Строение телескопа. Оптические телескопы. Параметры выбора телескопа

ГОУ Центр образования №548 «Царицыно»

Степанова Ольга Владимировна

Реферат по астрономии

Тема реферата: «Принцип работы и назначение телескопа»

Учитель: Закурдаева С.Ю

1. Введение

2. История телескопа

3. Виды телескопов. Основные назначения и принцип работы телескопа

4. Рефракторные телескопы

5. Рефлекторные телескопы

6. Зеркально-линзовые телескопы (катадиоптрические)

7. Радиотелескопы

8. Космический телескоп «Хаббл»

9. Заключение

10. Список использованной литературы

1. Введение

Звёздное небо очень красивое, оно привлекает к себе большой интерес и внимание. С давних пор люди пытались познать, что есть вне планеты Земля. Желание познать и изучить двигало людей к поиску возможностей изучения космоса, поэтому был изобретён телескоп. Телескоп – одно из главных приборов, который помогал и помогает изучать космос, звёзды, планеты. Я считаю, что важно знать об этом приборе, потому что каждый из нас хоть раз смотрел или же обязательно когда-нибудь посмотрит в телескоп. И обязательно откроет для себя что-нибудь неописуемо красивое и новое.

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI – III тысячелетия до н.э.). Астрономия изучает движение, строение, происхождение и развитие небесных тел и их систем.

Человек начал изучать Вселенную с того, что видел в небе. И на протяжении многих веков астрономия оставалась чисто оптической наукой.

Человеческий глаз – весьма совершенный оптический прибор, созданный природой. Он способен улавливать даже отдельные кванты света. С помощью зрения человек воспринимает более 80% информации о внешнем мире. Академик С.И.Вавилов пришёл к выводу, что глаз человека способен улавливать ничтожные порции света – всего около десятка фотонов. С другой стороны, глаз может выдерживать воздействие мощных световых потоков, например, от Солнца, прожектора или электрической дуги. Кроме того, человеческий глаз представляет собой весьма совершенную широкоугольную оптическую систему с большим углом зрения. Тем не менее, у глаза с точки зрения требований астрономических наблюдений имеются и весьма существенные недостатки. Главный из них состоит в том, что он собирает слишком мало света. Поэтому, глядя на небо невооруженным глазом, мы видим далеко не всё. Мы различаем, например, всего немногим более двух тысяч звезд, в то время как их там миллиарды миллиардов.

Поэтому в астрономии произошла настоящая революция, когда на помощь глазу пришел телескоп. Телескоп – это основной прибор, который используется в астрономии для наблюдения небесных тел, приёма и анализа происходящего от них излучения. Так же при помощи телескопов делают исследования спектральных излучений, рентгеновские фотографии, фотографии небесных объектов в ультрофиалете и др. Слово «телескоп» происходит от двух греческих слов: tele – далеко и skopeo – смотрю.

2. История телескопа

Трудно сказать, кто первый изобрел телескоп. Известно, что еще древние употребляли увеличительные стекла. Дошла до нас и легенда о том, что якобы Юлий Цезарь во время набега на Британию с берегов Галлии рассматривал в подзорную трубу туманную британскую землю. Роджер Бекон, один из наиболее замечательных ученных и мыслителей XIII века, он изобрел такую комбинацию линз, с помощью которой отдаленные предметы при рассматривании их кажутся близкими.

Так ли это было в действительности – неизвестно. Бесспорно, однако, что в самом начале XVII века в Голландии почти одновременно об изобретении подзорной трубы заявили три оптика – Липерсчей, Меунус, Янсен. К концу 1608 года первые подзорные трубы были изготовлены и слухи об этих новых оптических инструментах быстро распространились по Европе.

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем.Галилео. Галилей родился в 1564 году в итальянском городе Пиза. Как сын дворянина Галилей получил образование при монастыре и в 1595 году стал профессором математики в Падуанском университете, одном из ведущих европейских университетов того времени, расположенном на территории Венецианской республики. Руководство университета позволяло заниматься исследованиями, и его открытия о движении тел завоевали широкое признание. В 1609 году до него дошли сведения об изобретении оптического устройства, позволявшего наблюдать отдаленные небесные объекты. За короткое время Галилей изобрёл и соорудил несколько собственных телескопов. Телескоп имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение. Он пользовался телескопами для изучения небесных тел, а количество наблюдаемых им звёзд в 10 раз превосходило количество звёзд, которое можно видеть невооружённым глазом. 7 января 1610 года Галилей впервые направил построенный им телескоп на небо. Он обнаружил, что поверхность Луны густо покрыта кратерами, и открыл 4 крупнейших спутника Юпитера. При наблюдении в телескоп планета Венера оказалась похожа на маленькую Луну. Она меняла свои фазы, что свидетельствовало об ее обращении вокруг Солнца. На самом Солнце (поместив перед глазами темное стекло) ученый увидел черные пятна, опровергнув тем самым общепринятое учение Аристотеля о «неприкосновенной чистоте небес». Эти пятна смещались по отношению к краю Солнца, из чего сделал правильный вывод о вращении Солнца вокруг оси. В темные ночи, когда небо было чистым, в поле зрения галилеевского телескопа было видно множество звезд, недоступных невооруженному глазу. Открытия Галилея положили начало телескопической астрономии. Но его телескопы, утвердившие окончательно новое коперническое мировоззрение, были очень не совершенны.

