Числовые и алгебраические выражения. Преобразование выражений

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Числовые и алгебраические выражения. Преобразование выражений.

Что такое выражение в математике? Зачем нужны преобразования выражений?

Вопрос, как говорится, интересный... Дело в том, что эти понятия - основа всей математики. Вся математика состоит из выражений и их преобразований. Не очень понятно? Поясню.

Допустим, перед вами злой пример. Очень большой и очень сложный. Допустим, вы сильны в математике и ничего не боитесь! Сможете сразу дать ответ?

Вам придётся решать этот пример. Последовательно, шаг за шагом, этот пример упрощать . По определённым правилам, естественно. Т.е. делать преобразование выражений . Насколько успешно вы проведёте эти преобразования, настолько вы и сильны в математике. Если вы не умеете делать правильные преобразования, в математике вы не сможете сделать ни-че-го ...

Во избежание такого неуютного будущего (или настоящего...), не мешает разобраться в этой теме.)

Для начала выясним, что такое выражение в математике . Что такое числовое выражение и что такое алгебраическое выражение.

Что такое выражение в математике?

Выражение в математике - это очень широкое понятие. Практически всё то, с чем мы имеем дело в математике - это набор математических выражений. Любые примеры, формулы, дроби, уравнения и так далее - это всё состоит из математических выражений .

3+2 - это математическое выражение. с 2 - d 2 - это тоже математическое выражение. И здоровущая дробь, и даже одно число - это всё математические выражения. Уравнение, например, вот такое:

5х + 2 = 12

состоит из двух математических выражений, соединённых знаком равенства. Одно выражение - слева, другое - справа.

В общем виде термин "математическое выражение " применяется, чаще всего, чтобы не мычать. Спросят вас, что такое обыкновенная дробь, например? И как ответить?!

Первый вариант ответа: "Это... м-м-м-м... такая штука... в которой... А можно я лучше напишу дробь? Вам какую?"

Второй вариант ответа: "Обыкновенная дробь - это (бодро и радостно!) математическое выражение , которое состоит из числителя и знаменателя!"

Второй вариант как-то посолидней будет, правда?)

Вот в этих целях фраза "математическое выражение " очень хороша. И правильно, и солидно. Но для практического применения надо хорошо разбираться в конкретных видах выражений в математике .

Конкретный вид- это другое дело. Это совсем другое дело! У каждого вида математических выражений есть свой набор правил и приёмов, который необходимо использовать при решении. Для работы с дробями - один набор. Для работы с тригонометрическими выражениями - второй. Для работы с логарифмами - третий. И так далее. Где-то эти правила совпадают, где-то - резко отличаются. Но не пугайтесь этих страшных слов. Логарифмы, тригонометрию и прочие загадочные вещи мы будем осваивать в соответствующих разделах.

Здесь мы освоим (или - повторим, кому как...) два основных вида математических выражений. Числовые выражения и алгебраические выражения.

Числовые выражения.

Что такое числовое выражение ? Это очень простое понятие. Само название намекает, что это выражение с числами. Да, так оно и есть. Математическое выражение, составленное из чисел, скобок и знаков арифметических действий называется числовым выражением.

7-3 - числовое выражение.

(8+3,2)·5,4 - тоже числовое выражение.

И вот этот монстр:

тоже числовое выражение, да...

Обычное число, дробь, любой пример на вычисление без иксов и прочих букв - всё это числовые выражения.

Главный признак числового выражения - в нём нет букв . Никаких. Только числа и математические значки (если надо). Всё просто, правда?

И что можно делать с числовыми выражениями? Числовые выражения, как правило, можно считать. Для этого приходится, бывает, раскрывать скобки, менять знаки, сокращать, менять местами слагаемые - т.е. делать преобразования выражений . Но об этом чуть ниже.

Здесь же мы разберёмся с таким забавным случаем, когда с числовым выражением ничего делать не надо. Ну вот совсем ничего! Эта приятная операция - ничего не делать) - выполняется, когда выражение не имеет смысла .

Когда числовое выражение не имеет смысла?

Понятное дело, если мы видим перед собой какую-то абракадабру, типа

то делать ничего и не будем. Так как непонятно, что с этим делать. Бессмыслица какая-то. Разве что, посчитать количество плюсиков...

