Ce înseamnă n în progresia aritmetică. Tema lecției: „Formulă pentru suma primilor n termeni ai unei progresii aritmetice

Instrucţiuni

Progresie aritmetică este o succesiune de forma a1, a1+d, a1+2d..., a1+(n-1)d. Pasul numărul d progresie.Este evident că generalul unui n-lea termen arbitrar al aritmeticii progresie are forma: An = A1+(n-1)d. Apoi cunoașterea unuia dintre membri progresie, membru progresie si pas progresie, puteți, adică numărul membrului de progres. Evident, acesta va fi determinat prin formula n = (An-A1+d)/d.

Să se cunoască acum al-lea termen progresieși un alt membru progresie- n-lea, dar n , ca în cazul precedent, dar se știe că n și m nu coincid progresie poate fi calculat folosind formula: d = (An-Am)/(n-m). Atunci n = (An-Am+md)/d.

Dacă se cunoaşte suma mai multor elemente ale unei ecuaţii aritmetice progresie, precum și primul și ultimul, apoi numărul acestor elemente poate fi determinat și Suma aritmeticii progresie va fi egal cu: S = ((A1+An)/2)n. Atunci n = 2S/(A1+An) - chdenov progresie. Folosind faptul că An = A1+(n-1)d, această formulă poate fi rescrisă ca: n = 2S/(2A1+(n-1)d). Din aceasta putem exprima n prin rezolvare ecuație pătratică.

O secvență aritmetică este un set ordonat de numere, fiecare membru al căruia, cu excepția primului, diferă de cel precedent cu aceeași cantitate. Această valoare constantă se numește diferența progresiei sau pasul acesteia și poate fi calculată din termenii cunoscuți ai progresiei aritmetice.

Instrucţiuni

Dacă din condițiile problemei sunt cunoscute valorile primului și celui de-al doilea sau a oricărei alte perechi de termeni adiacenți, pentru a calcula diferența (d) pur și simplu scădeți-l pe cel anterior din termenul următor. Valoarea rezultată poate fi fie un număr pozitiv, fie un număr negativ - depinde dacă progresia este în creștere. În formă generală, scrieți soluția pentru o pereche arbitrară (aᵢ și aᵢ₊₁) de termeni vecini ai progresiei, după cum urmează: d = aᵢ₊₁ - aᵢ.

Pentru o pereche de termeni ai unei astfel de progresii, dintre care unul este primul (a₁), iar celălalt este oricare altul ales în mod arbitrar, este de asemenea posibil să se creeze o formulă pentru găsirea diferenței (d). Cu toate acestea, în acest caz, numărul de serie (i) al unui membru arbitrar selectat al secvenței trebuie să fie cunoscut. Pentru a calcula diferența, adăugați ambele numere și împărțiți rezultatul rezultat la numărul ordinal al unui termen arbitrar redus cu unu. În general, scrieți această formulă după cum urmează: d = (a₁+ aᵢ)/(i-1).

Dacă, pe lângă un membru arbitrar al unei progresii aritmetice cu numărul ordinal i, se cunoaște un alt membru cu numărul ordinal u, modificați în mod corespunzător formula din pasul anterior. În acest caz, diferența (d) a progresiei va fi suma acestor doi termeni împărțită la diferența numerelor lor ordinale: d = (aᵢ+aᵥ)/(i-v).

Formula de calcul a diferenței (d) devine oarecum mai complicată dacă condițiile problemei dau valoarea primului său termen (a₁) și suma (Sᵢ) unui număr dat (i) a primilor termeni ai șirului aritmetic. Pentru a obține valoarea dorită, împărțiți suma la numărul de termeni care o compun, scădeți valoarea primului număr din succesiune și dublați rezultatul. Împărțiți valoarea rezultată la numărul de termeni care alcătuiesc suma, redus cu unu. În general, scrieți formula pentru calcularea discriminantului după cum urmează: d = 2*(Sᵢ/i-a₁)/(i-1).

Nivel de intrare

Progresie aritmetică. Teorie detaliată cu exemple (2019)

Secvență de numere

Deci, hai să ne așezăm și să începem să scriem câteva numere. De exemplu:
Puteți scrie orice numere și pot fi atâtea câte doriți (în cazul nostru, există). Indiferent câte numere am scrie, putem spune întotdeauna care este primul, care este al doilea și tot așa până la ultimul, adică le putem numerota. Acesta este un exemplu de succesiune de numere:

Secvență de numere
De exemplu, pentru secvența noastră:

Numărul atribuit este specific unui singur număr din succesiune. Cu alte cuvinte, nu există trei numere secunde în succesiune. Al doilea număr (ca și al-lea număr) este întotdeauna același.
Numărul cu număr se numește al treilea termen al șirului.

