Относительная погрешность как решать. Вычисление абсолютной и относительной погрешности

Абсолютная и относительная погрешности

С приближенными числами нам приходится иметь дело при вычислениях значений каких-либо функций, либо при измерениях и обработке физических величин, получаемых в результате экспериментов. В том и другом случае нужно уметь правильно записывать значения приближенных чисел и их погрешность.

Приближенным числом а называется число, которое незначительно отличается от точного числа А и заменяет последнее в вычислениях . Если известно, что а < А , то а называется приближенным значением числа А по недостатку; если а > А , – то по избытку. Если а есть приближенное значение числа А , то пишут а ≈ А .

Под ошибкой или погрешностью А приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближенным, т.е.

Чтобы получить точное число А , нужно к приближенному значению числа прибавить его ошибку , т.е.

Во многих случаях знак ошибки неизвестен. Тогда целесообразно пользоваться абсолютной погрешностью приближенного числа

Из приведенной записи следует, что абсолютной погрешностью приближенного числа а называется модуль разности между соответствующими точным числом А и его приближенным значением а , т.е.

Точное число А чаще всего бывает неизвестно, поэтому найти ошибку или абсолютную погрешность не представляется возможным. В этом случае полезно вместо неизвестной теоретической погрешности ввести ее оценку сверху, так называемую предельную абсолютную погрешность.

Под предельной абсолютной погрешностью приближенного числа а понимается всякое число , не меньшее абсолютной погрешности этого числа, т.е.

Если в последней записи вместо использовать формулу (1,1), то можно записать

(1.2)

Отсюда следует, что точное число А заключено в границах

Следовательно, разность есть приближение числа А по недостатку, а – приближение числа А по избытку. В этом случае для краткости пользуются записью

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее, чем положительное число, тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи число ,удовлетворяющее неравенству (1.2).

Например, если в результате измерения получили длину отрезка l = 210 см ± 0,5 см., то здесь предельная абсолютная погрешность = 0,5 см, а точная величина l отрезка заключена в границах 209,5см≤l≤ 210,5см.

Абсолютная погрешность недостаточна для характеристики точности измерения или вычисления. Так, например, если при измерении длин двух стержней получены результаты l 1 = 95,6см ± 0,1см и l 2 =8,3 ± 0,1 см, то, несмотря на совпадение предельных абсолютных погрешностей, точность первого измерения выше, чем второго. Отсюда видно, что для точности измерений важнее не абсолютная, а относительная погрешность, которая зависит от значений измеряемых величин.

Относительной погрешностью δ приближенного числа а называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа А, т.е.

Аналогично предельной абсолютной погрешности используют также определение и для предельной относительной погрешности. Предельной относительной погрешностью данного приближенного числа а называется всякое число, не меньшее относительной погрешности этого числа

т.е. откуда следует

Таким образом, за предельную абсолютную погрешность числа а можно принять

Так как на практике А≈а ,то вместо формулы (1.3) часто пользуются формулой

1.2 Десятичная запись приближенных чисел

Всякое положительное десятичное число а может быть представлено в виде конечной или бесконечной дроби

где – десятичные цифры числа а ( = 0,1,2,...,9), причем старшая цифра а m – число разрядов в записи целой части числа а , а n – число разрядов в записи дробной части числа а . Например:

5214,73... = 5 · 10 3 + 2 · 10 2 + 1 · 10 1 + 4 · 10 0 +7 · 10 -1 + 3 · 10 -2 ... (1.5)

Каждая цифра , стоящая на определенном месте в числе а , написанном в виде (1.4), имеет свой вес. Так, цифра, стоящая на первом месте (т.е. ), весит 10 m , на втором – 10 m -1 и т.д.

На практике мы обычно не пользуемся записью в форме (1.4), а используем сокращенную запись чисел в виде последовательности коэффициентов при соответствующих степенях 10. Так, например, в записи (1.5) мы пользуемся левой от знака равенства формой, а не правой, представляющей разложение этого числа по степеням 10.

На практике преимущественно приходится иметь дело с приближенными числами в виде конечных десятичных дробей. Для корректного сравнения различных вычислительных и экспериментальных результатов вводят понятие значащей цифры в записи результата. Все сохраняемые десятичные значения (i = m , m- 1,…, m-n+ 1), отличные от нуля, и нуль, если он стоит между значащими цифрами или является представителем сохраненного десятичного разряда в конце числа называются значащими цифрами приближенного числа а . При этом нули, связанные с множителем 10 n к значащим не относятся.

При позиционном обозначении числа а в десятичной системе счисления иногда приходится вводить лишние нули в начале или в конце числа. Например,

а = 7·10 -3 + 0·10 -4 + 1·10 -5 + 0·10 -6 = 0,00 7010

b = 2·10 9 + 0·10 8 + 0·10 7 + 3·10 6 + 0·10 5 = 2003000000.

Такие нули (в приведенных примерах они подчеркнуты) не считаются значащими цифрами.

Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля , а также и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда. Все остальные нули, входящие в состав приближенного числа и служащие лишь для обозначения его десятичных разрядов, не причисляются к значащим числам.

Например, в числе 0,002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими цифрами, так как первый из них находиться между значащими цифрами 2 и 8, а второй указывает на то, что в приближенном числе сохранен десятичный разряд 10 -6 . В случае, если в данном числе 0,002080 последняя цифра не является значащей, то это число должно быть записано в виде 0,00208. С этой точки зрения числа 0,002080 и 0,00208 не равноценны, так как первое из них содержит четыре значащих цифры, а второе лишь три.



Кроме понятия значащей цифры важным является понятие верной цифры. Следует отметить, что это понятие существует в двух определениях – в узком и широком смыслах .

Определение (в широком смысле). Говорят, что n первых значащих цифр числа (считая слева направо) являются верными в широком смысле, если абсолютная погрешность этого числа не превосходит единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес 1 равен 10; 1 10 0 – здесь вес 1 равен 1; 1 10 -1 – здесь вес 1 равен 0,1; 1 10 -2 – здесь вес 1 равен 0,01 и т.д.).

Определение узком смысле). Говорят, что n первых значащих цифр приближенного числа являются верными, если абсолютная погрешность этого числа не превосходит половины единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес половины 1 равен 5; 1 10 0 – здесь вес половины 1 равен 0,5; 1 10 -1 – равен 0,05 и т.д.).

Например, в приближенном числе исходя из первого определения, значащие цифры 3,4 и 5 верные в широком смысле, а цифра 6 – сомнительна. Исходя из второго определения, значащие цифры 3 и 4 являются верными в узком смысле, а цифры 5 и 6 – сомнительные. Важно подчеркнуть, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр .

Как в теоретических рассуждениях, так и в практических применениях большее применение находит определение верной цифры в узком смысле.

Таким образом, если для приближенного числа а, заменяющего число А , известно, что

(1.6)

то, по определению, первые n цифр этого числа являются верными.

