Большой адронный коллайдер. Справка. Зачем адронный коллайдер

Где находится большой адронный коллайдер?

В 2008 году CERN (Европейский совет ядерных исследований) завершил строительство сверхмощного ускорителя частиц, названного Большой адронный коллайдер. По-английски: LHC – Large Hadron Collider. CERN – международная межправительственная научная организация, образованная в 1955 году. По сути, это главная лаборатория мира в областях высоких энергий, физики частиц и солнечной энергетики . Членами организации являются порядка 20 стран.

Зачем нужен большой адронный коллайдер?

В окрестностях Женевы в 27-километровом (26 659 м) круговом бетонном тоннеле создано кольцо сверхпроводящих магнитов для разгона протонов. Предполагается, что ускоритель поможет не только проникнуть в тайны микроструктуры материи, но и позволит продвинуться в поисках ответа на вопрос о новых источниках энергии в глубине материи.

С этой целью одновременно со строительством самого ускорителя (стоимостью свыше 2 млрд долларов) созданы четыре детектора частиц. Из них два больших универсальных (CMS и ATLAS) и два – более специализированных. Общая стоимость детекторов приближается также к 2 млрд долларов. В каждом из больших проектов CMS и ATLAS приняли участие свыше 150 институтов из 50 стран, в том числе российских и белорусских.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7x1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Не бозоном единым

Поиск бозона Хиггса – не самоцель гигантского проекта. Для ученых также важен поиск новых видов частиц, позволяющих судить о едином взаимодействии природы на ранней стадии существования Вселенной. Сейчас ученые различают четыре фундаментальных взаимодействия природы: сильное, электромагнитное, слабое и гравитационное. Теория предполагает, что на начальной стадии Вселенной, возможно, существовало единое взаимодействие. Если новые частицы будут открыты, то подтвердится эта версия.

Физиков также волнует вопрос о загадочном происхождении массы частиц. Почему частицы вообще имеют массу? И почему они имеют такие массы, а не другие? Попутно здесь всегда имеется в виду формула Е =mc ². В любом материальном объекте есть энергия. Вопрос в том, как ее высвободить. Как создать такие технологии, которые позволили бы высвобождать ее из вещества с максимальным коэффициентом полезного действия? На сегодня это основной вопрос энергетики.

Иными словами, проект Большого адронного коллайдера поможет ученым найти ответы на фундаментальные вопросы и расширить знания о микромире и, таким образом, – о происхождении и развитии Вселенной.

Вклад белорусских и российских ученых и инженеров в создание БАК

На этапе строительства европейские партнеры из CERN обратились к группе белорусских ученых, имеющих серьезные наработки в этой области, принять участие в создании детекторов для LHC с самого начала проекта. В свою очередь, белорусские ученые пригласили к сотрудничеству коллег Объединенного института ядерных исследований из наукограда Дубна и других российских институтов. Специалисты единой командой приступили к работе над так называемым детектором CMS – «Компактным мюонным соленоидом». Он состоит из многих сложнейших подсистем, каждая из которых сконструирована так, чтобы выполнялись специфические задачи, при этом совместно они обеспечивают идентификацию и точное измерение энергий и углов вылета всех частиц, рождающихся в момент протонных столкновений в БАК.

Белорусско-российские специалисты также участвовали в создании детектора ATLAS. Это установка высотой 20 м, способная измерить траектории частиц с высокой точностью: до 0,01 мм. Чувствительные датчики внутри детектора содержат около 10 млрд транзисторов. Приоритетная цель эксперимента ATLAS состоит в обнаружении бозона Хиггса, изучении его свойств.

Без преувеличения, наши ученые внесли существенный вклад в создание детекторов CMS и ATLAS. Некоторые важные компоненты были изготовлены на минском Машиностроительном заводе им. Октябрьской революции (МЗОР). В частности – торцевые адронные калориметры для эксперимента CMS. Кроме того, завод произвел весьма сложные элементы магнитной системы детектора ATLAS. Это крупногабаритные изделия, требующие владения специальными технологиями обработки металлов и сверхточной обработки. По оценке техников CERN, заказы были выполнены блестяще.