De obicei, numim întreaga secvență printr-o literă (de exemplu,) și fiecare membru al acestei secvențe este aceeași literă cu un indice egal cu numărul acestui membru: .

In cazul nostru:

Să zicem că avem succesiune de numere, în care diferența dintre numerele adiacente este aceeași și egală.
De exemplu:

etc.
Această secvență de numere se numește progresie aritmetică.
Termenul „progresie” a fost introdus de autorul roman Boethius încă din secolul al VI-lea și a fost înțeles într-un sens mai larg ca o succesiune numerică infinită. Denumirea „aritmetică” a fost transferată din teoria proporțiilor continue, care a fost studiată de grecii antici.

Aceasta este o secvență de numere, fiecare membru al căruia este egal cu cel anterior adăugat la același număr. Acest număr se numește diferența unei progresii aritmetice și este desemnat.

Încercați să determinați ce secvențe de numere sunt o progresie aritmetică și care nu sunt:

o)
b)
c)
d)

Am înţeles? Să comparăm răspunsurile noastre:
este progresie aritmetică - b, c.
nu este progresie aritmetică - a, d.

Să revenim la progresia dată () și să încercăm să găsim valoarea celui de-al treilea termen. Există două mod de a-l găsi.

1. Metoda

Putem adăuga numărul de progresie la valoarea anterioară până ajungem la al treilea termen al progresiei. Este bine că nu avem multe de rezumat - doar trei valori:

Deci, al treilea termen al progresiei aritmetice descrise este egal cu.

2. Metoda

Ce se întâmplă dacă ar trebui să găsim valoarea celui de-al treilea termen al progresiei? Însumarea ne-ar lua mai mult de o oră și nu este un fapt că nu am greși atunci când adunăm numere.
Desigur, matematicienii au venit cu un mod în care nu este necesar să adăugați diferența unei progresii aritmetice la valoarea anterioară. Aruncă o privire mai atentă la imaginea desenată... Cu siguranță ai observat deja un anumit tipar și anume:

De exemplu, să vedem în ce constă valoarea celui de-al treilea termen al acestei progresii aritmetice:


Cu alte cuvinte:

Încercați să găsiți singur valoarea unui membru al unei anumite progresii aritmetice în acest fel.

ai calculat? Comparați notele dvs. cu răspunsul:

Vă rugăm să rețineți că ați obținut exact același număr ca în metoda anterioară, când am adăugat secvențial termenii progresiei aritmetice la valoarea anterioară.
Să încercăm să „depersonalizăm” această formulă - să o introducem vedere generalăși obținem:

Ecuația de progresie aritmetică.

Progresiile aritmetice pot fi crescătoare sau descrescătoare.

Cresterea- progresii în care fiecare valoare ulterioară a termenilor este mai mare decât cea anterioară.
De exemplu:

Descendent- progresii în care fiecare valoare ulterioară a termenilor este mai mică decât cea anterioară.
De exemplu:

Formula derivată este utilizată în calculul termenilor atât în ​​termeni crescanți, cât și în termeni descrescători ai unei progresii aritmetice.
Să verificăm acest lucru în practică.
Ni se oferă o progresie aritmetică constând din următoarele numere: Să verificăm care va fi al-lea număr al acestei progresii aritmetice dacă folosim formula noastră pentru a o calcula:


De atunci:

Astfel, suntem convinși că formula funcționează atât în ​​progresie aritmetică descrescătoare, cât și în creștere.
Încercați să găsiți singuri termenii al treilea și al acestei progresii aritmetice.

Să comparăm rezultatele:

Proprietatea progresiei aritmetice

Să complicăm problema - vom deriva proprietatea progresiei aritmetice.
Să presupunem că ni se oferă următoarea condiție:
- progresie aritmetică, găsiți valoarea.
Ușor, spui și începi să numeri după formula pe care o știi deja:

Să, ah, atunci:

Absolut adevărat. Se pare că mai întâi găsim, apoi îl adăugăm la primul număr și obținem ceea ce căutăm. Dacă progresia este reprezentată de valori mici, atunci nu este nimic complicat, dar dacă ni se dau numere în stare? De acord, există posibilitatea de a face o greșeală în calcule.
Acum gândiți-vă dacă este posibil să rezolvați această problemă într-un singur pas folosind orice formulă? Bineînțeles că da, și asta vom încerca să scoatem acum.