Но бывают внешне вполне благопристойные выражения. Например такое:

(2+3) : (16 - 2·8)

Однако, это выражение тоже не имеет смысла ! По той простой причине, что во вторых скобочках - если посчитать - получается ноль. А на ноль делить нельзя! Это запретная операция в математике. Стало быть, с этим выражением тоже ничего делать не надо. При любом задании с таким выражением, ответ будет всегда один: "Выражение не имеет смысла!"

Чтобы дать такой ответ, пришлось, конечно, посчитать, что в скобочках будет. А иногда в скобочках такого понаворочено... Ну тут уж ничего не поделаешь.

Запретных операций в математике не так уж много. В этой теме - всего одна. Деление на ноль. Дополнительные запреты, возникающие в корнях и логарифмах обсуждаются в соответствующих темах.

Итак, представление о том, что такое числовое выражение - получили. Понятие числовое выражение не имеет смысла - осознали. Едем дальше.

Алгебраические выражения.

Если в числовом выражении появляются буквы - это выражение становится... Выражение становится... Да! Оно становится алгебраическим выражением . Например:

5а 2 ; 3x-2y; 3(z-2); 3,4m/n; x 2 +4x-4; (а+b) 2 ; ...

Ещё такие выражения называют буквенными выражениями. Или выражениями с переменными. Это, практически, одно и то же. Выражение 5а +с , к примеру - и буквенное, и алгебраическое, и выражение с переменными.

Понятие алгебраическое выражение - более широкое, чем числовое. Оно включает в себя и все числовые выражения. Т.е. числовое выражение - это тоже алгебраическое выражение, только без букв. Всякая селёдка - рыба, но не всякая рыба - селёдка...)

Почему буквенное - понятно. Ну, раз буквы есть... Фраза выражение с переменными тоже не сильно озадачивает. Если понимать, что под буквами скрываются числа. Всякие числа могут скрываться под буквами... И 5, и -18, и всё, что угодно. Т.е букву можно заменять на разные числа. Поэтому буквы и называются переменными .

В выражении у+5 , например, у - переменная величина. Или говорят просто "переменная" , без слова "величина". В отличие от пятёрки, которая - величина постоянная. Или просто - постоянная .

Термин алгебраическое выражение означает, что для работы с данным выражением нужно использовать законы и правила алгебры . Если арифметика работает с конкретными числами, то алгебра - со всеми числами разом. Простой пример для пояснения.

В арифметике можно записать, что

А вот если мы подобное равенство запишем через алгебраические выражения:

а + b = b + a

мы сразу решим все вопросы. Для всех чисел махом. Для всего бесконечного количества. Потому, что под буквами а и b подразумеваются все числа. И не только числа, но даже и другие математические выражения. Вот так работает алгебра.

Когда алгебраическое выражение не имеет смысла?

Про числовое выражение всё понятно. Там на ноль делить нельзя. А с буквами, разве можно узнать, на что делим?!

Возьмём для примера вот такое выражение с переменными:

2: (а - 5)

Имеет оно смысл? Да кто ж его знает? а - любое число...

Любое-то любое... Но есть одно значение а , при котором это выражение точно не имеет смысла! И что это за число? Да! Это 5! Если переменную а заменить (говорят - "подставить") на число 5, в скобочках ноль получится. На который делить нельзя. Вот и получается, что наше выражение не имеет смысла , если а = 5 . Но при других-то значениях а смысл имеется? Другие числа подставлять-то можно?

Конечно. Просто в таких случаях говорят, что выражение

2: (а - 5)

имеет смысл для любых значений а , кроме а = 5 .

Весь набор чисел, которые можно подставлять в заданное выражение, называется областью допустимых значений этого выражения.

Как видите, ничего хитрого нет. Смотрим на выражение с переменными, да соображаем: при каком значении переменной получается запретная операция (деление на ноль)?

А потом обязательно смотрим на вопрос задания. Чего спрашивают-то?

не имеет смысла , наше запретное значение и будет ответом.

Если спрашивают, при каком значении переменной выражение имеет смысл (почувствуйте разницу!), ответом будут все остальные числа , кроме запретного.