Нельзя недооценивать и «вклад личностей в историю». Например, инженер кандидат технических наук Роман Стефанович ответственен в проекте CMS за сверхточную механику. В шутку даже говорят, что без него CMS не был бы собран. Но если серьезно, то можно вполне определенно утверждать: без него сроки сборки и наладки при требуемом качестве не были бы выдержаны. Другой наш инженер-электронщик Владимир Чеховский, пройдя достаточно сложный конкурс, сегодня отлаживает электронику детектора CMS и его мюонных камер.

Наши ученые участвуют как в запуске детекторов, так и в лабораторной части, в их эксплуатации, поддержании и обновлении. Ученые из Дубны и их белорусские коллеги полноправно занимают свои места в международном физическом сообществе CERN, которое трудится ради получения новой информации о глубинных свойствах и строении материи.

Видео

Обзор от канала Простая наука, наглядно показывающий принцип действия ускорителя:

Обзор от уанала Галилео:

Обзор от уанала Галилео:

Адронный коллайдер запуск 2015:

Сроки повторного запуска БАКа из‑за выявления на нем новых неполадок уже несколько раз переносились . В частности, в середине июля 2009 года на коллайдере были обнаружены нарушения герметичности и утечки в системе охлаждения в секторах 8‑1 и 2‑3, из‑за чего запуск коллайдера был вновь отложен.

Как объявил ЦЕРН, пучки протонов вновь начнут циркулировать по 27‑километровому кольцу в середине ноября, а столкновения частиц начнутся несколько недель спустя.

Специалисты ЦЕРНа намерены сперва провести столкновения на энергии предыдущей ступени ускорителя ‑ 450 гигаэлектронвольт на пучок, и только затем доведут энергию до половины проектной ‑ до 3,5 тераэлектронвольт на пучок.

Однако физики отмечают, что и на этой энергии цель создания коллайдера ‑ обнаружение бозона Хиггса , частицы, отвечающей за массу всех других элементарных частиц, ‑ может быть достигнута.

БАК будет работать в этом режиме до конца 2010 года, после чего он будет остановлен для подготовки к переходу к энергии в 7 тераэлектронвольт на пучок.

В мае 2009 года в мировой прокат вышел приключенческий фильм "Ангелы и демоны" по мотивам одноименной книги Дэна Брауна.

ЦЕРН играет ключевую роль в сюжете этого произведения, и несколько эпизодов фильма были отсняты на территории ЦЕРНа. Поскольку в фильме присутствуют элементы вымысла, в том числе и при описании того, что и как изучается в ЦЕРНе, руководство ЦЕРНа сочло полезным предупредить те вопросы, которые неизбежно возникнут у многих зрителей фильма. С этой целью был запущен специальный вебсайт Angels and Demons ‑ the science behind the story. На нём в доступной форме рассказывается о тех физических явлениях, которые вплетены в сюжет фильма (прежде всего ‑ это получение, хранение и свойства антиматерии).

Развитие сюжета начинается с двух, казалось бы, не связанных между собой, но, тем не менее, ключевых для фильма событий: смерть действующего Папы Римского, и завершение экспериментов с Большим адронным коллайдером. В результате испытаний ученые получают антивещество, которое по силе действия может сравниться с самым мощным оружием. Тайное общество Иллюминатов решает воспользоваться этим изобретением в собственных целях - уничтожить Ватикан, центр мирового католицизма, который сейчас как раз остался без главы.

Материал подготовлен на основе информации РИА Новости и открытых источников

В 100 метрах под землей, на границе Франции и Швейцарии, расположено устройство, которое способно приоткрыть тайны мироздания. Или, по мнению некоторых, уничтожить всю жизнь на Земле.

Так или иначе, это самая большая машина в мире, и она используется для исследования мельчайших частиц во Вселенной. Это Большой адронный (не андроидный) коллайдер (LHC).