Să notăm termenul necesar al progresiei aritmetice, deoarece formula pentru a-l găsi este cunoscută - aceasta este aceeași formulă pe care am derivat-o la început:
, Atunci:

  • termenul anterior al progresiei este:
  • următorul termen al progresiei este:

Să rezumam termenii anteriori și următori ai progresiei:

Rezultă că suma termenilor anteriori și următori ai progresiei este valoarea dublă a termenului de progresie situat între ei. Cu alte cuvinte, pentru a găsi valoarea unui termen de progresie cu valori anterioare și succesive cunoscute, trebuie să le adunați și să împărțiți la.

Așa e, avem același număr. Să asigurăm materialul. Calculați singur valoarea progresiei, nu este deloc dificil.

Bine făcut! Știi aproape totul despre progres! Rămâne să aflăm o singură formulă, care, potrivit legendei, a fost ușor dedusă de unul dintre cei mai mari matematicieni ai tuturor timpurilor, „regele matematicienilor” - Karl Gauss...

Când Carl Gauss avea 9 ani, un profesor, ocupat să verifice munca elevilor din alte clase, a cerut următoarea sarcină în clasă: „Calculează suma tuturor numerelor naturale de la până la (conform altor surse până la) inclusiv.” Imaginați-vă surpriza profesorului când unul dintre elevii săi (acesta era Karl Gauss) un minut mai târziu a dat răspunsul corect la sarcină, în timp ce majoritatea colegilor temerului, după lungi calcule, au primit rezultatul greșit...

Tânărul Carl Gauss a observat un anumit model pe care și tu îl poți observa cu ușurință.
Să presupunem că avem o progresie aritmetică constând din --i termeni: Trebuie să găsim suma acestor termeni ai progresiei aritmetice. Desigur, putem să însumăm manual toate valorile, dar ce se întâmplă dacă sarcina necesită găsirea sumei termenilor săi, așa cum căuta Gauss?

Să descriem progresul care ni s-a dat. Aruncați o privire atentă la numerele evidențiate și încercați să efectuați diverse operații matematice cu ele.


L-ai incercat? Ce ai observat? Corect! Sumele lor sunt egale


Acum spune-mi, câte astfel de perechi sunt în total în progresia care ni s-a dat? Desigur, exact jumătate din toate numerele, adică.
Pe baza faptului că suma a doi termeni ai unei progresii aritmetice este egală, iar perechile similare sunt egale, obținem că suma totală este egală cu:
.
Astfel, formula pentru suma primilor termeni ai oricărei progresii aritmetice va fi:

În unele probleme nu cunoaștem al treilea termen, dar știm diferența de progresie. Încercați să înlocuiți formula celui de-al treilea termen în formula sumei.
Ce ai primit?

Bine făcut! Acum să revenim la problema care i-a fost pusă lui Carl Gauss: calculați singur cu ce este egală suma numerelor care încep de la th și suma numerelor începând de la th.

Cât ai primit?
Gauss a descoperit că suma termenilor este egală, iar suma termenilor. Asta ai decis?

De fapt, formula pentru suma termenilor unei progresii aritmetice a fost dovedită de omul de știință grec antic Diophantus încă din secolul al III-lea și, de-a lungul acestui timp, oamenii plini de spirit au folosit pe deplin proprietățile progresiei aritmetice.
De exemplu, imaginați-vă Egiptul Antic și cel mai mare proiect de construcție din acea vreme - construcția unei piramide... Imaginea arată o parte a acesteia.

Unde este progresul aici, zici? Privește cu atenție și găsește un model în numărul de blocuri de nisip din fiecare rând al peretelui piramidei.


De ce nu o progresie aritmetică? Calculați câte blocuri sunt necesare pentru a construi un perete dacă cărămizi bloc sunt plasate la bază. Sper că nu veți număra în timp ce vă mutați degetul pe monitor, vă amintiți ultima formulă și tot ce am spus despre progresia aritmetică?

ÎN în acest caz, Progresia arată astfel: .
Diferența de progresie aritmetică.
Numărul de termeni ai unei progresii aritmetice.
Să substituim datele noastre în ultimele formule (calculați numărul de blocuri în 2 moduri).

Metoda 1.

Metoda 2.