Например, для точного числа А = 35,97 число а = 36,00 является приближенным с тремя верными знаками. К этому результату приводят следующие рассуждения. Так как абсолютная погрешность нашего приближенного числа составляет величину 0,03, то по определению она должна удовлетворять условию

(1.7)

В нашем приближенном числе 36,00 цифра 3 является первой значащей цифрой (т.е. ), поэтому m = 1. Отсюда очевидно, что условие (1.7) будет выполняться при n = 3.

Обычно принято при десятичной записи приближенного числа писать только верные цифры. Если известно, что данное приближенное число записано правильно, то по записи можно определить предельную абсолютную погрешность. Именно при правильной записи абсолютная погрешность не превышает половины младшего разряда, который следует за последним верным разрядом (или половины единицы последнего верного разряда, что одно и то же)

Например, даны приближенные числа, записанные правильно: а = 3,8; b = 0,0283; с = 4260. Согласно определению, предельные абсолютные погрешности этих чисел будут: = 0,05; = 0,00005; = 0,5.

Абсолютная и относительная погрешности

Абсолютная погрешность приближения

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения. По-другому его называют абсолютной погрешностью.

Абсолютной погрешностью приближения называется модуль разности между точным значением числа и его приближенным значением.

где х - это точное значение числа, а - его приближенное значение.

Например, в результате измерений было получено число. Однако в результате вычисления по формуле точное значение этого числа. Тогда абсолютная погрешность приближения

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, . Здесь получается, что абсолютная погрешность приближения выражена иррациональным числом.

Приближение может выполняться как по недостатку , так и по избытку .

То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15.

Правило округления: если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку; если же меньше пяти, то по недостатку.

Например, т.к. третьей цифрой после запятой у числа π является 1, то при приближении с точностью до 0,01 оно выполняется по недостатку.

Вычислим абсолютные погрешности приближения до 0,01 числа π по недостатку и по избытку:

Как видим, абсолютная погрешность приближения по недостатку меньше, чем по избытку. Значит, приближение по недостатку в этом случае обладает более высокой точностью.

Относительная погрешность приближения

Абсолютная погрешность обладает одним важным недостатком – оно не позволяет оценить степень важности ошибки.

Например, покупаем мы на рынке 5 кг картофеля, а недобросовестный продавец при измерении веса ошибся на 50 г в свою пользу. Т.е. абсолютная погрешность составила 50 г. Для нас такая оплошность будет сущей мелочью и мы даже не обратим на неё внимания. А если при приготовлении лекарства произойдёт подобная ошибка? Тут уже всё будет намного серьёзней. А при загрузке товарного вагона наверняка возникают отклонения намного больше данного значения.

Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме неё очень часто дополнительно рассчитывают относительное отклонение.

Относительной погрешностью приближения называется отношение абсолютной погрешности к точному значению числа.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приведём несколько примеров.

Пример 1. На предприятии 1284 рабочих и служащих. Округлить количество работающих до целых с избытком и с недостатком. Найти их абсолютные и относительные погрешности (в процентах). Сделать вывод.

Итак, .

Абсолютная погрешность:

Относительная погрешность:

Значит, точность приближения с недостатком выше, чем точность приближения с избытком.

Пример 2. В школе 197 учащихся. Округлить количество учащихся до целых с избытком и с недостатком. Найти их абсолютные и относительные погрешности (в процентах). Сделать вывод.

Итак, .

Абсолютная погрешность:

Относительная погрешность:

Значит, точность приближения с избытком выше, чем точность приближения с недостатком.

    Найдите абсолютную погрешность приближения:

    1. числа 2,87 числом 2,9; числом 2,8;

      числа 0,6595 числом 0,7; числом 0,6;

      числа числом;

      числа числом 0,3;

      числа 4,63 числом 4,6; числом 4,7;

      числа 0,8535 числом 0,8; числом 0,9;

      число числом;

      число числом 0,2.

    Приближённое значение числа х равно а . Найдите абсолютную погрешность приближения, если:

    Запишите в виде двойного неравенства:

    Найдите приближённое значение числа х , равное среднему арифметическому приближений с недостатком и избытком, если:

    Докажите, что среднее арифметическое чисел а и b является приближённым значением каждого из этих чисел с точностью до.

    Округлите числа:

    до единиц

    до десятых

    до тысячных

    до тысяч

    до стотысячных

    до единиц

    до десятков

    до десятых

    до тысячных

    до сотен

    до десятитысячных

    Представьте обыкновенную дробь в виде десятичной и округлите её до тысячных и найдите абсолютную погрешность:

    Докажите, что каждое из чисел 0,368 и 0,369 является приближённым значением числа с точностью до 0,001. Какое из них является приближённым значением числа с точностью до 0,0005?

    Докажите, что каждое из чисел 0,38 и 0,39 является приближённым значением числа с точностью до 0,01. Какое из них является приближённым значением числа с точностью до 0,005?

    Округлите число до единиц и найдите относительную погрешность округления:

    5,12

    9,736

    49,54

    1,7

    9,85

    5,314

    99,83

    Представьте каждое из чисел и в виде десятичной дроби. Округлив полученные дроби до десятых, найдите абсолютную и относительную погрешности приближений.

    Радиус Земли равен 6380 км с точностью до 10 км. Оцените относительную погрешность приближённого значения.

    Наименьшее расстояние от Земли до Луны равно 356400 км с точностью до 100 км. Оцените относительную погрешность приближения.

    Сравните качества измерения массы М электровоза и массы т таблетки лекарства, если т (с точностью до 0,5 т), а г (с точностью до 0,01 г).

    Сравните качества измерения длины реки Волги и диаметра мячика для настольного тенниса, если км (с точностью до 5 км) и мм (с точностью до 1 мм).

При прямых измерениях

1. Пусть на вольтметре однократно измерены два напряжения U 1 = 10 В, U 2 = 200 В. Вольтметр имеет следующие характеристики: класс точности d кл т = 0,2, U max = 300 В.

Определим абсолютную и относительную погрешности этих измерений.

Так как оба измерения произведены на одном приборе, то DU 1 = DU 2 и вычисляются по формуле (В.4)

Согласно определению относительные погрешности U 1 и U 2 соответственно равны

ε 1 = 0,6 ∙ В / 10 В = 0,06 = 6 %,

ε 2 = 0,6 ∙ В / 200 В = 0,003 = 0,3 %.

Из приведенных результатов вычислений ε 1 и ε 2 видно, что ε 1 значительно больше ε 2 .

Отсюда вытекает правило: следует выбирать прибор с таким пределом измерений, чтобы показания были в последней трети шкалы.

2. Пусть некоторая величина измерена многократно, то есть произведено n отдельных измерений этой величины А х 1 , А х 2 ,..., А х 3 .

