5)^(3))=125; \\ & ((5)^(4))=625; \\ & ((5)^(5))=3125. \\\end(align)\]

Desigur, dacă doriți, toate aceste numere pot fi restaurate în mintea voastră prin simpla înmulțire succesivă între ele. Totuși, atunci când trebuie să rezolvi mai multe inegalități exponențiale, iar fiecare următoare este mai dificilă decât cea anterioară, atunci ultimul lucru la care vrei să te gândești este puterile unor numere. Și în acest sens, aceste probleme sunt mai complexe decât inegalitățile „clasice” care sunt rezolvate prin metoda intervalului.

Lecție și prezentare pe tema: „Ecuații exponențiale și inegalități exponențiale”

Materiale suplimentare
Dragi utilizatori, nu uitați să lăsați comentariile, recenziile, urările! Toate materialele au fost verificate de un program antivirus.

Mijloace și simulatoare didactice în magazinul online Integral pentru clasa a 11-a
Manual interactiv pentru clasele 9-11 „Trigonometrie”
Manual interactiv pentru clasele 10-11 „Logaritmi”

Definiția ecuațiilor exponențiale

Băieți, am studiat funcțiile exponențiale, le-am învățat proprietățile și am construit grafice, am analizat exemple de ecuații în care s-au găsit funcții exponențiale. Astăzi vom studia ecuațiile exponențiale și inegalitățile.

Definiție. Ecuațiile de forma: $a^(f(x))=a^(g(x))$, unde $a>0$, $a≠1$ se numesc ecuații exponențiale.

Reamintind teoremele pe care le-am studiat la tema „Funcția exponențială”, putem introduce o nouă teoremă:
Teorema. Ecuația exponențială $a^(f(x))=a^(g(x))$, unde $a>0$, $a≠1$ este echivalentă cu ecuația $f(x)=g(x) $.

Exemple de ecuații exponențiale

Exemplu.
Rezolvarea ecuațiilor:
a) $3^(3x-3)=27$.
b) $((\frac(2)(3)))^(2x+0,2)=\sqrt(\frac(2)(3))$.
c) $5^(x^2-6x)=5^(-3x+18)$.
Soluţie.
a) Știm bine că $27=3^3$.
Să ne rescriem ecuația: $3^(3x-3)=3^3$.
Folosind teorema de mai sus, aflăm că ecuația noastră se reduce la ecuația $3x-3=3$; rezolvând această ecuație, obținem $x=2$.
Răspuns: $x=2$.

B) $\sqrt(\frac(2)(3))=((\frac(2)(3)))^(\frac(1)(5))$.
Atunci ecuația noastră poate fi rescrisă: $((\frac(2)(3)))^(2x+0.2)=((\frac(2)(3)))^(\frac(1)(5) ) =((\frac(2)(3)))^(0,2)$.
$2х+0,2=0,2$.
$x=0$.
Răspuns: $x=0$.

C) Ecuația inițială este echivalentă cu ecuația: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ și $x_2=-3$.
Răspuns: $x_1=6$ și $x_2=-3$.

Exemplu.
Rezolvați ecuația: $\frac(((0,25))^(x-0,5))(\sqrt(4))=16*((0,0625))^(x+1)$.
Soluţie:
Să efectuăm o serie de acțiuni secvențial și să aducem ambele părți ale ecuației noastre la aceleași baze.
Să efectuăm o serie de operații în partea stângă:
1) $((0,25))^(x-0,5)=((\frac(1)(4)))^(x-0,5)$.
2) $\sqrt(4)=4^(\frac(1)(2))$.
3) $\frac(((0,25))^(x-0,5))(\sqrt(4))=\frac(((\frac(1)(4)))^(x-0 ,5)) (4^(\frac(1)(2)))= \frac(1)(4^(x-0,5+0,5))=\frac(1)(4^x) =((\frac(1) (4)))^x$.
Să trecem la partea dreaptă:
4) $16=4^2$.
5) $((0,0625))^(x+1)=\frac(1)((16)^(x+1))=\frac(1)(4^(2x+2))$.
6) $16*((0,0625))^(x+1)=\frac(4^2)(4^(2x+2))=4^(2-2x-2)=4^(-2x )= \frac(1)(4^(2x))=((\frac(1)(4)))^(2x)$.
Ecuația inițială este echivalentă cu ecuația:
$((\frac(1)(4)))^x=((\frac(1)(4)))^(2x)$.
$x=2x$.
$x=0$.
Răspuns: $x=0$.