Și acum puteți calcula pe monitor: comparați valorile obținute cu numărul de blocuri care se află în piramida noastră. Am înţeles? Bravo, ai stăpânit suma celor n-ai termeni ai unei progresii aritmetice.
Desigur, nu poți construi o piramidă din blocuri de la bază, dar din? Încercați să calculați câte cărămizi de nisip sunt necesare pentru a construi un zid cu această condiție.
Te-ai descurcat?
Răspunsul corect este blocurile:

Antrenamentul

Sarcini:

  1. Masha se pune în formă pentru vară. În fiecare zi crește numărul de genuflexiuni cu. De câte ori va face Masha genuflexiuni într-o săptămână dacă a făcut genuflexiuni la primul antrenament?
  2. Care este suma tuturor numerelor impare conținute în.
  3. Când stochează jurnalele, loggers-ul le stivuiește în așa fel încât fiecare strat superior să conțină un buștean mai puțin decât cel anterior. Câți bușteni sunt într-o zidărie, dacă fundația zidăriei sunt bușteni?

Raspunsuri:

  1. Să definim parametrii progresiei aritmetice. În acest caz
    (săptămâni = zile).

    Răspuns:În două săptămâni, Masha ar trebui să facă genuflexiuni o dată pe zi.

  2. Primul număr impar, ultimul număr.
    Diferența de progresie aritmetică.
    Numărul de numere impare din este jumătate, totuși, să verificăm acest fapt folosind formula pentru găsirea celui de-al treilea termen al unei progresii aritmetice:

    Numerele conțin numere impare.
    Să înlocuim datele disponibile în formula:

    Răspuns: Suma tuturor numerelor impare conținute în este egală.

  3. Să ne amintim problema despre piramide. Pentru cazul nostru, a , deoarece fiecare strat superior este redus cu un buștean, atunci în total există o grămadă de straturi, adică.
    Să înlocuim datele în formula:

    Răspuns: Sunt bușteni în zidărie.

Să rezumam

  1. - o succesiune de numere în care diferența dintre numerele adiacente este aceeași și egală. Poate fi în creștere sau în scădere.
  2. Găsirea formulei Al treilea termen al unei progresii aritmetice se scrie cu formula - , unde este numărul de numere din progresie.
  3. Proprietatea membrilor unei progresii aritmetice- - unde este numărul de numere în progresie.
  4. Suma termenilor unei progresii aritmetice poate fi găsit în două moduri:

    , unde este numărul de valori.

PROGRESIA ARITMETICĂ. NIVEL MEDIU

Secvență de numere

Să ne așezăm și să începem să scriem câteva numere. De exemplu:

Puteți scrie orice numere și pot fi atâtea câte doriți. Dar putem spune întotdeauna care este primul, care este al doilea și așa mai departe, adică le putem numerota. Acesta este un exemplu de succesiune de numere.

Secvență de numere este un set de numere, fiecăruia cărora li se poate atribui un număr unic.

Cu alte cuvinte, fiecare număr poate fi asociat cu un anumit număr natural și cu unul unic. Și nu vom atribui acest număr niciunui alt număr din acest set.

Numărul cu număr se numește al-lea membru al secvenței.

De obicei, numim întreaga secvență printr-o literă (de exemplu,) și fiecare membru al acestei secvențe este aceeași literă cu un indice egal cu numărul acestui membru: .

Este foarte convenabil dacă al treilea termen al secvenței poate fi specificat printr-o formulă. De exemplu, formula

stabilește secvența:

Și formula este următoarea succesiune:

De exemplu, o progresie aritmetică este o secvență (primul termen aici este egal, iar diferența este). Sau (, diferență).

formula al n-lea termen

Numim o formulă recurentă în care, pentru a afla al treilea termen, trebuie să-i cunoști pe anterior sau mai multe anterioare:

Pentru a găsi, de exemplu, cel de-al treilea termen al progresiei folosind această formulă, va trebui să-i calculăm pe cei nouă anteriori. De exemplu, lasa-l. Apoi:

Ei bine, este clar acum care este formula?

În fiecare linie adăugăm, înmulțită cu un număr. Care? Foarte simplu: acesta este numărul membrului curent minus:

Mult mai convenabil acum, nu? Verificăm:

Decideți singuri:

Într-o progresie aritmetică, găsiți formula pentru al n-lea termen și găsiți al sutelea termen.

Soluţie:

Primul termen este egal. Care este diferența? Iată ce:

(De aceea se numește diferență deoarece este egală cu diferența de termeni succesivi ai progresiei).

Deci, formula:

Atunci al sutelea termen este egal cu:

Care este suma tuturor numerelor naturale de la până la?