Краткое описание

LHC является частью проекта, который возглавляет Европейская организация ядерных исследований (ЦЕРН). Коллайдер включен в комплекс ускорителей ЦЕРН за пределами Женевы в Швейцарии и используется для разгона пучков протонов и ионов до скорости, приближающейся к скорости света, столкновения частиц друг с другом и записи результирующих событий. Ученые надеются, что это поможет больше узнать о возникновении Вселенной и о ее составе.

Что такое коллайдер (LHC)? Это самый амбициозный и мощный ускоритель частиц, построенный на сегодняшний день. Тысячи ученых из сотен стран сотрудничают и конкурируют друг с другом в поиске новых открытий. Для сбора данных экспериментов предусмотрены 6 участков, расположенные вдоль окружности коллайдера.

Сделанные с его помощью открытия могут стать полезными в будущем, но это не причина его постройки. Цель Большого адронного коллайдера - расширить наши знания о Вселенной. Учитывая, что LHC стоит миллиарды долларов и требует сотрудничества многих стран, отсутствие практического применения может быть неожиданным.

Для чего нужен Адронный коллайдер?

В попытке понять нашу Вселенную, ее функционирование и фактическую структуру, ученые предложили теорию, называемую стандартной моделью. В ней предпринята попытка определить и объяснить фундаментальные частицы, которые делают мир таким, каким он есть. Модель объединяет элементы теории относительности Эйнштейна с квантовой теорией. В ней также учтены 3 из 4 основных сил Вселенной: сильные и слабые ядерные взаимодействия и электромагнетизм. Теория не касается 4-й фундаментальной силы - силы тяжести.

Стандартная модель дала несколько предсказаний о Вселенной, которые согласуются с различными экспериментами. Но есть и другие ее аспекты, которые требовали подтверждения. Один из них - теоретическая частица, называемая бозоном Хиггса.

Его открытие дает ответ на вопросы о массе. Почему материя ею обладает? Ученые идентифицировали частицы, у которых нет массы, например, нейтрино. Почему у одних она есть, а у других - нет? Физики предложили много объяснений.

Самое простое из них - механизм Хиггса. Эта теория гласит, что существует частица и соответствующая ей сила, которая объясняет наличие массы. Ранее она никогда не наблюдалась, поэтому события, создаваемые LHC, должны были либо доказать существование бозона Хиггса, либо дать новую информацию.

Еще один вопрос, которым задаются ученые, связан с зарождением Вселенной. Тогда материя и энергия были одним целым. После их разделения частицы вещества и антиматерии уничтожили друг друга. Если бы количество их было равным, то ничего бы не осталось.

Но, к счастью для нас, во Вселенной материи было больше. Ученые надеются наблюдать антивещество во время работы LHC. Это могло бы помочь понять причину разницы в количестве материи и антиматерии, когда началась Вселенная.

Темная материя

Современное понимание Вселенной предполагает, что пока можно наблюдать лишь около 4% материи, которая должна существовать. Движение галактик и других небесных тел говорит о том, что существует гораздо больше видимого вещества.

Ученые назвали эту неопределенную материю темной. Наблюдаемая и темная материя составляют около 25%. Другие 3/4 исходят от гипотетической темной энергии, которая способствует расширению Вселенной.

Ученые надеются, что их эксперименты либо предоставят дополнительные доказательства существования темной материи и темной энергии, либо подтвердят альтернативную теорию.

Но это лишь верхушка айсберга физики элементарных частиц. Есть еще более экзотические и противоречивые вещи, которые необходимо выявить, для чего и нужен коллайдер.

Большой взрыв в микромасштабах

Сталкивая протоны с достаточно большой скоростью, LHC разбивает их на более мелкие атомные субчастицы. Они очень нестабильны, и до распада или рекомбинации существуют только долю секунды.

Согласно теории Большого взрыва, первоначально из них состояла все материя. По мере расширения и охлаждения Вселенной они объединились в более крупные частицы, такие как протоны и нейтроны.