Тогда для вычисления абсолютной погрешности производят следующие операции:

1) по формуле (В.5) определяют среднее арифметическое значение А 0 измеряемой величины;

2) вычисляют сумму квадратов отклонений отдельных измерений от найденного среднего арифметического и по формуле (В.6) определяют среднюю квадратическую погрешность, которая и характеризует абсолютную погрешность единичного измерения при многократных прямых измерениях некоторой величины;

3) относительная погрешность ε вычисляется по формуле (В.2).

Вычисление абсолютной и относительной погрешности

При косвенном измерении

Вычисление погрешностей при косвенных измерениях – более сложная задача, так как в этом случае искомая величина является функцией других вспомогательных величин, измерение которых сопровождается появлением погрешностей. Обычно при измерениях, если не считать промахов, случайные погрешности оказываются весьма малыми по сравнению с измеряемой величиной. Они настолько малы, что вторые и более высокие степени погрешностей лежат за пределами точностей измерений и ими можно пренебречь. Из-за малости погрешностей для получения формулы погрешности
косвенно измеряемой величины применяют методы дифференциального исчисления. При косвенном измерении величины, когда непосредственно измеряются величины, связанные с искомой некоторой мaтематической зависимостью, удобнее вначале определить относительную погрешность и уже
через найденную относительную погрешность вычислять абсолютную погрешность измерения.

Дифференциальное исчисление дает наиболее простой способ определения относительной погрешности при косвенном измерении.

Пусть искомая величина А связана функциональной зависимостью с несколькими независимыми непосредственно измеряемыми величинами x 1 ,
x 2 , ..., x k , т. е.

A = f (x 1 , x 2 , ..., x k ).

Для определения относительной погрешности величины А берется натуральный логарифм от обеих частей равенства

ln A = ln f (x 1 , x 2 , ..., x k ).

Затем вычисляется дифференциал натурального логарифма функции
A = f (x 1 ,x 2 , ..., x k ),

dlnA = dlnf (x 1 , x 2 , ..., x k )

В полученном выражении производятся все возможные алгебраические преобразования и упрощения. После этого все символы дифференциалов d заменяются на символы погрешности D, причем отрицательные знаки перед дифференциалами независимых переменных заменяются положительными, т. е. берется наиболее неблагоприятный случай, когда все погрешности складываются. В этом случае вычисляется максимальная погрешность результата.

С учетом вышесказанного

но ε = D А / А

Данное выражение является формулой относительной погрешности величины А при косвенных измерениях, оно определяет относительную погрешность искомой величины, через относительные погрешности, измеряемых величин. Вычислив по формуле (В.11) относительную погрешность,
определяют абсолютную погрешность величины А как произведение относительной погрешности на рассчитанное значение А т. е.

DА = εА , (В.12)

где ε выражено безразмерным числом.

Итак, относительную и абсолютную погрешности косвенно измеряемой величины следует рассчитать в такой последовательности:

1) берется формула, по которой рассчитывается искомая величина (расчетная формула);

2) берется натуральный логарифм от обеих частей расчетной формулы;

3) вычисляется полный дифференциал натурального логарифма искомой величины;

4) в полученном выражении производятся все возможные алгебраические преобразования и упрощения;

5) символ дифференциалов d заменяется на символ погрешности D, при этом все отрицательные знаки перед дифференциалами независимых переменных заменяются на положительные (величина относительной погрешности будет максимальной) и получается формула относительной погрешности;

6) рассчитывается относительная погрешность измеряемой величины;

7) по рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12).

Рассмотрим несколько примеров расчета относительной и абсолютной погрешностей при косвенном измерении.

1. Искомая величина А связана с непосредственно измеряемыми величинами х , у , z соотношением

где a и b – постоянные величины.

2. Возьмем натуральный логарифм от выражения (В.13)

3. Вычислим полный дифференциал натурального логарифма искомой величины А , то есть дифференцируем (В.13)

4. Производим преобразования. Учитывая, что dа = 0, так как а = const, cos у /sin y = ctg y , получаем:

5. Заменим символы дифференциалов символами погрешностей и знак «минус» перед дифференциалом на знак «плюс»

6. Рассчитываем относительную погрешность измеряемой величины.

7. По рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12), т. е.

Определяется длина волны желтого цвета спектральной линии ртути при помощи дифракционной решетки (используя принятую последовательность вычисления относительной и абсолютной погрешностей для длины волны желтого цвета).

1. Длина волны желтого цвета в этом случае определяется по формуле:

где С – постоянная дифракционной решетки (косвенно измеряемая величина); φ ж – угол дифракции желтой линии в данном порядке спектра (непосредственно измеряемая величина); K ж – порядок спектра, в котором производилось наблюдение.

Постоянная дифракционной решетки вычисляется по формуле

где K з – порядок спектра зеленой линии; λ з – известная длина волны зеленого цвета (λ з – постоянная); φ з – угол дифракции зеленой линии в данном порядке спектра (непосредственно измеряемая величина).

Тогда с учетом выражения (В.15)

(В.16)

где K з, K ж – наблюдаемые, которые считаются постоянными; φ з, φ ж – являют-
ся непосредственно измеряемыми величинами.

Выражение (В.16) – расчетная формула длины волны желтого цвета, определяемой при помощи дифракционной решетки.

4. dK з = 0; dK ж = 0; dλ з = 0, так как K з, K ж и λ з – постоянные величины;

Тогда

5. (В.17)

где Dφ ж, Dφ з – абсолютные погрешности измерения угла дифракции желтой
и зеленой линий спектра.

6. Рассчитываем относительную погрешность длины волны желтого цвета.

7. Вычисляем абсолютную погрешность длины волны желтого цвета:

Dλ ж = ελ ж.

При практическом осуществлении процесса измерений независимо от точности средств измерений, правильности методики и тщательности
выполнения измерений результаты измерений отличаются от истинного значения измеряемой величины, т.е. неизбежны погрешности измерений. При оценке погрешности вместо истинного значения принимают действительное; следовательно, можно дать лишь приближенную оценку погрешности измерений. Оценка достоверности результата измерений, т.е. определение погрешности измерений - одна из основных задач метрологии .
Погрешность — это отклонение результата измерения от истинного значения измеряемой величины. Погрешности условно можно разделить на погрешности средств измерения и погрешности результата измерений.
Погрешности средств измерения были рассмотрены в главе 3.
Погрешность результата измерения — это число, указывающее возможные границы неопределенности значения измеряемой величины.
Ниже будет дана классификация и рассмотрены погрешности результата измерений.
По способу числового выражения различают абсолютные и относительные погрешности.
В зависимости от источника возникновения погрешности бывают инструментальные, методические, отсчитывания и установки.
По закономерностям проявления погрешности измерений делят на систематические, прогрессирующие, случайные и грубые.
Рассмотрим указанные погрешности измерений более подробно.