Potrivit legendei, marele matematician Carl Gauss, în copilărie de 9 ani, a calculat această sumă în câteva minute. A observat că suma primului și ultimului număr este egală, suma celui de-al doilea și penultimul este aceeași, suma celui de-al treilea și al 3-lea de la sfârșit este aceeași și așa mai departe. Câte astfel de perechi există în total? Așa este, exact jumătate din numărul tuturor numerelor, adică. Aşa,

Formula generală pentru suma primilor termeni ai oricărei progresii aritmetice va fi:

Exemplu:
Găsiți suma tuturor numere cu două cifre, multipli.

Soluţie:

Primul astfel de număr este acesta. Fiecare număr următor se obține prin adăugarea la numărul anterior. Astfel, numerele care ne interesează formează o progresie aritmetică cu primul termen și diferența.

Formula celui de-al treilea termen pentru această progresie:

Câți termeni există în progresie dacă toți trebuie să fie din două cifre?

Foarte usor: .

Ultimul termen al progresiei va fi egal. Apoi suma:

Raspuns: .

Acum decideți singuri:

  1. În fiecare zi, sportivul aleargă mai mulți metri decât în ​​ziua precedentă. Câți kilometri în total va alerga într-o săptămână, dacă în prima zi a alergat km m?
  2. Un biciclist parcurge mai mulți kilometri în fiecare zi decât în ​​ziua precedentă. În prima zi a parcurs km. Câte zile trebuie să călătorească pentru a parcurge un kilometru? Câți kilometri va parcurge în ultima zi a călătoriei?
  3. Prețul unui frigider într-un magazin scade cu aceeași sumă în fiecare an. Stabiliți cât de mult a scăzut prețul unui frigider în fiecare an dacă, scos la vânzare pentru ruble, șase ani mai târziu a fost vândut pentru ruble.

Raspunsuri:

  1. Cel mai important lucru aici este să recunoașteți progresia aritmetică și să determinați parametrii acesteia. În acest caz, (săptămâni = zile). Trebuie să determinați suma primilor termeni ai acestei progresii:
    .
    Răspuns:
  2. Aici este dat: , trebuie găsit.
    Evident, trebuie să utilizați aceeași formulă de sumă ca în problema anterioară:
    .
    Înlocuiți valorile:

    În mod evident, rădăcina nu se potrivește, așa că răspunsul este.
    Să calculăm calea parcursă în ultima zi folosind formula celui de-al treilea termen:
    (km).
    Răspuns:

  3. Având în vedere: . Găsiți: .
    Mai simplu nu poate fi:
    (freca).
    Răspuns:

PROGRESIA ARITMETICĂ. SCURT DESPRE LUCRURILE PRINCIPALE

Aceasta este o secvență de numere în care diferența dintre numerele adiacente este aceeași și egală.

Progresia aritmetică poate fi crescătoare () și descrescătoare ().

De exemplu:

Formula pentru găsirea celui de-al n-lea termen al unei progresii aritmetice

se scrie prin formula, unde este numărul de numere în progresie.

Proprietatea membrilor unei progresii aritmetice

Vă permite să găsiți cu ușurință un termen al unei progresii dacă termenii învecinați sunt cunoscuți - unde este numărul de numere din progresie.

Suma termenilor unei progresii aritmetice

Există două moduri de a găsi suma:

Unde este numărul de valori.

Unde este numărul de valori.


De exemplu, secvența \(2\); \(5\); \(8\); \(11\); \(14\)... este o progresie aritmetică, deoarece fiecare element ulterior diferă de cel anterior cu trei (se poate obține de la precedentul prin adăugarea a trei):

În această progresie, diferența \(d\) este pozitivă (egală cu \(3\)) și, prin urmare, fiecare termen următor este mai mare decât cel anterior. Se numesc astfel de progresii crescând.

Totuși, \(d\) poate fi și un număr negativ. De exemplu, în progresie aritmetică \(16\); \(10\); \(4\); \(-2\); \(-8\)... diferența de progresie \(d\) este egală cu minus șase.

Și în acest caz, fiecare element următor va fi mai mic decât cel anterior. Aceste progresii sunt numite în scădere.

Notarea progresiei aritmetice

Progresul este indicat de o literă latină mică.

Se numesc numerele care formează o progresie membrii(sau elemente).

Ele sunt notate cu aceeași literă ca o progresie aritmetică, dar cu un indice numeric egal cu numărul elementului în ordine.

De exemplu, progresia aritmetică \(a_n = \left\( 2; 5; 8; 11; 14...\right\)\) este formată din elementele \(a_1=2\); \(a_2=5\); \(a_3=8\) și așa mai departe.

Cu alte cuvinte, pentru progresia \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

Rezolvarea problemelor de progresie aritmetică

În principiu, informațiile prezentate mai sus sunt deja suficiente pentru a rezolva aproape orice problemă de progresie aritmetică (inclusiv cele oferite la OGE).