Телескоп Галилея

Рисунок 1. Телескоп Галилея

Линза А, обращенная к объекту наблюдения, называется Объективом, а линза В, к которой прикладывает свой глаз наблюдатель – Окуляр. Если линза толще посередине, чем на краях, она называется Собирающей или Положительной, в противном случае – Рассеивающей или Отрицательной. В телескопе Галилея объективом служила плоско - выпуклая линза, а окуляром – плоско – вогнутая.

Представим себе простейшую двояковыпуклую линзу, сферические поверхности которой имеют одинаковую кривизну. Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.

Иначе ведут себя рассеивающие, отрицательные линзы. Попадающий на них параллельно оптической оси пучок света они рассеивают и в фокусе такой линзы сходятся не сами лучи, а их продолжения. Потому рассеивающие линзы имеют, как говорят, мнимый фокус и дают мнимое изображение. На (рис. 1) показан ход лучей в галилеевском телескопе. Так как небесные светила, практически говоря, находятся «в бесконечности», то изображения их получаются в фокальной плоскости, т.е. в плоскости, проходящей через фокус F и перпендикулярной оптической оси. Между фокусом и объективом Галилей поместил рассеивающую линзу, которая давала мнимое, прямое и увеличенное изображение MN. Главным недостатком галилеевского телескопа было очень малое поле зрения (так называют угловой поперечник кружка тела, видимого в телескоп). Из-за этого наводить телескоп на небесное светило и наблюдать его очень трудно. По той же причине галилеевские телескопы после смерти их создателя в астрономии не употреблялись.

Очень плохое качество изображения в первых телескопах заставило оптиков искать пути решения этой проблемы. Оказалось, что увеличение фокусного расстояния объектива значительно улучшает качество изображения. В результате этого в XVII веке на свет появились телескопы с фокусным расстоянием почти 100 метров (телескоп А.Озу имел длину 98 метров). Телескоп при этом не имел трубы, объектив располагался на столбе на расстоянии почти 100 метров от окуляра, который наблюдатель держал в руках (так называемый, "воздушный" телескоп). Наблюдать с таким телескопом было очень неудобно и Озу не сделал ни одного открытия. Однако, Христиан Гюйгенс, наблюдая с 64-метровым "воздушным" телескопом открыл кольцо Сатурна и спутник Сатурна - Титан, а также заметил полосы на диске Юпитера. Другой астроном того времени, Жан Кассини с помощью воздушных телескопов открыл еще четыре спутника Сатурна (Япет, Рея, Диона, Тефия), щель в кольце Сатурна (щель Кассини), "моря" и полярные шапки на Марсе.

3. Виды телескопов. Основные назначения и принцип работы телескопа

Телескопы, как известно, бывают нескольких видов. Среди телескопов для визуального наблюдения(оптические) выделяют 3 типа:

1. Рефракторные

Используется система линз. Лучи света от небесных объектов собираются при помощи линзы и путём преломления попадает в окуляр телескопа и даёт увеличенное изображение космического объекта.

2. Рефлекторы

Основным компонентом такого телескопа является вогнутое зеркало. Оно используется для фокусирования отражённых лучей.

3. Зеркально– линзовые

В данном типе оптических телескопов используется система зеркал и линз.

Оптическими телескопами, как правило, пользуются астрономы - любители.

Учёные для своих наблюдений и анализов используют дополнительные виды телескопов. Радиотелескопы используют для приёма радиоизлучений. Например всем известная программа по поиску внеземного разума под названием HRMS, которая подразумевала одновременное прослушивание радиошумов неба на миллионах частот. Деятелями этой программы были NASA. Началась данная программа в 1992 году. Но сейчас она ни каких поисков уже не ведёт. В рамках этой программы были проведены наблюдения с помощью 64-метрового Радиотелескопа в Параксе (Австралия), в национальной радиоастрономической обсерватории в США и на 305 - метровом радиотелескопе в Аресибо, но они не дали результатов.

Телескоп имеет три основных назначения:

  1. Собирать излучения от небесных светил на приемное устройство (глаз, фотографическую пластинку, спектрограф и др.);
  2. Строить в своей фокальной плоскости изображение объекта или определенного участка неба;
  3. Помочь различать объекты, расположеные на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом.

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.

4. Рефракторные телескопы

Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую линзу-объектив. Рефракторы всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.