Необычные теории

Если теоретические частицы, антиматерия и темная энергия, не являются достаточно экзотичными, некоторые ученые считают, что LHC может предоставить доказательства существования других измерений. Принято считать, что мир является четырехмерным (трехмерное пространство и время). Но физики предполагают, что могут существовать и другие измерения, которые люди не могут воспринимать. Например, одна версия теории струн требует наличия не менее 11 измерений.

Адепты этой теории надеются, что LHC предоставит доказательства предлагаемой ими модели Вселенной. По их мнению, фундаментальными строительными кирпичиками являются не частицы, а струны. Они могут быть открытыми или закрытыми, и вибрировать подобно гитарным. Различие в колебаниях делает струны разными. Одни проявляют себя в виде электронов, а другие реализуются как нейтрино.

Что такое коллайдер в цифрах?

LHC представляет собой массивную и мощную конструкцию. Он состоит из 8 секторов, каждый из которых является дугой, ограниченной на каждом конце секцией, называемой «вставкой». Длина окружности коллайдера равна 27 км.

Трубки ускорителя и камеры столкновений находятся на глубине 100 метров под землей. Доступ к ним обеспечивает сервисный туннель с лифтами и лестницами, расположенными в нескольких точках вдоль окружности LHC. ЦЕРН также построил наземные здания, в которых исследователи могут собирать и анализировать данные, генерируемые детекторами коллайдера.

Для управления пучками протонов, движущихся со скоростью равной 99,99% скорости света, используются магниты. Они огромны, весят несколько тонн. В LHC имеется около 9 600 магнитов. Они охлаждаются до 1,9К (-271,25 °C). Это ниже температуры космического пространства.

Протоны внутри коллайдера проходят по трубам со сверхвысоким вакуумом. Это необходимо, чтобы не было частиц, с которыми они могли бы столкнуться до достижения цели. Единственная молекула газа может привести к неудаче эксперимента.

На окружности большого коллайдера есть 6 участков, где инженеры смогут проводить свои эксперименты. Их можно сравнить с микроскопами с цифровой камерой. Некоторые из этих детекторов огромны - ATLAS представляет собой устройство длиной 45 м, высотой 25 м и весом 7 т.

В LHC задействовано около 150 млн датчиков, которые собирают данные и отправляют их в вычислительную сеть. Согласно ЦЕРН объем информации, получаемой во время экспериментов, составляет около 700 МБ/с.

Очевидно, что такому коллайдеру требуется много энергии. Его годовая потребляемая мощность составляет около 800 ГВт∙ч. Она могла быть намного больше, но объект не работает в зимние месяцы. По данным ЦЕРН стоимость энергии составляет порядка 19 млн евро.

Столкновение протонов

Принцип, лежащий в основе физики коллайдера, довольно прост. Сперва производится запуск двух пучков: одного - по часовой стрелке, а второго - против. Оба потока ускоряются до скорости света. Затем их направляют навстречу друг к другу и наблюдают результат.

Оборудование, необходимое для достижения этой цели, намного сложнее. LHC является частью комплекса ЦЕРН. Прежде, чем какие-либо частицы войдут в LHC, они уже проходят ряд шагов.

Во-первых, для получения протонов ученые должны лишить атомы водорода электронов. Затем частицы направляются в установку LINAC 2, которая запускает их в ускоритель PS Booster. Эти машины для ускорения частиц используют переменное электрическое поле. Удерживать пучки помогают поля, создаваемые гигантскими магнитами.

Когда луч достигает нужного энергетического уровня, PS Booster направляет его в суперсинхротрон SPS. Поток ускоряется еще больше и делится на 2808 пучков по 1,1 x 1011 протонов. SPS вводит лучи в LHC по часовой и против часовой стрелки.

Внутри Большого адронного коллайдера протоны продолжают ускоряться в течение 20 минут. На максимальной скорости они совершают 11245 оборотов вокруг LHC каждую секунду. Лучи сходятся на одном из 6 детекторов. При этом происходит 600 млн столкновений в секунду.