Exemplu (OGE). Progresia aritmetică este specificată de condițiile \(b_1=7; d=4\). Găsiți \(b_5\).
Soluţie:

Răspuns: \(b_5=23\)

Exemplu (OGE). Primii trei termeni ai unei progresii aritmetice sunt dați: \(62; 49; 36…\) Aflați valoarea primului termen negativ al acestei progresii..
Soluţie:

Ni se oferă primele elemente ale secvenței și știm că este o progresie aritmetică. Adică, fiecare element diferă de vecinul său prin același număr. Să aflăm care dintre ele scăzând pe cel precedent din următorul element: \(d=49-62=-13\).

Acum ne putem restabili progresul la (primul element negativ) de care avem nevoie.

Gata. Puteți scrie un răspuns.

Răspuns: \(-3\)

Exemplu (OGE). Având în vedere mai multe elemente consecutive ale unei progresii aritmetice: \(…5; x; 10; 12,5...\) Aflați valoarea elementului desemnat de litera \(x\).
Soluţie:


Pentru a găsi \(x\), trebuie să știm cât de mult diferă următorul element față de cel anterior, cu alte cuvinte, diferența de progresie. Să o găsim din două elemente învecinate cunoscute: \(d=12,5-10=2,5\).

Și acum putem găsi cu ușurință ceea ce căutăm: \(x=5+2.5=7.5\).


Gata. Puteți scrie un răspuns.

Răspuns: \(7,5\).

Exemplu (OGE). Progresia aritmetica este definita de urmatoarele conditii: \(a_1=-11\); \(a_(n+1)=a_n+5\) Aflați suma primilor șase termeni ai acestei progresii.
Soluţie:

Trebuie să găsim suma primilor șase termeni ai progresiei. Dar nu le cunoaștem semnificațiile; ni se dă doar primul element. Prin urmare, mai întâi calculăm valorile unul câte unul, folosind ceea ce ni se oferă:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
Și după ce am calculat cele șase elemente de care avem nevoie, găsim suma lor.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

S-a găsit suma necesară.

Răspuns: \(S_6=9\).

Exemplu (OGE). În progresie aritmetică \(a_(12)=23\); \(a_(16)=51\). Găsiți diferența acestei progresii.
Soluţie:

Răspuns: \(d=7\).

Formule importante pentru progresia aritmetică

După cum puteți vedea, multe probleme privind progresia aritmetică pot fi rezolvate pur și simplu prin înțelegerea principalului lucru - că o progresie aritmetică este un lanț de numere și fiecare element ulterior din acest lanț se obține prin adăugarea aceluiași număr la cel precedent ( diferența de progresie).

Cu toate acestea, uneori există situații în care este foarte incomod să decizi „direct”. De exemplu, imaginați-vă că în primul exemplu trebuie să găsim nu al cincilea element \(b_5\), ci al trei sute optzeci și șase \(b_(386)\). Ar trebui să adăugăm de patru \(385\) ori? Sau imaginați-vă că în penultimul exemplu trebuie să găsiți suma primelor șaptezeci și trei de elemente. Te vei sătura să numeri...

Prin urmare, în astfel de cazuri ei nu rezolvă lucrurile „direct”, ci folosesc formule speciale derivate pentru progresia aritmetică. Iar cele principale sunt formula pentru al n-lea termen al progresiei și formula pentru suma \(n\) primilor termeni.

Formula celui de-al \(n\)-lea termen: \(a_n=a_1+(n-1)d\), unde \(a_1\) este primul termen al progresiei;
\(n\) – numărul elementului solicitat;
\(a_n\) – termen al progresiei cu număr \(n\).


Această formulă ne permite să găsim rapid chiar și al trei sutele sau milionul de element, cunoscând doar primul și diferența progresiei.

Exemplu. Progresia aritmetica este specificata de conditiile: \(b_1=-159\); \(d=8,2\). Găsiți \(b_(246)\).
Soluţie:

Răspuns: \(b_(246)=1850\).

Formula pentru suma primilor n termeni: \(S_n=\frac(a_1+a_n)(2) \cdot n\), unde



\(a_n\) – ultimul termen însumat;


Exemplu (OGE). Progresia aritmetică este specificată de condițiile \(a_n=3.4n-0.6\). Aflați suma primilor \(25\) termeni ai acestei progresii.
Soluţie:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

Pentru a calcula suma primilor douăzeci și cinci de termeni, trebuie să cunoaștem valoarea primului și a douăzeci și cinci de termeni.
Progresia noastră este dată de formula celui de-al n-lea termen în funcție de numărul acestuia (pentru mai multe detalii, vezi). Să calculăm primul element înlocuind cu unul cu \(n\).