При создании рефрактора два обстоятельства определяли успех: высокое качество оптического секла и искусство его шлифовки. По почину Галилея многие из астрономов сами занимались изготовлением линз. Пьера Гинан, учёный XVIII, решил научиться изготовлять рефракторы. В 1799 году Гинану удалось отлить несколько отличных дисков поперечником от 10 до 15 см – успех по тем временам неслыханный. В 1814 г. Гинан изобрел остроумный способ для уничтожения струйчатого строения в стеклянных болванках: отлитые заготовки распиливались и, после удаления брака, снова спаивались. Тем самым, открывая путь к созданию крупных объективов. Наконец Гинану удалось отлить диск диаметром 18 дюймов (45 см). Это был последний успех Пьера Гинана. Над дальнейшей разработкой рефракторов работал знаменитый американский оптик Альван Кларк. Объективы изготовлялись в американском Кембридже, причем испытание их оптических качеств производилось на искусственной звезде в тоннеле длиной 70м. Уже к 1853 году Альван Кларк достиг значительных успехов: в изготовленные им рефракторы удалось наблюдать ряд неизвестных ранее двойных звезд.

В 1878 году Пулковская обсерватория обратилась к фирме Кларка с заказом на изготовление 30-дюймового рефрактора, самого крупного в мире. На изготовление этого телескопа российское правительство ассигновало 300000 рублей. Заказ был выполнен за полтора года, причем объектив изготовил сам Альван Кларк из стекол парижской фирмы Фейль, а механическая часть телескопа была сделана немецкой фирмой Репсальд.

Новый Пулковский рефрактор оказался превосходным, одним из лучших рефракторов мира. Но уже в 1888 году на горе Гамильтон в Калифорнии начала свою работу Ликская обсерватория, оснащенная 36-дюймовым рефрактором Альвана Кларка. Отличные атмосферные условия сочетались здесь с превосходными качествами инструмента.

Рефракторы Кларка сыграли огромную роль в астрономии. Они обогатили планетарную и звездную астрономию открытиями первостепенного значения. Успешная работа на этих телескопах продолжается и поныне.

Рисунок 2. Рефракторный телескоп

Рисунок 3. Рефракторный телескоп

5. Рефлекторные телескопы

Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.

Главное преимущество рефлекторов – отсутствие у зеркал хроматической аберрации. Хроматическая аберрация – искажение изображения, связанное с тем, что световые лучи различных длин волн собираются после прохождения линзы не различном расстоянии от неё; в результате изображение размывается и края его окрашиваются. Изготовление зеркал – дело более легкое, чем шлифовка огромных линзовых объективов, и это также предрешило успех рефлекторов. Из-за отсутствия хроматических аберраций рефлекторы можно делать очень светосильными (до 1:3), что совершенно немыслимо для рефракторов. При изготовлении рефлекторы обходятся гораздо дешевле, чем равные по диаметру рефракторы.

Есть, конечно, недостатки и у зеркальных телескопов. Их трубы открыты, и токи воздуха внутри трубы создают неоднородности, портящие изображение. Отражающие поверхности зеркал сравнительно быстро тускнеют и нуждаются в восстановлении. Для отличных изображений требуется почти идеальная форма зеркал, что трудно исполнить, так как в процессе работы форма зеркал слегка меняется от механических нагрузок и колебаний температуры. И все-таки рефлекторы оказались наиболее перспективным видом телескопов.

В 1663 году Грегори создал схему телескопа-рефлектора. Грегори первым предложил использовать в телескопе вместо линзы зеркало.

В 1664 году Роберт Гук изготовил рефлектор по схеме Грегори, но качество телескопа оставляло желать лучшего. Лишь в 1668 году Исаак Ньютон, наконец, построил первый действующий рефлектор. Этот крошечный телескоп по размерам уступал даже галилеевским трубам. Главное вогнутое сферическое зеркало из полированной зеркальной бронзы имело в поперечнике всего 2.5 см., а его фокусное расстояние составляло 6.5 см. Лучи от главного зеркала отражались небольшим плоским зеркалом в боковой окуляр, представлявший собой плоско-выпуклую линзу. Первоначально рефлектор Ньютона увеличивал в 41 раз, но, поменяв окуляр и, снизив увеличение до 25 раз, ученый нашел, что небесные светила при этом выглядят ярче и наблюдать их удобнее.

В 1671 году Ньютон соорудил второй рефлектор, чуть больше первого (диаметр главного зеркала был равен 3.4 см. при фокусном расстоянии 16 см.). Система Ньютона получилась весьма удобной, и она успешно применяется до сих пор.

Рисунок 4. Рефлекторный телескоп

Рисунок 5. Рефлекторный телескоп (система Ньютона)

6. Зеркально– линзовые телескопы (катадиоптрические)

Стремление свести к минимуму всевозможные аберрации телескопов рефлекторов и рефракторов привело к созданию комбинированных зеркально-линзовых телескопов. Зеркально-линзовые (катадиоптрические) телескопы используют как линзы, так и зеркала, за счет чего их оптическое устройство позволяет достичь великолепного качества изображения с высоким разрешением, при том, что вся конструкция состоит из очень коротких портативных оптических труб.