Когда сталкиваются 2 протона, они расщепляются на более мелкие частицы, в том числе кварки и глюоны. Кварки очень неустойчивы и распадаются за долю секунды. Детекторы собирают информацию, отслеживая путь субатомных частиц, и направляют ее в вычислительную сеть.

Не все протоны сталкиваются. Остальные продолжают движение до секции сброса луча, где поглощаются графитом.

Детекторы

Вдоль окружности коллайдера расположены 6 секций, в которых производится сбор данных и проводятся эксперименты. Из них 4 детектора основные и 2 меньшего размера.

Самым крупным является ATLAS. Его размеры - 46 х 25 х 25 м. Трекер обнаруживает и анализирует импульс частиц, проходящих через ATLAS. Его окружает калориметр, измеряющий энергию частиц, поглощая их. Ученые могут наблюдать траекторию их движения и экстраполировать информацию о них.

Детектор ATLAS также имеет мюонный спектрометр. Мюоны - это отрицательно заряженные частицы в 200 раз тяжелее электронов. Они единственные способны проходить через калориметр без остановки. Спектрометр измеряет импульс каждого мюона датчиками заряженных частиц. Эти сенсоры могут обнаруживать флуктуации в магнитном поле ATLAS.

Компактный мюонный соленоид (CMS) является детектором общего назначения, который обнаруживает и измеряет субчастицы, высвобождаемые во время столкновений. Прибор находится внутри гигантского соленоидного магнита, который может создать магнитное поле, почти в 100 тысяч раз превышающее магнитное поле Земли.

Детектор ALICE разработан для изучения столкновений ионов железа. Таким образом исследователи надеются воссоздать условия, подобные тем, которые произошли сразу после Большого взрыва. Они ожидают увидеть, как ионы превращаются в смесь кварков и глюонов. Основным компонентом ALICE является камера TPC, служащая для изучения и воссоздания траектории частиц.

LHC служит для поиска доказательств существования антивещества. Он делает это путем поиска частицы, называемой прелестным кварком. Ряд субдетекторов, окружающих точку столкновения, имеет 20 метров в длину. Они могут улавливать очень неустойчивые и быстро распадающиеся частицы прелестных кварков.

Эксперимент ТОТЕМ проводится на участке с одним из малых детекторов. Он измеряет размер протонов и яркость LHC, указывающей на точность создания столкновений.

Эксперимент LHC имитирует космические лучи в контролируемой среде. Его целью является помощь в разработке широкомасштабных исследований реальных космических лучей.

На каждом участке детектирования работает команда исследователей, насчитывающая от нескольких десятков до более тысячи ученых.

Обработка данных

Неудивительно, что такой коллайдер генерирует огромный поток данных. 15 000 000 ГБ, ежегодно получаемых детекторами LHC, ставят перед исследователями огромную задачу. Ее решением является вычислительная сеть, состоящая из компьютеров, каждый из которых способен самостоятельно анализировать фрагмент данных. Как только компьютер завершит анализ, он отправляет результаты на центральный компьютер и получает новую порцию.

Ученые из ЦЕРН решили сосредоточиться на использовании относительно недорогого оборудования для выполнения своих расчетов. Вместо приобретения передовых серверов и процессоров используется имеющееся оборудование, которое может хорошо работать в сети. При помощи специального ПО сеть компьютеров сможет хранить и анализировать данные каждого эксперимента.

Опасность для планеты?

Некоторые опасаются, что такой мощный коллайдер может представлять угрозу для жизни на Земле, в том числе участвовать в формировании черных дыр, «странной материи», магнитных монополий, радиации и т.д.

Ученые последовательно опровергают такие утверждения. Образование черной дыры невозможно, поскольку между протонами и звездами есть большая разница. «Странная материя» уже давно бы могла образоваться под действием космических лучей, и опасность этих гипотетических образований сильно преувеличена.

Коллайдер чрезвычайно безопасен: он отделен от поверхности 100-метровым слоем грунта, а персоналу запрещено находиться под землей во время проведения экспериментов.