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Acum să găsim al douăzeci și cincilea termen înlocuind douăzeci și cinci în loc de \(n\).

\(n=25;\) \(a_(25)=3,4·25-0,6=84,4\)

Ei bine, acum putem calcula cu ușurință suma necesară.

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

Răspunsul este gata.

Răspuns: \(S_(25)=1090\).

Pentru suma \(n\) primilor termeni, puteți obține o altă formulă: trebuie doar să \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) în loc de \(a_n\) înlocuiți formula \(a_n=a_1+(n-1)d\). Primim:

Formula pentru suma primilor n termeni: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), unde

\(S_n\) – suma necesară a \(n\) primele elemente;
\(a_1\) – primul termen însumat;
\(d\) – diferență de progresie;
\(n\) – numărul de elemente în total.

Exemplu. Aflați suma primilor \(33\)-ex termeni ai progresiei aritmetice: \(17\); \(15,5\); \(14\)…
Soluţie:

Răspuns: \(S_(33)=-231\).

Probleme de progresie aritmetică mai complexe

Acum aveți toate informațiile de care aveți nevoie pentru a rezolva aproape orice problemă de progresie aritmetică. Să încheiem subiectul luând în considerare probleme în care nu trebuie doar să aplicați formule, ci și să vă gândiți puțin (la matematică acest lucru poate fi util ☺)

Exemplu (OGE). Aflați suma tuturor termenilor negativi ai progresiei: \(-19,3\); \(-19\); \(-18,7\)…
Soluţie:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

Sarcina este foarte asemănătoare cu cea anterioară. Începem să rezolvăm același lucru: mai întâi găsim \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Acum aș dori să înlocuiesc \(d\) în formula pentru sumă... și aici apare nuanță mică– nu știm \(n\). Cu alte cuvinte, nu știm câți termeni vor trebui adăugați. Cum să aflu? Să ne gândim. Vom opri adăugarea de elemente când ajungem la primul element pozitiv. Adică, trebuie să aflați numărul acestui element. Cum? Să notăm formula pentru calcularea oricărui element al unei progresii aritmetice: \(a_n=a_1+(n-1)d\) pentru cazul nostru.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Avem nevoie ca \(a_n\) să devină mai mare decât zero. Să aflăm la ce \(n\) se va întâmpla asta.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Împărțim ambele părți ale inegalității la \(0,3\).

\(n-1>\)\(\frac(19.3)(0.3)\)

Transferăm minus unu, fără a uita să schimbăm semnele

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

Hai sa calculam...

\(n>65.333…\)

...și se dovedește că primul element pozitiv va avea numărul \(66\). În consecință, ultimul negativ are \(n=65\). Pentru orice eventualitate, hai să verificăm asta.

\(n=65;\) \(a_(65)=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_(66)=-19,3+(66-1)·0,3=0,2\)

Deci trebuie să adăugăm primele \(65\) elemente.

\(S_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38,6+19,2)(2)\)\(\cdot 65=-630,5\)

Răspunsul este gata.

Răspuns: \(S_(65)=-630,5\).

Exemplu (OGE). Progresia aritmetica este specificata de conditiile: \(a_1=-33\); \(a_(n+1)=a_n+4\). Găsiți suma de la \(26\)-lea până la elementul \(42\) inclusiv.
Soluţie:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

În această problemă trebuie să găsiți și suma elementelor, dar începând nu de la primul, ci de la \(26\)-lea. Pentru un astfel de caz nu avem o formulă. Cum să decizi?
Este ușor - pentru a obține suma de la \(26\)-a la \(42\)-a, trebuie mai întâi să găsiți suma de la \(1\)-a la \(42\)-a, apoi să scădeți din ea suma de la primul la \(25\)-lea (vezi poza).


Pentru progresia noastră \(a_1=-33\), și diferența \(d=4\) (la urma urmei, adăugăm cele patru la elementul anterior pentru a găsi următorul). Știind acest lucru, găsim suma primelor elemente \(42\)-y.

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

Acum suma primelor \(25\) elemente.

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

Și în sfârșit, calculăm răspunsul.

\(S=S_(42)-S_(25)=2058-375=1683\)

Răspuns: \(S=1683\).

Pentru progresia aritmetică, există mai multe formule pe care nu le-am luat în considerare în acest articol din cauza utilității lor practice scăzute. Cu toate acestea, le puteți găsi cu ușurință.