В этих инструментах функции зеркал и линз разделены таким образом, что зеркала формируют изображение, а линзы исправляют аберрации зеркал. Первый телескоп такого типа был создан жившим в 1930 году в Германии оптиком Б. Шмидтом. В телескопе Шмидта главное зеркало имеет сферическую отражающую поверхность, а значит, тем самым отпадают трудности, связанные с параболизацией зеркал. Естественно, что сферическое зеркало большого диаметра обладает весьма заметными аберрациями, в первую очередь сферической. Сферическая аберрация – это искажение в оптических системах, связанное с тем, что световые лучи от точечного источника, расположенного на оптической оси, не собираются в одну точку с лучами, прошедшими через удалённые от оси части системы. Для того чтобы максимально уменьшить эти аберрации, Шмидт поместил в центре кривизны главного зеркала тонкую стеклянную коррекционную линзу. На глаз она кажется обыкновенным плоским стеклом, но на самом деле поверхность ее очень сложная (хотя отклонения от плоскости не превышают нескольких сотых долей мм.). Она рассчитана так, чтобы исправить сферическую аберрацию, кому и астигматизм главного зеркала. При этом происходит как бы взаимная компенсация аберраций зеркала и линзы. Хотя в системе Шмидта остаются неисправленными второстепенные аберрации, телескопы такого вида заслуженно считаются лучшими для фотографирования небесных тел. Главная беда телескопа Шмидта заключается в том: из-за сложной формы коррекционной пластинки изготовление её сопряжено с огромными трудностями. Поэтому создание крупных камер Шмидта – редкое событие в астрономической технике.

В 1941 году известный советский оптик Д. Д. Максутов изобрел новый тип зеркально-линзового телескопа, свободного от главного недостатка камер Шмидта. В системе Максутова как и в системе Шмидта главное зеркало имеет сферическую вогнутую поверхность. Однако вместо сложной коррекционной линзы Максутов использовал сферический мениск – слабую рассеивающую выпукло-вогнутую линзу, сферическая аберрация которой полностью компенсирует сферическую аберрацию главного зеркала. А так как мениск слабо изогнут и мало отличается от плоско - параллельной пластинки, хроматическую аберрацию он почти не создает. В системе Максутова все поверхности зеркала и мениска сферические, что сильно облегчает их изготовление.

Рисунок 5. Зеркально-линзовый телескоп

7. Радиотелескопы

Радиоизлучение из космоса достигает поверхности Земли без значительного поглощения. Для его приёма построены самые крупные астрономические инструменты – радиотелескопы. Радиотелескоп – это астрономический инструмент, предназначенный для исследования небесных тел в диапазоне радиоволн. Принцип действия радиотелескопа основан на приеме и обработке радиоволн и волн других диапазонов электромагнитного спектра от различных источников излучения. Такими источниками являются: Солнце, планеты, звезды, галактики, квазары и другие тела Вселенной, а так же газ. Металлические зеркала-антенны, которые достигают в диаметре нескольких десятков метров, отражают радиоволны и собирают их подобно оптическому телескопу-рефлектору. Для регистрации радиоизлучения используются чувствительные радиоприёмники.

Благодаря соединению отдельных телескопов удалось значительно повысить их разрешение. Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, позволяют исследовать объекты с небольшими угловыми размерами. Иногда, радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов.

8. Космический телескоп «Хаббл»

С выводом на орбиту телескопа имени Хаббла (HUBBLE SPACE TELESCOPE - HST), астрономия сделала гигантский рывок вперед. Будучи расположенным за пределами земной атмосферы, HST может фиксировать такие объекты и явления, которые не могут быть зафиксированы приборами на Земле. Изображения объектов, наблюдаемых с помощью наземных телескопов, выглядят расплывчатыми из-за атмосферной рефракции, а также из-за дифракции в зеркале объектива. Телескоп «Хаббл» позволяет вести более детальные наблюдения. Проект HST был разработан в НАСА при участии Европейского Космического Агентства (ESA). Этот телескоп-рефлектор, диаметром 2,4 м (94,5 дюйма), выводится на низкую (610 километров) орбиту с помощью американского корабля Спейс Шаттл (SPACE SHUTTLE).Проект предусматривает периодическое техническое обслуживание и замену оборудования на борту телескопа. Проектный срок эксплуатации телескопа - 15 и более лет.

С помощью космического телескопа «Хаббл» астрономы смогли более точно измерить расстояния до звёзд и галактик, уточнив связь между средней абсолютной величиной цефеид и периодом изменения их блеска. Эта связь затем использовалась для более точного определения расстояний до других галактик через наблюдение отдельных цефеид в этих галактиках. Цефеиды – это пульсирующие переменные звёзды, блеск которых плавно меняется в определённых пределах за постоянный период, составляющий от 1 до 50 суток. Большим сюрпризом для астрономов, использующих телескоп «Хаббл», было открытие скоплений галактик в направлениях, которые ранее считались пустым космическим пространством.

9. Заключение

Наш мир очень стремительно меняется. В сфере изучений и науки наблюдается прогресс. Каждое новое изобретение является началом для последующих изучений какой-либо сферы и создания чего-нибудь нового или более усовершенствованного. Так и в астрономии - с созданием телескопа было открыто множество нового, а началось все с создания простого, с точки зрения нашего времени, телескопа Галилея. На сегодняшний день человечество смогло даже вынести телескоп в космос. Мог ли об этом подумать Галилей, когда создавал свой телескоп?

Принцип работы телескопа заключается не в увеличении объектов, а в сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света, в конечном счете, определяет уровень детализации видимого.