4.1. Абсолютные и относительные погрешности

Абсолютная погрешность D - это разность между измеренным X и истинным Xи значениями измеряемой величины. Абсолютная погрешность выражается в единицах измеряемой величины: D = Х - Хи.
Поскольку истинное значение измеряемой величины определить невозможно, вместо него на практике используют действительное значение измеряемой величины Хд. Действительное значение находят экспериментально, путем применения достаточно точных методов и средств измерений. Оно мало отличается от истинного значения и для решения поставленной задачи может использоваться вместо него. При поверке за действительное значение обычно принимают показания образцовых средств измерений. Таким образом, на практике абсолютную погрешность находят по формуле D » Х - Хд. Относительная погрешность d — это отношение абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины (она обычно выражается в процентах) : .

4.2. Погрешности инструментальные и методические,
отсчитывания и установки

Инструментальными (приборными или аппаратурными) погрешностями называются такие, которые принадлежат данному средству измерений, могут быть определены при его испытаниях и занесены в его паспорт.
Эти погрешности обусловлены конструктивными и технологическими недостатками средств измерений, а также следствием их износа, старения или неисправности. Инструментальные погрешности , обусловленные погрешностями применяемых средств измерений, были рассмотрены в главе 3.
Однако, кроме инструментальных погрешностей, при измерениях возникают еще и такие погрешности, которые не могут быть приписаны данному прибору, не могут быть указаны в его паспорте и называются методическими, т.е. связанными не с самим прибором, а с методом его использования.
Методические погрешности могут возникать из-за несовершенства разработки теории явлений, положенных в основу метода измерений, неточности соотношений, используемых для нахождения оценки измеряемой величины, а также из-за несоответствия измеряемой величины и ее модели.
Рассмотрим примеры, иллюстрирующие методическую погрешность измерения.
Объектом исследования является источник переменного напряжения, амплитудное значение которого Um нужно измерить. На основании предварительного изучения объекта исследования за его модель принят генератор напряжения синусоидальной формы. Используя вольтметр, предназначенный для измерений действующих значений переменных напряжений, и зная соотношение между действующим и амплитудным значениями синусоидального напряжения, получаем результат измерения в виде Um = × Uv, где Uv - показание вольтметра. Более тщательное изучение объекта могло бы выявить, что форма измеряемого напряжения отличается от синусоидальной и более правильное соотношение между значением измеряемой величины и показанием вольтметра Um = k × Uv , где k ¹ . Таким образом, несовершенство принятой модели объекта исследования приводит к методической погрешности измерения D U = × Uv - k × Uv .
Эту погрешность можно уменьшить, либо рассчитав значение k на основе анализа формы кривой измеряемого напряжения, либо заменив средство измерений, взяв вольтметр, предназначенный для измерений амплитудных значений переменных напряжений .
Очень часто встречающейся причиной возникновения методических погрешностей является то обстоятельство, что, организуя измерения, мы вынуждены измерять (или сознательно измеряем) не ту величину, которая должна быть измерена, а некоторую другую, близкую, но не равную ей .

Примером такой методической погрешности может служить погрешность измерения напряжения вольтметром с конечным сопротивлением (рис. 4.1).
Вследствие шунтирования вольтмет-ром того участка цепи, на котором измеряется напряжение, оно оказывается меньшим, чем было до присоединения вольтметра. И действительно, напряжение, которое покажет вольтметр определится выражением U = I ×R v . Если учесть, что ток в цепи I = E/(Ri + Rv), то
< .
Поэтому для одного и того же вольтметра, присоединяемого поочередно к разным участкам исследуемой цепи, эта погрешность различна: на низкоомных участках она ничтожна, а на высокоомных может быть очень большой. Эта погрешность могла бы быть устранена, если бы вольтметр был постоянно подключен к данному участку цепи на все время работы устройства (как на щите электростанции), но это невыгодно по многим причинам.
Нередки случаи, когда вообще трудно указать способ измерения, исключающий методическую погрешность. Пусть, например, измерению подлежит температура раскаленных болванок, поступающих из печи на прокатный стан. Спрашивается, где разместить датчик температуры (например, термопару): под болванкой, сбоку или над болванкой? Где бы мы его ни поместили, мы не измерим внутренней температуры тела болванки, т.е. будем иметь существенную методическую погрешность, так как измеряем не то, что нужно, а то, что проще (не сверлить же в каждой болванке канал, чтобы поместить термопару в её центре).
Таким образом, основной отличительной особенностью методических погрешностей является то обстоятельство, что они не могут быть указаны в паспорте прибора, а должны оцениваться самим экспериментатором при организации выбранной методики измерений, поэтому он обязан четко различать фактически измеряемую им величину от подлежащей измерению.
Погрешность отсчитывания происходит от недостаточно точного отсчитывания показаний. Она обусловлена субъективными особенностями наблюдателя (например, погрешность интерполирования, т.е. неточного отсчета долей деления по шкале прибора) и вида отсчетного устройства (например, погрешность от параллакса). Погрешности отсчитывания отсутствуют при использовании цифровых измерительных приборов, что является одной из причин перспективности последних.
Погрешность установки вызывается отклонением условий измерения от нормальных, т.е. условий, при которых производилась градуировка и поверка средств измерений. Сюда относится, например, погрешность от неправильной установки прибора в пространстве или его указателя на нулевую отметку, от изменения температуры, напряжения питания и других влияющих величин.
Рассмотренные виды погрешностей в равной степени пригодны для характеристики точности как отдельных результатов измерений, так и средств измерений.