Большой адронный коллайдер (Large Hardon Collider, LHC) — это типичный (хотя и сверхмощный) ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. БАК — это микроскоп, с помощью которого физики будут разгадывать, из чего и как сделана материя, получая сведения об её устройстве на новом, еще более микроскопическом уровне.

Многие ждали с нетерпением, а что же будет после его запуска, но нечего в принципе и не произошло — наш мир сильно скучен, чтобы случилось что-то действительно интересное и грандиозное. Вот она цивилизация и её венец творения человек, как раз получилась некая коалиция цивилизации и людей, сплотившись вместе уже на протяжении века, в геометрической прогрессии загаживаем землю, и бесчинно разрушаем всё то, то накапливалось миллионы лет. Об этом мы поговорим в другом сообщении, и так – вот он АДРОННЫЙ КОЛЛАЙДЕР .

Вопреки многочисленным и разносторонним ожиданиям, народов и СМИ всё прошло тихо и мирно. О, как же было всё раздуто, например газеты твердили от номера к номеру: «БАК = конец света!», «Путь к катастрофе или открытиям?», «Аннигиляционная Катастрофа», чуть ли не конец света пророчили и гигантскую черную дыру, в которую засосет всю землю. Видимо эти теории выдвигали завистливые физики, у которых в школе не получилось получить аттестат об окончании с цифрой 5, по этому предмету.

Вот, например был такой философ Демокрит, который в своей древней Греции (кстати, современные школьники пишут это одним словом, т.к. воспринимают это несуществующей странной , наподобие СССР, Чехословакии, Австро-Венгрия, Саксония, Курляндия и т.д. – «Древняягреция») он высказал некую теорию, что вещество состоит из неделимых частиц – атомов , но доказательство этому, ученые нашли только приблизительно через 2350 лет. Атом (неделимый) – разделить тоже можно, это обнаружили ещё спустя 50 лет, на электроны и ядра, а ядро – на протоны и нейтроны. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. На сегодняшний день физики считают, что кварки – предел деления материи и ничего меньше не существует. Известно шесть типов кварков: верхний, странный, очарованный, прелестный, истинный, нижний – а соединяются они с помощью глюонов.

Слово «коллайдер» происходит от английского collide – сталкиваться. В коллайдере два пуска частиц летят навстречу друг другу и при столкновении энергии пучков складываются. Тогда как в обычных ускорителях, которые строятся и работают вот уже несколько десятилетий (первые их модели относительно умеренных размеров и мощности, появились ещё перед второй мировой войной в 30-х годах), пучек ударяет по неподвижной мишени и энергии такого соударения гораздо меньше.

«Адронным» коллайдер назван, потому что предназначается для разгона адронов. Адроны – это семейство элементарных частиц, к которым относятся протоны и нейтроны, из них состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов – то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склееных» глюонами.

Большим коллайдер стал из-за своих размеров – это крупнейшая физическая экспериментальная установка из всех когда-либо существующих в мире, только основное кольцо ускорителя тянется более, чем на 26 км.

Предполагается, что скорость разогнанных БАКом протонов составит 0,9999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн. Суммарная энергия сталкивающихся протонов составит 14 ТэВ (14 тераэлектро-вольта, а ядер свинца – 5,5ГэВ на каждую пару сталкивающихся нуклонов. Нуклоны (от лат. nucleus - ядро) - общее название для протонов и нейтронов.

Существуют разные мнения по поводу техники создания ускорителей на сегодняшний день: одни уверяют, что она подошла к своему логическому приделу, другие же что предела совершенству нет – и различными обзорами приводят обзоры конструкций, размер которых в 1000 раз меньше, а по производительности выше БАК’а. В электронике или компьютерной технике постоянно идет миниатюризация при одновременном росте работоспособности.

Large Hardon Collider, LHC — a typical (albeit extremely) accelerator of charged particles in the beams, designed to disperse the protons and heavy ions (lead ions) and study the products of their collisions. BAC — this microscope, in which physics will unravel, what and how to make the matter of getting information about its device in a new, even more microscopic level.