В итоге телескоп имеет три основных назначения: он собирает излучения от небесных светил на приемное устройство; строит в своей фокальной плоскости изображение объекта или определенного участка неба; помогает различать объекты, расположеные на близком угловом расстоянии друг от друга и поэтому неразличимые невооруженным глазом.

В наше время невозможно представить изучение астрономии без телескопов.

Список использованной литературы

  1. Б.А.Воронцов-Вельяминов, Е.К.Страут, Астрономия 11 класс; 2002 г
  2. В.Н.Комаров, Увлекательная астрономия, 2002 г
  3. Джим Брейтот, 101 ключевая идея: астрономия; М., 2002 г.
  4. http://mvaproc.narod.ru
  5. http://infra.sai.msu.ru
  6. http://www.astrolab.ru
  7. http://referat.ru; реферат Юрия Круглова по физике на тему

«Устройство, назначение, принцип работы, типы и история телескопа».

8. http://referat.wwww4.com; реферат Виталия Фомина на тему «Принцип

работы и назначение телескопа».

ГОУ Центр образования №548 «Царицыно» Степанова Ольга Владимировна Реферат по астрономии Тема реферата: «Принцип работы и назначение телескопа» Учитель: Закурдаева С.Ю Лудза 2007 Выпуск 31

В своём очередном видеоуроке астрономии профессор расскажет о строении телескоп,а также о том, какое строение имеет планета Нептун.

Строение телескопа

Телескоп — прибор, предназначенный для наблюдения небесных тел. У всех на свете телескопов одинаковый принцип строения и работы. Они собирают слабый свет, идущий от далёких звёзд, и концентрирует его в глазу наблюдателя. Любой оптический телескоп по принципу его строения состоит из трубы, треноги или фундамента, на который устанавливается труба, монтировки с осями наведения на объект и, конечно же, непосредственно оптики — окуляра и объектива. В зависимости от оптической схемы все телескопы можно разделить на три больших группы: зеркальные, линзовые и зеркально-линзовые телескопы. В строении зеркальных телескопов используются зеркала в качестве светособирающего элемента. У линзовых телескопов в качестве светособирающих элементов используются линзы. И, наконец, у зеркально-линзовых телескопов — зеркала и линзы.

Строение Нептуна

Нептун — восьмая и самая дальняя планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше таковых у Земли. Планета была названа в честь римского бога морей. Синим цветом планета обязана метану, который находится в верхних слоях атмосферы Нептуна. Кроме метана в строении атмосферы Нептуна обнаружены водород и гелий. Высокую пропорцию состава и строения атмосферы планеты образуют льды: водного, аммиачного, метанового. Ядро Нептуна, как и Урана, состоит главным образом изо льдов и горных пород. В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, по некоторым оценкам, их скорости могут достигать 2100 км/ч. У Нептуна есть кольцевая система, хотя гораздо менее существенная, чем, к примеру, у Сатурна. Кольца Нептуна имеют определённое строение — это ледяные частицы, покрытые силикатами, или основанным на углероде материалом, — наиболее вероятно, это он придаёт им красноватый оттенок.

Предназначен для того, чтобы с его помощью наблюдать далёкие небесные объекты. Если перевести это слово с греческого языка на русский, оно будет означать «наблюдаю далеко».

Начинающие астрономы-любители, безусловно, интересуются тем, как устроен телескоп и какие виды этих оптических приборов существуют. Новичок, придя в магазин оптики, часто спрашивает продавца: «А вот этот телескоп во сколько раз увеличивает?» Кому-то следующее утверждение может показаться удивительным, но сама постановка вопроса является некорректной.

Дело не в увеличении?

Есть люди, которые думают, что чем больше увеличивает телескоп, тем «круче». Кто-то считает, что он приближает к нам удалённые объекты. И то, и другое мнение является ошибочным. Основная задача этого оптического инструмента - собрать излучение волн электромагнитного спектра, к которым относится и свет, видимый нами. Кстати, в понятие электромагнитного излучения входят и другие волны (радио-, инфракрасные, ультрафиолет, рентген и т. д.). Современные телескопы могут улавливать все эти диапазоны.

Итак, суть функций телескопа заключается не в том, во сколько раз он увеличивает, а в том, какое количество света он может собрать. Чем больше света соберёт линза или зеркало, тем чётче будет нужная нам картинка.

Для создания хорошего изображения оптическая система телескопа концентрирует световые лучи в одной точке. Она называется фокусом. Если свет не будет сфокусирован в ней, мы получим размытую картинку.

Какими бывают телескопы?

Как устроен телескоп? Различают несколько основных их видов:

  • . В конструкции рефрактора используют только линзы. Его работа основана на преломлении световых лучей;
  • . Они полностью состоят из зеркал, при этом, схема телескопа выглядит так: объектив - это главное зеркало, а есть ещё и вторичное;
  • или смешанного типа. Они состоят как из линз, так и из зеркал.

Как работают рефракторы

Объектив любого рефрактора выглядит в виде двояковыпуклой линзы. Её задача - сбор световых лучей и концентрация их в одной точке (фокусировка). Увеличение исходного изображения мы получаем через окуляр. Линзы, которые используют в современных моделях телескопов, являются сложными оптическими системами. Если ограничиться применением только одной крупной линзой, выпуклой с двух сторон, это чревато сильными погрешностями получаемого изображения.