4.3. Систематические, прогрессирующие, случайные и грубые погрешности

Систематическая погрешность измерений Dс — составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины .
Причины возникновения систематических погрешностей обычно могут быть установлены при подготовке и проведении измерений. Эти причины весьма разнообразны: несовершенство используемых средств и методов измерений, неправильная установка средства измерений, влияние внешних факторов (влияющих величин) на параметры средств измерений и на сам объект измерения, недостатки метода измерения (методические погрешности), индивидуальные особенности оператора (субъективные погрешности) и др. . По характеру проявления систематические погрешности делятся на постоянные и переменные. К постоянным относятся, например, погрешности, обусловленные неточностью подгонки значения меры, неправильной градуировкой шкалы прибора, неправильной установкой прибора относительно направления магнитных полей и т.д. Переменные систематические погрешности обусловлены воздействием на процесс измерения влияющих величин и могут возникнуть, например, при изменении напряжения источника питания прибора, внешних магнитных полей, частоты измеряемого переменного напряжения и пр. Основная особенность систематических погрешностей состоит в том, что зависимость их от влияющих величин подчиняется определенному закону. Этот закон может быть изучен, а результат измерения - уточнен путем внесения поправок, если числовые значения этих погрешностей определены. Другим способом уменьшения влияния систематический погрешностей является применение таких методов измерения, которые дают возможность исключить влияние систематических погрешностей без определения их значений (например, метод замещения).
Результат измерений тем ближе к истинному значению измеряемой величины, чем меньше оставшиеся неисключенные систематические погрешности. Наличие исключенных систематических погрешностей определяет правильность измерений, качество, отражающее близость к нулю систематических погрешностей . Результат измерения будет настолько правильным, насколько он неискажен систематическими погрешностями и тем правильнее, чем меньше эти погрешности.
Прогрессирующими (или дрейфовыми) называются непредсказуемые погрешности, медленно изменяющиеся во времени. Эти погрешности, как правило, вызываются процессами старения тех или иных деталей аппаратуры (разрядка источников питания, старение резисторов, конденсаторов, деформация механических деталей, усадка бумажной ленты в самопишущих приборах и т. п.). Особенностью прогрессирующих погрешностей является то, что они могут быть скорректированы путем введения поправки лишь в заданный момент времени, а далее вновь непредсказуемо возрастают. Поэтому в отличие от систематических погрешностей, которые могут быть скорректированы поправкой, найденной один раз на весь срок службы прибора, прогрессирующие погрешности требуют непрерывного повторения коррекции и тем чаще, чем меньше должно быть их остаточное значение. Другая особенность прогрессирующих погрешностей состоит в том, что их изменение во времени представляет собой нестационарный случайный процесс и поэтому в рамках хорошо разработанной теории стационарных случайных процессов они могут быть описаны лишь с оговорками.
Случайная погрешность измерения — составляющая погрешности измерений, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Значение и знак случайных погрешностей определить невозможно, они не поддаются непосредственному учету вследствие их хаотического изменения, обусловленного одновременным воздействием на результат измерения различных независимых друг от друга факторов. Обнаруживаются случайные погрешности при многократных измерениях одной и той же величины (отдельные измерения в этом случае называются наблюдением) одними и теми же средствами измерения в одинаковых условиях одним и тем же наблюдателем, т.е. при равноточных (равнорассеянных) измерениях. Влияние случайных погрешностей на результат измерения учитывается методами математической статистики и теории вероятности.
Грубые погрешности измерений - случайные погрешности измерений, существенно превышающие ожидаемые при данных условиях погрешности.
Грубые погрешности (промахи) обычно обусловлены неправильным отсчетом по прибору, ошибкой при записи наблюдений, наличием сильно влияющей величины, неисправностью средств измерений и другими причинами. Как правило, результаты измерений, содержащие грубые погрешности, не принимаются во внимание, поэтому грубые погрешности мало влияют на точность измерения. Обнаружить промах бывает не всегда легко, особенно при единичном измерении; часто трудно бывает отличить грубую погрешность от большой по значению случайной погрешности. Если грубые погрешности встречаются часто, мы поставим под сомнение все результаты измерений. Поэтому грубые погрешности влияют на годность измерений.
В заключение описанного деления погрешностей средств и результатов измерений на случайную, прогрессирующую и систематическую составляющие необходимо обратить внимание на то, что такое деление является весьма упрощенным приемом их анализа. Поэтому всегда следует помнить, что в реальной действительности эти составляющие погрешности проявляются совместно и образуют единый нестационарный случайный процесс. Погрешность результата измерений при этом можно представить в виде суммы случайных и систематических Dс погрешностей: D = Dс +. В погрешности измерений входит случайная составляющая, поэтому её следует считать случайной величиной.
Рассмотрение характера проявления погрешностей измерений показывает, нам, что единственно правильный путь оценки погрешностей дает нам теория вероятностей и математическая статистика.

4.4. Вероятностный подход к описанию погрешностей

Законы распределения случайных погрешностей. Случайные погрешности обнаруживают при проведении ряда измерений одной и той же величины. Результаты измерений при этом, как правило, не совпадают между собой, так как из-за суммарного воздействия множества различных факторов, не поддающихся учету, каждое новое измерение дает и новое случайное значение измеряемой величины. При правильном проведении измерений, достаточном их числе и исключении систематических погрешностей и промахов можно утверждать, что истинное значение измеряемой величины не выходит за пределы значений, полученных при этих измерениях. Оно остается неизвестным до тех пор пока не определено теоретически вероятное значение случайной погрешности.
Пусть величину А измеряли п раз и наблюдали при этом значения а1, a2, а3,…,аi ,...,аn. Случайная абсолютная погрешность единичного измерения определяется разностью
Di = ai - A . (4.1)
Графически результаты отдельных измерений представлены на рис. 4.2.
При достаточно большом числе п одни и те же погрешности, если они имеют ряд дискретных значений, повторяются и поэтому можно установить относительную частоту (частость) их появления, т.е. отношение числа полученных одинаковых данных mi к общему числу проведенных измерении п. При продолжении измерений величины А эта частота не изменится, поэтому ее можно считать вероятностью появления погрешности при данных измерениях: p (Ai ) = mi / n .

Статистическая зависимость вероятности появления случайных погрешностей от их значения называется законом распределе- ния погрешностей или законом распределения вероятности . Этот закон определяет характер появления различных результатов отдельных измерений. Различают два вида описания законов распределения: интегральный и дифференциальный .
Интегральным законом , или функцией распределения вероятностей F(D) случайной погрешности Di в i-м опыте, называют функцию, значение которой для каждого Dявляется вероятностью события Р(D) , заключающегося в том, что случайная погрешность Diпринимает значения, меньше некоторого значения D, т.е. функцию F(D) = Р[ Di < D]. Эта функция при изменении Dот -¥ до +¥ принимает значения от 0 до 1 и является неубывающей. Она существует для всех случайных величин как дискретных, так и непрерывных (рис 4.3 а).
Если F(D) симметрична относительно точки А, соответствующей вероятности 0,5 , то распределение результатов наблюдения будет симметрично относительно истинного значения А. В этом случае целесообразно F(D) сдвинуть по оси абсцисс на значение DA, т.е. исключить систематическую составляющую погрешность (DА = Dс) и получить функцию распределения случайной составляющей погрешности D = (рис. 4.3 б). Функция распределения вероятности погрешности D отличается от функции распределения вероятности случайной составляющей погрешности только сдвигом по оси абсцисс на значение систематической составляющей погрешности .
Дифференциальным законом распределения вероятностей для случайной погрешности с непрерывной и дифференцируемой функцией распределения F(D) называют функцию . Эта зависимость есть плотность распределения вероятностей. График плотности распределения вероятностей может иметь различную форму в зависимости от закона распределения погрешностей. Для F(D) , изображенной на рис. 4.3 б, кривая распределения f(D) имеет форму, близкую к форме колокола (рис. 4.3 в).
Вероятность появления случайных погрешностей определяется площадью, ограниченной кривой f(D) или её частью и осью абсцисс (рис. 4.3 в). В зависи мости от рассматриваемого интервала погрешности .