Many waited eagerly, but what comes after his run, but nothing in principle and has not happened — our world is missing much that has happened is something really interesting and ambitious. Here it is a civilization and its crown of creation man, just got a sort of coalition of civilization and the people, unity, together for over a century, in a geometric progression zagazhivaem land, and beschinno destroying anything that accumulated millions of years. On this we will talk in another message, and so — that he Hadron Collider.

Despite the many and varied expectations of peoples and the media all went quiet and peacefully. Oh, how it was all bloated, like the newspaper firm by number of rooms: «BAC = the end of the world!», «The road to discovery or disaster?», «Annihilation catastrophe», almost the end of the world and things are a gigantic black hole in zasoset that all the land. Perhaps these theories put forward envious of physics, in which the school did not receive a certificate of completion from the figure 5, on the subject.

Here, for example, was a philosopher Democritus, who in ancient Greece (and, incidentally, today’s students write it in one word, as seen this strange non-existent, like the USSR, Czechoslovakia, Austria-Hungary, Saxony, Kurland, etc. — «Drevnyayagretsiya»), he had some theory that matter consists of indivisible particles — atoms, but the proof of this, scientists have found only after about 2350 years. Atom (indivisible) — can also be divided, it is found even after 50 years on the electrons and nuclei and the nucleus — protons and neutrons at. But they, as it turned out, not the smallest particles and, in turn, are composed of quarks. To date, physics believe that quarks — the limit of division of matter and anything less does not exist. We know of six types of quarks: the ceiling, strange, charmed, charming, genuine, bottom — and they are connected via gluons.

The word «Collider» comes from the English collide — face. In the collider, two particles start flying towards each other and with the collision energy beams added. While in conventional accelerators, which are under construction and work for several decades (the first of their models on moderate size and power, appeared before the Second World War in the 30-s), puchek strikes on fixed targets and the energy of the collision is much smaller.

«Hadronic» collider named because it is designed to disperse the hadrons. Hadrons — is a family of elementary particles, which include protons and neutrons, composed of the nucleus of all atoms, as well as a variety of mesons. An important feature of hadrons — that they are not truly elementary particles, and are composed of quarks, «glued» gluon.

The big collider has been because of its size — is the largest physical experimental setup ever in the world, only the main accelerator ring stretches for more than 26 km.

It is assumed that the velocity of dispersed tank will 0.9999999998 protons to the speed of light, and the number of collisions of particles originating in the accelerator every second, to 800 million total energy of colliding protons will be 14 TeV (14 teraelektro-volt, and the nuclei of lead — 5.5 GeV for each pair of colliding nucleons. nucleons (from Lat. nucleus — nucleus) — the generic name for the protons and neutrons.

There are different views on the creation of accelerator technology to date: some say that it came to its logical side, others that there is no limit to perfection — and the various surveys provided an overview of structures, which are 1000 times smaller, but higher productivity BUCK ‘ Yes. In the electronics or computer technology is constantly miniaturization, while the growth of efficiency.

Об этом загадочном устройстве ходит множество слухов, многие утверждают что он уничтожит Землю, создав искусственную черную дыру и положив конец существованию человечества. В реальности же это устройство может вывести человечество на совершенно новый уровень, благодаря исследованиям, проведенным учеными. В этой теме я попытался собрать всю необходимую информацию для того, чтоб у вас сложилось впечатление о том, что такое Большой адронный коллайдер (БАК)

Итак, в этой теме собрано все, что вам нужно знать об адронном коллайдере. 30 марта 2010 года в CERN (европейская организация ядерных исследований) произошло историческое событие – после нескольких неудачных попыток и множества модернизаций создание самой большой в мире машины для разрушения атомов было окончено. Предварительные тесты, инициирующие столкновения протонов на относительно низкой скорости проводились в течение 2009 и при этом не возникло никаких существенных проблем. Готовилась почва для экстраординарного эксперимента, который будет проведен весной 2010. У основной экспериментальной модели БАК в основе заложено столкновение двух протонных лучей, которые сталкиваются на максимальной скорости. Это мощнейшее столкновение разрушает протоны, создавая экстраординарные энергии и новые элементарные частицы. Эти новые атомные частицы чрезвычайно непостоянны и могут существовать лишь в течение доли секунды. Аналитический аппарат, входящий в состав БАК, может сделать запись этих событий и детально проанализировать. Таким образом ученые пытаются смоделировать возникновение черных дыр.