Во-первых, изначально лучи света не могут чётко собраться в одну точку. Такое явление получило название сферической аберрации, в результате которой невозможно получение картинки с одинаковой резкостью на всех её участках. При использовании наведения можно увеличить резкость в центре изображения, но мы получим размытые края - и наоборот.

Кроме сферической, рефракторы также «грешат» хроматической аберрацией. Искажение цветового восприятия происходит потому, что в состав света, исходящего от космических объектов, входят лучи разного цветового спектра. Когда они проходят сквозь объектив, то не могут преломляться одинаково, следовательно, рассеиваются по разным участкам оптической оси инструмента. Результатом становится сильное искажение цвета получаемого изображения.

Специалисты-оптики хорошо научились «бороться» с аберрациями разного рода. С этой целью они изготавливают оптические системы рефракторов, состоящие из разных линз. Таким образом коррекция картинки становится реальной, но усилий подобная работа требует немалых.

Принцип работы рефлекторов

Появление телескопов-рефлекторов в астрономии неслучайно, так как хроматическая аберрация у «зеркалок» отсутствует вовсе, а сферические искажения можно откорректировать, изготовив главное зеркало в форме параболы. Такое зеркало получило название параболического. Вторичное зеркальце, которое тоже входит в его конструкцию, предназначено для того, чтобы отклонять лучи света, отражаемые главным зеркалом и выводить картинку в верном направлении.

Именно главное зеркало, имеющее форму параболы, обладает уникальным свойством чётко сводить все световые лучи в один фокус.

Зеркально-линзовые телескопы

В оптическую конструкцию зеркально-линзовых телескопов входят и линзы, и зеркала одновременно. В качестве объектива здесь служит зеркало сферической формы, а линзы предназначены для устранения всех возможных аберраций. Если сравнить зеркально-линзовые телескопы с рефракторами и рефлекторами, можно сразу обратить внимание на то, что у катадиоптриков короткая и компактная труба. Это обусловлено системой многократного переотражения световых лучей. Если использовать разговорный язык астрономов-любителей, фокус у таких телескопов словно находится в «сложенном состоянии». Благодаря компактности и лёгкости катадиоптриков они пользуются высокой популярностью в астрономической среде, однако стоят такие телескопы гораздо дороже, чем простой рефрактор или обычная «зеркалка» системы Ньютона.

В настоящее время на полках магазинов можно обнаружить самые разные телескопы. Современные производители заботятся о своих клиентах и стараются совершенствовать каждую модель, постепенно устраняя недостатки каждой и них.

В целом подобные устройства все же устроены по одной похожей схеме. Что представляет собой общее устройство телескопа? Об этом далее.

Труба

Главная часть инструмента – это труба. В ней помещается объектив, в который далее попадают лучи света. Объективы встречаются сразу разных видов. Это рефлекторы, катадиоптрические объективы и рефракторы. У каждого вида есть свои плюсы и минусы, которые изучают пользователи перед покупкой и уже, опираясь на них, делают выбор.

Основные составляющие каждого телескопа: труба и окуляр

Помимо трубы в инструменте есть еще и искатель. Можно сказать, что это миниатюрная подзорная труба, которая соединяется с основной трубой. При этом наблюдается увеличение в 6-10 раз. Эта деталь устройства необходимо для предварительного наведения на объект наблюдения.

Окуляр

Еще одна важная часть любого телескопа – это окуляр. Именно через эту сменную деталь инструмента пользователь и ведет наблюдение. Чем короче данная часть, тем больше может быть увеличение, но при этом меньше угол зрения. Именно по этой причине лучше всего приобретать вместе с устройством сразу несколько разных окуляров. Например, с постоянным и переменным фокусом.

Монтировка, светофильтры и прочие детали

Монтировка также бывает нескольких типов. Как правило, телескоп укрепляется на треноге, которая имеет две поворотные оси. А есть еще и дополнительные «навески» на телескоп, которые стоит упомянуть. В первую очередь это светофильтры. Они необходимы астрономам для самых разных целей. Но для новичков приобретать их необязательно.

Правда, если пользователь планирует любоваться луной, то понадобится специальный лунный фильтр, который защитит глаза от слишком яркой картинки. Есть также особые фильтры, которые способны устранять мешающий свет городских фонарей, но стоят они довольно дорого. Чтобы рассматривать предметы в правильном положении, пригодятся также диагональные зеркала, которые, в зависимости от типа, способны отклонять лучи на 45 или 90 градусов.

Невероятно интересно наблюдать за красотой небесных тел, особенно ночью, когда взору открыты звезды, планеты и разные галактики. Если вы хотите приобщиться к тем, кто любит астрономию и увидеть все светила, то вам нужно приобрести телескоп. С чего начать? Как выбрать телескоп для начинающих? Для этого вам нужно не так уж и много – подходящий оптический прибор, карта звездного неба и сумасшедший интерес к этой загадочной науке. Сегодня вы узнаете, что такое телескоп, рассмотрите его разновидности, на какие параметры следует обратить внимание при выборе прибора, который откроет для вас мир ярких звезд и созвездий.