Зачем нам смысл выражения? Есть он, нет его... Какая разница?! Дело в том, что это понятие становится очень важным в старших классах. Крайне важным! Это основа для таких солидных понятий, как область допустимых значений или область определения функции. Без этого вы вообще не сможете решать серьёзные уравнения или неравенства. Вот так.

Преобразование выражений. Тождественные преобразования.

Мы познакомились с числовыми и алгебраическими выражениями. Поняли, что означает фраза "выражение не имеет смысла". Теперь надо разобраться, что такое преобразование выражений. Ответ прост, до безобразия.) Это любое действие с выражением. И всё. Вы эти преобразования делали с первого класса.

Возьмём крутое числовое выражение 3+5. Как его можно преобразовать? Да очень просто! Посчитать:

Вот этот расчёт и будет преобразованием выражения. Можно записать то же самое выражение по-другому:

Тут мы вообще ничего не считали. Просто записали выражение в другом виде. Это тоже будет преобразованием выражения. Можно записать вот так:

И это тоже - преобразование выражения. Таких преобразований можно понаделать сколько хочешь.

Любое действие над выражением, любая запись его в другом виде называется преобразованием выражения. И все дела. Всё очень просто. Но есть здесь одно очень важное правило. Настолько важное, что его смело можно назвать главным правилом всей математики. Нарушение этого правила неизбежно приводит к ошибкам. Вникаем?)

Предположим, мы преобразовали наше выражение как попало, вот так:

Преобразование? Конечно. Мы же записали выражение в другом виде, что здесь не так?

Всё не так.) Дело в том, что преобразования "как попало" математику не интересуют вообще.) Вся математика построена на преобразованиях, в которых меняется внешний вид, но суть выражения не меняется. Три плюс пять можно записать в каком угодно виде, но это должно быть восемь.

Преобразования, не меняющие сути выражения называются тождественными.

Именно тождественные преобразования и позволяют нам, шаг за шагом, превращать сложный пример в простое выражение, сохраняя суть примера. Если в цепочке преобразований мы ошибёмся, сделаем НЕ тождественное преобразование, дальше мы будем решать уже другой пример. С другими ответами, которые не имеют отношения к правильным.)

Вот оно и главное правило решения любых заданий: соблюдение тождественности преобразований.

Пример с числовыми выражением 3+5 я привёл для наглядности. В алгебраических выражениях тождественные преобразования даются формулами и правилами. Скажем, в алгебре есть формула:

a(b+c) = ab + ac

Значит, мы в любом примере можем вместо выражения a(b+c) смело написать выражение ab + ac . И наоборот. Это тождественное преобразование. Математика предоставляет нам выбор из этих двух выражений. А уж какое из них писать - от конкретного примера зависит.

Ещё пример. Одно из из самых главных и нужных преобразований - это основное свойство дроби. Подробнее можно по ссылке посмотреть, а здесь просто напомню правило: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, или неравное нулю выражение, дробь не изменится. Вот вам пример тождественных преобразований по этому свойству:

Как вы, наверняка, догадались, эту цепочку можно продолжать до бесконечности...) Очень важное свойство. Именно оно позволяет превращать всякие монстры-примеры в белые и пушистые.)

Формул, задающих тождественные преобразования, - много. Но самых главных - вполне разумное количество. Одно из базовых преобразований - разложение на множители. Оно используется во всей математике - от элементарной до высшей. С него и начнём. В следующем уроке.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач.

Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители.

Поэтому, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Let"s go! (Поехали!)

Базовые операции упрощения выражений

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел.

Подобные - это слагаемые (одночлены) с одинаковой буквенной частью.

Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы.

Например, буква - это стул. Тогда чему равно выражение?

Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы.

Например, - это (как обычно) стул, а - это стол.

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами .

Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений.

После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители , то есть представить в виде произведения.

Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное.

Для этого реши несколько примеров (нужно разложить на множители)

Примеры:

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Примеры:

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так:

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».

То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители).

Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров:

Примеры:

Решения:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.

Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

Ответы:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».

Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Решение:

Перво-наперво определим порядок действий.

Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.

Потом выполним деление дробей. Ну и результат сложим с последней дробью.

Схематически пронумерую действия:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Ответы:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!