30 марта 2010, два луча протонов были выпущены в 27-километровый тоннель Большого Адронного Коллайдера в противоположных направлениях. Они были ускорены до скорости света, на которой и произошло столкновение. Была зарегистрирована побивающая рекорды энергия 7 TeV (7 тераэлектронвольт). Величина этой энергии рекордная и имеет очень важные значения. Теперь давайте познакомимся с самыми важными составляющими БАК – датчиками и детекторами, которые регистрируют происходящее во фракциях за те доли секунд, в течение которых происходит столкновение протонных лучей. Есть три датчика, выполняющие центральные роли во время столкновения 30 марта 2010 – это одни из важнейших частей коллайдера, играющие ключевую роль во время сложных экспериментов CERN. На диаграмме показано расположение четырех основных экспериментов (ALICE, ATLAS, CMS и LHCb), которые являются ключевыми проектами БАК. На глубине от 50 до 150 метров под землей были выкопаны огромные пещеры специально для гигантских датчиков-детекторов



Начнем с проекта под названием ALICE (аббревиатура от Большой экспериментальный ионный коллайдер). Это одна из шести экспериментальных установок, построенных на БАК. ALICE настроена для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. На фотографии детектор ALICE и все его 18 модулей


Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк

Одним из основных экспериментов БАК является также ATLAS. Эксперимент проводится на специальном детекторе, предназначенном для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

Открытие и подтверждение Бозона Хиггса важнейший приоритет Большого Адронного Коллайдера, потому что это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 TeV, при увеличении которой частица распадается. При энергии в 7 TeV могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные. Правда они будут очень непостоянны, но ATLAS разработан, чтобы обнаружить их в те доли секунды, прежде чем они "исчезнут"

Это фото считается самым лучшим из всех фотографий Большого Адронного Коллайдера:

Компактный мюонный соленоид (Compact Muon Solenoid ) является одним из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS, которая построила этот детектор и работает с ним. Соленоид расположен под землей в Цесси на территории Франции, близ границы со Швейцарией. На схеме показано устройство CMS, о котором мы и расскажем подробнее

Самый внутренний слой - основанный на кремнии трекер. Трекер - самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле


На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц



5 слой - Мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие - в поисках новой физики.



Очень немного информации доступно об эксперименте 30 марта 2010, Но один факт известен точно. CERN сообщила, что был зарегистрирован беспрецедентный выброс энергии на третьей попытке запуска коллайдера, когда лучи протонов мчались вокруг 27-километрового тоннеля и затем столкнулись на скорости света. Рекордный зарегистрированный уровень энергии был зафиксирован на максимуме, который может выдать в его текущей конфигурации – приблизительно 7 TeV. Именно такое количество энергии было характерно для первых секунд начала Большого Взрыва, давшего начало существованию нашей вселенной. Изначально такой уровень энергии не ожидался, но результат превзошел все ожидания

На схеме показано, как ALICE фиксирует рекордный выброс энергии в 7 TeV:

Этот эксперимент будет повторен сотни раз в течение 2010 года. Чтобы вы поняли, насколько сложен этот процесс, можно привести аналогию разгону частиц в коллайдере. По сложности это равнозначно например выстрелу иголками с острова Ньюфаундленд с такой идеальной точностью, чтобы эти иглы столкнулись где-нибудь в Атлантике, облетев весь Земной шар. Главная цель – обнаружение элементарной частицы – Бозона Хиггса, которая лежит в основе Стандартной Модели построения вселенной

При удачном исходе всех этих экспериментов мир самых тяжелых частиц в 400 ГэВ (так называемая Темная Материя)может наконец быть открыт и исследован.