Motto-ul lecției noastre vor fi cuvintele matematicianului rus V.P. Ermakova: „În matematică, ar trebui să ne amintim nu formulele, ci procesele de gândire.”

Progresul lecției

Enunțarea problemei

Pe tablă este un portret al lui Gauss. Un profesor sau un elev căruia i s-a dat sarcina de a pregăti un mesaj în prealabil spune că atunci când Gauss era la școală, profesorul le-a cerut elevilor să adună toate numere naturale de la 1 la 100. Micul Gauss a rezolvat această problemă într-un minut.

Întrebare . Cum a primit Gauss răspunsul?

Găsirea soluțiilor

Elevii își exprimă ipotezele, apoi rezumă: realizând că sumele sunt 1 + 100, 2 + 99 etc. sunt egale, Gauss a înmulțit 101 cu 50, adică cu numărul de astfel de sume. Cu alte cuvinte, el a observat un model care este inerent progresiei aritmetice.

Derivarea formulei sumei n primii termeni ai unei progresii aritmetice

Notează subiectul lecției pe tablă și în caiete. Elevii, împreună cu profesorul, notează concluzia formulei:

Lasă o 1 ; o 2 ; o 3 ; o 4 ; ...; un n – 2 ; un n – 1 ; un n- progresia aritmetica.

Consolidare primară

1. Utilizând formula (1), rezolvăm problema lui Gauss:

2. Folosind formula (1), rezolvați problemele oral (condițiile acestora sunt scrise pe tablă sau cod pozitiv), ( un n) - progresie aritmetică:

O) o 1 = 2, o 10 = 20. S 10 - ?

b) o 1 = –5, o 7 = 1. S 7 - ? [–14]

V) o 1 = –2, o 6 = –17. S 6 - ? [–57]

G) o 1 = –5, o 11 = 5. S 11 - ?

3. Finalizați sarcina.

Dat: ( un n) - progresie aritmetică;

o 1 = 3, o 60 = 57.

Găsi: S 60 .

Soluţie. Să folosim formula sumei n primii termeni ai unei progresii aritmetice

Răspuns: 1800.

Întrebare suplimentară. Câte tipuri de probleme diferite pot fi rezolvate folosind această formulă?

Răspuns. Patru tipuri de sarcini:

Găsiți suma S n;

Găsiți primul termen al unei progresii aritmetice o 1 ;

Găsi n al treilea termen al unei progresii aritmetice un n;

Aflați numărul de termeni ai unei progresii aritmetice.

4. Completați sarcina: nr. 369(b).

Aflați suma primilor șaizeci de termeni ai progresiei aritmetice ( un n), Dacă o 1 = –10,5, o 60 = 51,5.

Soluţie.

Răspuns: 1230.

Întrebare suplimentară. Scrieți formula n al treilea termen al unei progresii aritmetice.

Răspuns: un n = o 1 + d(n – 1).

5. Calculați formula pentru primii nouă termeni ai progresiei aritmetice ( b n),
Dacă b 1 = –17, d = 6.

Este posibil să se calculeze imediat folosind o formulă?

Nu, pentru că al nouălea termen este necunoscut.

Cum să-l găsesc?

Conform formulei n al treilea termen al unei progresii aritmetice.

Soluţie. b 9 = b 1 + 8d = –17 + 8∙6 = 31;

Răspuns: 63.

Întrebare. Este posibil să găsiți suma fără a calcula al nouălea termen al progresiei?

Enunțarea problemei

Problemă: obțineți formula sumei n primii termeni ai unei progresii aritmetice, cunoscându-i primul termen și diferența d.

(Deducerea unei formule la tablă de către un student.)

Să rezolvăm nr. 371(a) folosind noua formulă (2):

Să stabilim verbal formulele (2) ( condiţiile sarcinilor sunt scrise pe tablă).

(un n

1. o 1 = 3, d = 4. S 4 - ?

2. o 1 = 2, d = –5. S 3 - ? [–9]

Aflați de la elevi ce întrebări sunt neclare.

Munca independentă

Opțiunea 1

Dat: (un n) - progresie aritmetică.

1. o 1 = –3, o 6 = 21. S 6 - ?

2. o 1 = 6, d = –3. S 4 - ?

Opțiunea 2

Dat: (un n) - progresie aritmetică.

1.o 1 = 2, o 8 = –23. S 8 - ? [–84]

2.o 1 = –7, d = 4. S 5 - ?

Elevii fac schimb de caiete și își verifică reciproc soluțiile.

Rezumați învățarea materialului pe baza rezultatelor muncii independente.