Основные вопросы

Как выбрать телескоп? Перед покупкой телескопа постарайтесь понять, что вы хотите получить от данного приобретения. Рекомендуем составить список вопросов и постараться на них ответить, прежде чем отправляться в магазин. Нужно дать ответ на следующие вопросы:

  • Какие объекты вы хотите увидеть на небе?
  • Где вы планируете использовать прибор – дома или на улице?
  • Хотите ли вы в дальнейшем заниматься астрофотографией?
  • Сколько вы готовы потратить на свое увлечение?
  • За какими именно небесными светилами вам хотелось бы наблюдать – ближайшие планеты Солнечной системы или самые далекие галактики и туманности?

Очень важно дать правильный ответ на эти вопросы. Прибор стоит немалых денег, и вам нужно правильно определиться с конкретной моделью, чтобы купить такой телескоп, который полностью отвечает вашему опыту и личным предпочтениям.

Принцип действия и устройство телескопа

Такой оптический прибор является довольно сложным устройством, благодаря которому можно увидеть даже самые отдаленные предметы (земные или астрономические) в многократном увеличительном стекле. Его конструкция состоит из трубы, где на одном конце (ближе к небу) встроена светособирающая линза или вогнутое зеркало – объектив. На другом — находится так называемый окуляр, через который мы и просматриваем отдаленное изображение. О том, какой телескоп лучше, мы поговорим немного позже.

Конструкция телескопа оснащена такой дополнительной техникой:

  • Поисковик для обнаружения заданных астрономических объектов.
  • Светофильтры, которые блокируют сильное сияние небесных светил.
  • Корректирующие пластины или диагональные зеркала, способные поворачивать видимую картинку, которую линза передает “вверх ногами”.

Телескопы профессионального использования, которые оснащены возможностями астрофотографирования и видеосъемкой, могут быть укомплектованы следующей аппаратурой:

  • Система поиска GPS.
  • Сложное электронное оборудование.
  • Электродвигатель.

Разновидности телескопов

Сейчас мы ознакомим вас с основными видами оптических приборов, которые различны между собой по типу конструкции, наличию составляющих и дополнительных элементов.

Рефракторы (линзовые)

Данный вид телескопа легко узнать по довольно простой конструкции, которая напоминает подзорную трубу. На одной оси находятся объектив и окуляр, а увеличительный объект передается по прямому спектру – так же, как и в самых первых телескопах, произведенных много лет назад.

Такие преломляющие оптические аппараты могут собрать отраженный свет небесных объектов с помощью 2-5 увеличительно-выпуклых линз, расположенных в двух концах длинной трубы конструкции.

Как выбрать телескоп для любителя астрологии?

Линзовый аппарат отлично подойдет новичкам для наблюдений за жизнью небесных объектов. Линзовые телескопы позволяют хорошо рассмотреть как наземные, так и небесные объекты, выходящие за пределы нашей Солнечной системы. При использовании рефракторного телескопа можно заметить то, что при пойманном объективом свете может теряться четкость изображения, а при многократном увеличении можно наблюдать немного размытые объекты.

Важно! Пользоваться таким прибором лучше на открытой местности, в идеале – за городом, где отсутствует засветка неба посторонними лучами.

Достоинства:

  • Просты в использовании и не нуждаются в дополнительном дорогом обслуживании.
  • Герметичная конструкция прибора оберегает аппарат от попадания пыли и влаги.
  • Стойкие к перепадам температуры
  • Могут выдавать четкую и яркую картинку ближайших астрономических объектов.
  • Имеют долгий срок эксплуатации.
Недостатки:
  • Очень габаритные и тяжелые (вес некоторых телескопов достигает 20 кг).
  • Максимальный диаметр увеличительной линзы – 150 мм.
  • Не подходит для городских наблюдений.

В зависимости от типа оптических линз, телескопы делят на следующие виды:

  • Ахроматические – оснащены малым и средним оптическим увеличением, но показывают плоскую картинку.
  • Апохроматические – выдают выпуклое изображение, но зато исключают дефекты нечеткого контура и появление вторичного светового спектра.

Рефлекторы (зеркальные)

Как выбрать телескоп для наблюдений? Работа такого телескопа заключается в улавливании и передаче светового луча с помощью двух вогнутых зеркал: первое — находится внутри трубы, второе – преломляет картинку под углом, направляя ее на боковую линзу.

В отличие от рефлекторного аппарата, таким телескопом можно изучать глубокую область космоса и получать более качественное изображение удаленных галактик. Так как зеркала стоят дешевле линз, то и цена будет соответствующей – низкой.

Важно! Начинающему пользователю будет непросто управлять сложными техническими настройками и коррективами такого телескопа. Именно поэтому рекомендуем потренироваться сначала на рефлекторе, а позже перейти на более высокий уровень профессионала.