Значение f(D) d D есть элемент вероятности, равный площади прямоугольника с основанием d D и абсциссами D1 , D2, называемыми квантилями. Так как F(+ ¥)= 1, то справедливо равенство ,
т.е. площадь под кривой f(D) согласно правилу нормирования равна единице и отражает вероятность всех возможных событий.
В практике электрических измерений одним из наиболее распространенных законов распределения случайных погрешностей является нормальный закон (Гаусса).
Математическое выражение нормального закона имеет вид
,
где f(D) - плотность вероятности случайной погрешности D = а i - A ; s - среднее квадратическое отклонение. Среднее квадратическое отклонение может быть выражено через случайные отклонения результатов наблюдений Di (см. формулу (4.1)):
.
Характер кривых, описанных этим уравнением для двух значений s, показан на рис. 4.4. Из этих кривых видно, что чем меньше s, тем чаще встречаются малые случайные погрешности, т.е. тем точнее выполнены измерения. В практике измерений встречаются и другие законы распределения, которые могут быть установлены на основании статистической обработки

опытных данных. Некоторые из наиболее часто встречающихся законов распределения приведены в ГОСТ 8.011-84 «Показатели точности измерений и формы представления результатов измерений».
Основными характеристи- ками законов распределения являются математическое ожидание и дисперсия .
Математическое ожидание случайной величины - это такое ее значение, вокруг которого группируются результаты отдельных наблюдений. Мате-матическое ожидание дискрет-ной случайной величины М[X] определяется как сумма произ-ведений всех возможных значений случайной величины на вероятность этих значений .
Для непрерывных случайных величин приходится прибегать к интегрированию, для чего необходимо знать зависимость плотности вероятности от х, т. е. f(х), где х= D. Тогда.
Это выражение означает, что математическое ожидание равно сумме бесконечно большого числа произведений всех возможных значений случайной величины х на бесконечно малые площади f(х) dх, где f(х) — ординаты для каждого х, a dх - элементарные отрезки оси абсцисс.
Если наблюдается нормальное распределение случайных погрешностей, то математическое ожидание случайной погрешности равно нулю (рис. 4.4). Если же рассматривать нормальное распределение результатов, то математическое ожидание будет соответствовать истинному значению измеряемой величины, которое мы обозначаем через A.
Систематическая погрешность при этом представляет собой отклонение математического ожидания результатов наблюдений от истинного значения А измеряемой величины: Dс = М[ X] - A , а случайная погрешность - разность между результатом единичного наблюдения и математическим ожиданием: .
Дисперсия ряда наблюдений характеризует степень рассеивания (разброса) результатов отдельных наблюдений вокруг математического ожидания:
D[ X] = Dx= M[(ai - mx)2].
Чем меньше дисперсия, тем меньше разброс отдельных результатов, тем точнее выполнены измерения. Однако дисперсия выражается в единицах в квадрате измеряемой величины. Поэтому в качестве характеристики точности ряда наблюдений наиболее часто применяют среднее квадратическое отклонение (СКО), равное корню квадратному из дисперсии: .
Рассмотренное нормальное распределение случайных величин, в том числе и случайных погрешностей, является теоретическим, поэтому описанное нормальное распределение следует рассматривать как «идеальное», т. е. как теоретическую основу для изучения случайных погрешностей и их влияния на результат измерений.
Далее излагаются способы применения этого распределения на практике с той или иной степенью приближения. Рассматривается также еще одно распределение (распределение Стьюдента), применяемое при небольших количествах наблюдений.
Оценки погрешностей результатов прямых измерений. Пусть было проведено п прямых измерений одной и той же величины. В общем случае в каждом из актов измерений погрешность будет разной:
D i = ai - A,
где Di - погрешность i-го измерения; ai - результат i-го измерения.
Поскольку истинное значение измеряемой величины A неизвестно, непосредственно случайную абсолютную погрешность вычислить нельзя. При практических расчетах приходится вместо A использовать его оценку. Обычно принимают, что истинное значение равно среднему арифметическому значению ряда измерений:
. (4.2)
где а i - результаты отдельных измерений; п — число измерений.
Теперь аналогично выражению (4.1) можно определить отклонение результата каждого измерения от среднего значения :
(4.3)
где v i - отклонение результата единичного измерения от среднего значения. Следует помнить, что сумма отклонений результата измерений от среднего значения равна нулю, а сумма их квадратов минимальна, т. е.
и min.
Эти свойства используются при обработке результатов измерений для контроля правильности вычислений.
Затем вычисляют оценку значения средней квадратической погрешности для данного ряда измерений

. (4.4)
Согласно теории вероятностей при достаточно большом числе измерений, имеющих независимые случайные погрешности, оценка S сходится по вероятности к s. Таким образом,

. (4.5)
Ввиду того что среднее арифметическое значение также является случайной величиной, имеет смысл понятие среднеквадратического отклонения среднего арифметического значения. Эту величину обозначим символом sср. Можно показать, что для независимых погрешностей
. (4.6)
Значение sср характеризует степень разброса . Как указывалось выше, выступает оценкой истинного значения измеряемой величины, т.е. является конечным результатом выполняемых измерений. Поэтому sср называют также средней квадратической погрешностью результата измерений.
На практике значением s, вычисляемым по формуле (4.5), пользуются в том случае, если необходимо дать характеристику точности применяемого метода измерения: если метод точен, то разброс результатов отдельных измерений мал, т.е. мало значение s. Значение же sср , вычисляемое по (4.6), используется для характеристики точности результата измерений некоторой величины, т.е. результата, полученного посредством математической обработки итогов целого ряда отдельных прямых измерений.
При оценке результатов измерений иногда пользуются понятием максимальной или предельной допустимой погрешности, значение которой определяют в долях s или S . В настоящее время существуют разные критерии установления максимальной погрешности, т. е. границы поля допуска ±D, в которые случайные погрешности должны уложиться. Общепринятым пока является определение максимальной погрешности D = 3s (или 3S ). В последнее время на основании информационной теории измерений профессор П. В. Новицкий рекомендует пользоваться значением D = 2s.
Введем теперь важные понятия доверительной вероятности и доверительного интервала. Как указывалось выше, среднее арифметическое значение , полученное в результате некоторого ряда измерений, является оценкой истинного значения А и, как правило, не совпадает с ним, а отличается на значение погрешности. Пусть Рд есть вероятность того, что отличается от А не более чем на D, т.е. Р(- D < А < + D )=Рд . Вероятность Рд называется доверительной вероятностью, а интервал значений измеряемой величины от - D до + D - доверительным интервалом.
Приведенные выше неравенства означают, что с вероятностью Рд доверительный интервал от - D до + D заключает в себе истинное значение А . Таким образом, чтобы характеризовать случайную погрешность достаточно полно, надо располагать двумя числами — доверительной вероятностью и соответствующим ей доверительным интервалом. Если закон распределения вероятностей погрешностей известен, то по заданной доверительной вероятности можно определить доверительный интервал. В частности, при достаточно большом числе измерений часто бывает оправданным использование нормального закона, в то время как при небольшом числе измерений (п < 20), результаты которых принадлежат нормальному распределению, следует пользоваться распределением Стьюдента. Это распределение имеет плотность вероятностей, практически совпадающую с нормальной при больших п, но значительно отличающуюся от нормальной при малых п.
В табл. 4.1 приведены так называемые квантили распределения Стьюдента ½t(n) ½Рд для числа измерений п = 2 - 20 и доверительных вероятностей Р = 0,5 - 0,999.
Укажем, однако, что обычно таблицы распределения Стьюдента приводятся не для значений п и Рд, а для значений m = n-1 иa =1 - Рд, что следует учитывать при пользовании ими. Чтобы определить доверительный интервал, надо для данных п и Рд найти квантиль ½t(n) ½Рд и вычислить величины Ан = - sср × ½t(n) ½РдиАв = + sср × ½t(n) ½Рд, которые будут являться нижней и верхней границами доверительного интервала.