Exemplu.
Rezolvați ecuația: $9^x+3^(x+2)-36=0$.
Soluţie:
Să ne rescriem ecuația: $((3^2))^x+9*3^x-36=0$.
$((3^x))^2+9*3^x-36=0$.
Să facem o schimbare de variabile, fie $a=3^x$.
În nou ecuație variabilă va lua forma: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ și $a_2=3$.
Să efectuăm schimbarea inversă a variabilelor: $3^x=-12$ și $3^x=3$.
În ultima lecție am învățat că expresiile exponențiale pot lua doar valori pozitive, amintiți-vă graficul. Aceasta înseamnă că prima ecuație nu are soluții, a doua ecuație are o singură soluție: $x=1$.
Răspuns: $x=1$.

Să ne amintim cum să rezolvăm ecuațiile exponențiale:
1. Metoda grafică. Reprezentăm ambele părți ale ecuației sub formă de funcții și construim graficele acestora, găsim punctele de intersecție ale graficelor. (Am folosit această metodă în ultima lecție).
2. Principiul egalității indicatorilor. Principiul se bazează pe faptul că două expresii cu aceleași baze sunt egale dacă și numai dacă gradele (exponenții) acestor baze sunt egale. $a^(f(x))=a^(g(x))$ $f(x)=g(x)$.
3. Metoda de înlocuire variabilă. Aceasta metoda Merită folosit dacă ecuația, atunci când înlocuiește variabile, își simplifică forma și este mult mai ușor de rezolvat.

Exemplu.
Rezolvați sistemul de ecuații: $\begin (cases) (27)^y*3^x=1, \\ 4^(x+y)-2^(x+y)=12. \end (cazuri)$.
Soluţie.
Să luăm în considerare ambele ecuații ale sistemului separat:
27$^y*3^x=1$.
$3^(3y)*3^x=3^0$.
$3^(3y+x)=3^0$.
$x+3y=0$.
Luați în considerare a doua ecuație:
$4^(x+y)-2^(x+y)=12$.
$2^(2(x+y))-2^(x+y)=12$.
Să folosim metoda schimbării variabilelor, fie $y=2^(x+y)$.
Atunci ecuația va lua forma:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ și $y_2=-3$.
Să trecem la variabilele inițiale, din prima ecuație obținem $x+y=2$. A doua ecuație nu are soluții. Apoi al nostru sistem initial ecuații este echivalentă cu sistemul: $\begin (cases) x+3y=0, \\ x+y=2. \end (cazuri)$.
Scăderea a doua din prima ecuație, obținem: $\begin (cases) 2y=-2, \\ x+y=2. \end (cazuri)$.
$\begin (cazuri) y=-1, \\ x=3. \end (cazuri)$.
Răspuns: $(3;-1)$.

Inegalități exponențiale

Să trecem la inegalități. Când rezolvați inegalitățile, este necesar să acordați atenție bazei gradului. Există două scenarii posibile pentru dezvoltarea evenimentelor la rezolvarea inegalităților.

Teorema. Dacă $a>1$, atunci inegalitatea exponențială $a^(f(x))>a^(g(x))$ este echivalentă cu inegalitatea $f(x)>g(x)$.
Dacă 0 USD a^(g(x))$ este echivalent cu inegalitatea $f(x)

Exemplu.
Rezolvarea inegalităților:
a) $3^(2x+3)>81$.
b) $((\frac(1)(4)))^(2x-4) c) $(0,3)^(x^2+6x)≤(0,3)^(4x+15)$ .
Soluţie.
a) $3^(2x+3)>81$.
$3^(2x+3)>3^4$.
Inegalitatea noastră este echivalentă cu inegalitatea:
$2x+3>4$.
$2x>1$.
$x>0,5$.

B) $((\frac(1)(4)))^(2x-4) $((\frac(1)(4)))^(2x-4) În ecuația noastră, baza este atunci când gradul este mai mic decât 1, atunci Când înlocuiți o inegalitate cu una echivalentă, este necesar să schimbați semnul.
$2x-4>2$.
$x>3$.

C) Inegalitatea noastră este echivalentă cu inegalitatea:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Să folosim metoda soluției pe intervale:
Răspuns: $(-∞;-5]U)