После нахождения доверительных интервалов для заданной доверительной вероятности согласно выше приведенной методике делают запись результата измерения в виде ; D = ¸ Dв; Рд ,
где - оценка истинного значения результата измерения в единицах измеряемой величины; D - погрешность измерения; Dв = +sср × ½t(n) ½Рд и Dн = -sср × ½t(n) ½Рд - верхняя и нижняя границы погрешности измерения; Рд - доверительная вероятность .

Таблица 4.1

Значения квантилей распределения Стьюдента t(n) при доверительной

вероятности Рд

Оценка погрешностей результатов косвенных измерений. При косвенных измерениях искомая величина А функционально связана с одной или несколькими непосредственно измеряемыми величинами: х, y ,..., t . Рассмотрим простейший случай определения погрешности при одной переменной, когда A = F (x ). Обозначив абсолютную погрешность измерения величины х через ±Dx , получим A+ DA = F(x± Dx).
Разложив правую часть этого равенства в ряд Тейлора и пренебрегая членами разложения, содержащими Dх в степени выше первой, получим
A+DA » F(x) ± Dx или DA » ± Dx.
Относительная ошибка измерения функции определится из выражения
.
Если измеряемая величина А является функцией нескольких переменных: A= F(x, y,..., t), то абсолютная погрешность результата косвенных измерений
.
Частные относительные погрешности косвенного измерения определяются по формулам ; и т. д. Относительная погрешность результата измерений
.
Остановимся также на особенностях оценки результата косвенного измерения при наличии случайной погрешности.
Для оценки случайной погрешности результатов косвенных измерений величины А будем полагать, что систематические погрешности измерений величин x, y,…, t исключены, а случайные погрешности измерения этих же величин не зависят друг от друга.
При косвенных измерениях значение измеряемой величины находят по формуле ,
где - средние или средние взвешенные значения величин x, y,…, t .
Для вычисления среднего квадратического отклонения значения измеряемой величины А целесообразно использовать средние квадратические отклонения, полученные при измерениях x, y,…, t .
В общем виде для определения среднего квадратического отклонения s косвенного измерения служит следующая формула:
, (4.7)
где Dx ; Dy ;…; Dt — так называемые частные погрешности косвенного измерения ; ; …; ; ; ; … ; частные производные А по x, y,…, t ; sx ; s y ,…, st , …— средние квадратические отклонения результатов измерений величин x, y,…, t .
Рассмотрим некоторые частные случаи применения уравнения (4.7), когда функциональная зависимость между косвенно и непосредственно измеряемыми величинами выражается формулой A = k × x a × y b × z g , где k - числовой коэффициент (безразмерный).
В этом случае формула (4.7) примет следующий вид:
.
Если a = b = g = 1 и A = k × x × y × z, то формула относительной погрешности упрощается до вида .
Эта формула применима, например, для вычисления среднего квадратического отклонения результата измерения объема по результатам измерения высоты, ширины и глубины резервуара, имеющего форму прямоугольного параллелепипеда.

4.5. Правила суммирования случайных и систематических погрешностей
Погрешность сложных измерительных приборов зависит от погрешностей отдельных его узлов (блоков). Погрешности суммируются по определенным правилам.
Пусть, например, измерительный прибор состоит из m блоков, каждый из которых обладает независимыми друг от друга случайными погрешностями. При этом известны абсолютные значения средних квадратических sk или максимальных М k погрешностей каждого блока.
Арифметическое суммирование или дает максимальную погрешность прибора, которая имеет ничтожно малую вероятность и поэтому редко используется для оценки точности работы прибора в целом. Согласно теории ошибок результирующая погрешность sрез и Мрез определяется сложением по квадратическому закону или .
Аналогично определяется и результирующая относительная погрешность измерения: . (4.8)
Уравнение (4.8) можно использовать для определения допустимых погрешностей отдельных блоков разрабатываемых приборов с заданной общей погрешностью измерения. При конструировании прибора обычно задаются равными погрешностями для отдельных входящих в него блоков. Если существует несколько источников погрешностей, которые на конечный результат измерения влияют неодинаково (или прибор состоит из нескольких блоков с разными погрешностями), в формулу (4.8) следует ввести весовые коэффициенты ki :
, (4.9)
где d1, d2, … , dm — относительные погрешности отдельных узлов (блоков) измерительного прибора; k1, k2, … , km - коэффициенты, учитывающие степень влияния случайной погрешности данного блока на результат измерения.
При наличии у измерительного прибора (или его блоков) также и систематических погрешностей общая погрешность определяется их суммой:. Такой же подход справедлив и для большего числа составляющих.
При оценке влияния частных погрешностей следует учитывать, что точность измерений в основном зависит от погрешностей, больших по абсолютной величине, а некоторые наименьшие погрешности можно вообще не учитывать. Частная погрешность оценивается на основании так называемого критерия ничтожной погрешности, который заключается в следующем. Допустим, что суммарная погрешность dрез определена по формуле (4.8) с учетом всех m частных погрешностей, среди которых некоторая погрешность di имеет малое значение. Если суммарная погрешность d¢рез, вычисленная без учета погрешности di, отличается от dрез не более чем на 5 %, т.е. dрез-d¢рез< 0,05×dрез или 0,95×dрез В практике технических расчетов часто пользуются менее строгим критерием - в эти формулы вводят коэффициент 0,4.

4.6. Формы представления результатов измерения

Результат измерения имеет ценность лишь тогда, когда можно оценить его интервал неопределенности, т.е. степень достоверности. Поэтому результат измерений должен содержать значение измеряемой величины и характеристики точности этого значения, которыми являются систематические и случайные погрешности. Количественные показатели погрешностей, способы их выражения, а также формы представления результатов измерений регламентируются ГОСТ 8.011-72 «Показатели точности измерений и формы представления результатов измерений». Рассмотрим основные формы представления результатов измерений.
Погрешность результата прямого однократного измерения зависит от многих факторов, но в первую очередь определяется погрешностью используемых средств измерений. Поэтому в первом приближении погрешность результата измерения можно принять равной
погрешности, которой в данной точке диапазона измерений характеризуется используемое средство измерений.
Погрешности средств измерений изменяются в диапазоне измерений. Поэтому в каждом случае, для каждого измерения необходимо произвести вычисления погрешности результата измерений, используя формулы (3.19) - (3.21) нормирования погрешности соответствующего средства измерений. Вычисляться должна как абсолютная, так и относительная погрешности результата измерения, так как первая из них нужна для округления результата и его правильной записи, а вторая — для однозначной сравнительной характеристики его точности.
Для разных характеристик нормирования погрешностей СИ эти вычисления производятся по-разному, поэтому рассмотрим три характерных случая.
1. Класс прибора указан в виде одного числа q, заключенного в кружок. Тогда относительная погрешность результата (в процентах) g = q, а абсолютная его погрешность Dх = q × x/ 100.
2. Класс прибора указан одним числом p (без кружка). Тогда абсолютная погрешность результата измерения Dх = p × xk / 100, где x k — предел измерения, на котором оно производилось, а относительная погрешность измерения (в процентах) находится по формуле ,
т е. в этом случае при измерении, кроме отсчета измеряемой величины х обязательно должен быть зафиксирован и предел измерений x k , иначе впоследствии нельзя будет вычислить погрешность результата.
3. Класс прибора указан двумя числами в виде c/d . В этом случае удобнее вычислить относительную погрешность d результата по формуле (3.21), а уже затем найти абсолютную погрешность как D x = d × x/100 .
После проведения вычислений погрешности используют одну из форм представления результата измерений в следующем виде: х; ± D и d , где х - измеренное значение; D - абсолютная погрешность измерения; d -относительная погрешность измерения. Например, производится следующая запись: «Измерение произведено с относительной погрешностью d = … %. Измеренное значение х = (А ± D) , где А - результат измерений».
Однако более наглядно указать пределы интервала неопределенности измеряемой величины в виде: x = (A- D) ¸(A+ D) или (A- D) < х < (A+ D) с указанием единиц измерения.
Другая форма представления результата измерения устанавливается в следующем виде: х ; D от доDв; Р, где х - результат измерения в единицах измеряемой величины; D , Dн, - соответственно погрешность измерения с нижней и верхней её границами в тех же единицах; Р - вероятность, с которой погрешность измерения находится в этих границах.
ГОСТ 8.011-72 допускает и другие формы представления результатов измерения, отличающиеся от приведенных форм тем, что в них указывают раздельно характеристики систематической и случайной составляющих погрешности измерения. При этом для систематической погрешности указывают её вероятностные характеристики. В этом случае основными характеристиками систематической погрешности являются математическое ожидание М[ Dхс ], среднеквадратическое отклонение s[Dхс ] и ее доверительный интервал. Выделение систематической и случайной составляющих погрешности целесообразно, если результат измерения будет использован при дальнейшей обработке данных, например, при определении результата косвенных измерений и оценке его точности, при суммировании погрешностей и т. п.

Любая из форм представления результата измерения, предусмотренная ГОСТ 8.011-72, должна содержать необходимые данные, на основании которых может быть определен доверительный интервал для погрешности результата измерения. В общем случае доверительный интервал может быть установлен, если известны вид закона распределения погрешности и основные числовые характеристики этого закона.

В наш век человек придумал и использует огромное множество всевозможных измерительных приборов. Но какой бы совершенной ни была технология их изготовления, все они имеют большую или меньшую погрешность. Этот параметр, как правило, указывается на самом инструменте, и для оценки точности определяемой величины нужно уметь разбираться в том, что означают указанные на маркировке цифры. Кроме того, относительная и абсолютная погрешность неизбежно возникает при сложных математических расчетах. Она широко применяется в статистике, промышленности (контроль качества) и в ряде других областей. Как рассчитывается эта величина и как трактовать ее значение - об этом как раз и пойдет речь в данной статье.

Абсолютная погрешность

Обозначим через х приближенное значение какой-либо величины, полученное, к примеру, посредством однократного измерения, а через х 0 - ее точное значение. Теперь вычислим модуль разности между этими двумя числами. Абсолютная погрешность - это как раз и есть то значение, что получилось у нас в результате этой нехитрой операции. Выражаясь языком формул, данное определение можно записать в таком виде: Δ x = | x - x 0 |.

Относительная погрешность

Абсолютное отклонение обладает одним важным недостатком - оно не позволяет оценить степень важности ошибки. Например, покупаем мы на рынке 5 кг картофеля, а недобросовестный продавец при измерении веса ошибся на 50 грамм в свою пользу. То есть абсолютная погрешность составила 50 грамм. Для нас такая оплошность будет сущей мелочью и мы даже не обратим на нее внимания. А представьте себе, что случится, если при приготовлении лекарства произойдет подобная ошибка? Тут уже все будет намного серьезней. А при загрузке товарного вагона наверняка возникают отклонения намного больше данного значения. Поэтому сама по себе абсолютная погрешность малоинформативная. Кроме нее очень часто дополнительно рассчитывают относительное отклонение, равное отношению абсолютной погрешности к точному значению числа. Это записывается следующей формулой: δ = Δ x / x 0 .

Свойства погрешностей

Предположим, у нас есть две независимые величины: х и у. Нам требуется рассчитать отклонение приближенного значения их суммы. В этом случае мы может рассчитать абсолютную погрешность как сумму предварительно рассчитанных абсолютных отклонений каждой из них. В некоторых измерениях может произойти так, что ошибки в определении значений x и y будут друг друга компенсировать. А может случиться и такое, что в результате сложения отклонения максимально усилятся. Поэтому, когда рассчитывается суммарная абсолютная погрешность, следует учитывать наихудший из всех вариантов. То же самое справедливо и для разности ошибок нескольких величин. Данное свойство характерно лишь для абсолютной погрешности, и к относительному отклонению его применять нельзя, поскольку это неизбежно приведет к неверному результату. Рассмотрим эту ситуацию на следующем примере.

Предположим, измерения внутри цилиндра показали, что внутренний радиус (R 1) равен 97 мм, а внешний (R 2) - 100 мм. Требуется определить толщину его стенки. Вначале найдем разницу: h = R 2 - R 1 = 3 мм. Если в задаче не указывается чему равна абсолютная погрешность, то ее принимают за половину деления шкалы измерительного прибора. Таким образом, Δ(R 2) = Δ(R 1) = 0,5 мм. Суммарная абсолютная погрешность равна: Δ(h) = Δ(R 2) +Δ(R 1) = 1 мм. Теперь рассчитаем относительно отклонение всех величин:

δ(R 1) = 0,5/100 = 0,005,

δ(R 1) = 0,5/97 ≈ 0,0052,

δ(h) = Δ(h)/h = 1/3 ≈ 0,3333>> δ(R 1).

Как видим, погрешность измерения обоих радиусов не превышает 5,2%, а ошибка при расчете их разности - толщины стенки цилиндра - составила целых 33,(3)%!

Следующее свойство гласит: относительное отклонение произведения нескольких числе примерно равно сумме относительных отклонений отдельных сомножителей:

δ(ху) ≈ δ(х) + δ(у).

Причем данное правило справедливо независимо от количества оцениваемых величин. Третье и последнее свойство относительной погрешности состоит в том, что относительная оценка числа k-й степени приближенно в | k | раз превышает относительную погрешность исходного числа.