Плюсы:

  • Простота конструкции телескопа.
  • Компактный размер и небольшой вес.
  • Хорошо улавливает приглушенный свет самых далеких космических объектов.
  • Большой диаметр увеличительной апертуры (от 250–400 мм), которая передают более контрастную и яркую картинку, без каких-либо дефектов.
  • Приемлемая цена по сравнению с дорогостоящими рефракторами

Минусы:

  • Требует особого опыта и времени на настройку оптической системы.
  • Внутрь конструкции могут попасть частички пыли и грязи.
  • Не любит перепадов температур.
  • Не подходит для просмотра наземных и ближайших объектов Солнечной системы.

Катадиоптрики (зеркально-линзовые)

Линзы и зеркала – составляющие элементы объектива катадиоптрических телескопов. Данный аппарат включает в себя все достоинства и максимально корректирует дефекты с помощью специальных пластин. С таким прибором можно не только получать самую четкую картинку ближних и дальних небесных светил, но делать качественные фотографии увиденного объекта.

Плюсы:

  • Небольшие размеры и транспортабельность.
  • Передают самое качественное изображение из всех существующих телескопов.
  • Оснащены апертурой до 400 мм.

Минусы:

  • Дорогостоящие.
  • Скопление воздуха внутри телескопической трубы.
  • Сложная конструкция и управление.

Параметры выбора телескопа

Пришло время рассмотреть основные характеристики современных оптических приборов, чтобы понять, как выбрать телескоп для начинающих и не только.

Апертура (диаметр объектива)

Является главным критерием выбора любого телескопа. От апертуры объектива зависит способность зеркала или линзы улавливать свет: чем выше эта характеристика, тем большее количество отраженных лучей попадет в объектив. Благодаря этому вы сможете увидеть качественное изображение и даже уловить слабую видимость самых дальних космических объектов.

При выборе апертуры, исходя из своих целей, ориентируйтесь на следующие цифры:

  • Чтобы разглядеть четкие детали картинки ближних планет или спутников, достаточно телескопа с диаметром до 150 мм. Для городских условий можно уменьшить этот показатель до 70–90 мм.
  • Рассмотреть более отдаленные небесные объекты сможет аппарат с апертурой более 200 мм.
  • Если вы хотите видеть ближние и дальние небесные светила за городом, то можете попробовать самую большую величину оптических линз – до 400 мм.

Фокусное расстояние

Расстояние от небесных тел до точки в окуляре называют фокусным расстоянием. Именно здесь все световые лучи образуют пучок единого свечения. Этот показатель диктует степень увеличения и четкость видимой картинки – чем он выше, тем лучше мы увидим интересующее небесное светило. Чем выше фокус, тем длиннее сам телескоп, поэтому такие габариты могут повлиять на компактности его хранения и транспортировки.

Важно! Короткофокусный прибор можно держать дома, а вот длиннофокусный – в более просторном помещении, например, во дворе дома или на даче.

Кратность увеличения

Данный показатель легко определить, поделив фокусное расстояние на характеристику вашего окуляра. Так, если диаметр телескопа 800 мм, а по окуляру оно равно 16, то вы сможете получить 50-кратное оптическое увеличение.

Важно! Если вы установите слабый или более мощный окуляр, то сможете самостоятельно корректировать увеличение различных объектов.

Сегодня производители предлагают различную оптику – от самой низкой (4–40мм) до самой высокой, которая может удвоить фокус оптического прибора.

Тип монтировки

Это не что иное, как подставка для телескопа. Ее прямое предназначение – удобство в использовании телескопа.

Любительский и полупрофессиональный комплект состоит из 3 основных видов таких подвижных опор:

  • Азимутальная – довольно простая подставка, смещающая аппарат по горизонтали и вертикали. Такой опорой комплектуют рефракторы и катадиоптрики. Для астрофотографирования азимутальная монтировка не подходит, так как не способна поймать четкое изображение объекта.
  • Экваториальная – имеет внушительный вес и габариты, но зато отлично находит нужное светило по заданным координатам. Данный вид монтировки подходит для рефлекторов, которые улавливают самые отдаленные галактики. Экваториальная опора очень популярна среди любителей астрофотографии.
  • Система Домсона – нечто среднее между обычной дешевой азимутальной подставкой и крепкой экваториальной конструкцией. Очень часто ее добавляют в комплектацию с мощными рефлекторами.

  • Не стоит переплачивать за габариты телескопа. Он должен быть таким, чтобы вы смогли самостоятельно его переносить и транспортировать. Самый лучший телескоп для дома должен быть максимально компактен и удобен в использовании.
  • Если вы будете перевозить аппарат в машине, то нужно убедиться в том, что размеры трубы разрешают поместить его в салоне или в багажнике. В ином случае — вам придется ремонтировать не только телескоп, но и свой грузовик.
  • Заранее выберите место для просмотра небесных объектов. Лучшим вариантом будет место, которое находится за пределами города. Если у вас нет транспорта, то остановитесь на ближайшей смотровой площадке с отсутствием ближайших жилых массивов и других зданий.
  • Если вы — новичок, то не тратьте сразу весь накопленный бюджет. Приобретение окуляров, мощных фильтров и другого оборудования – очень дорогой процесс.
  • Старайтесь наблюдать за небесными светилами как можно чаще. Так, если каждый день пользоваться телескопом и рассматривать одни и те же объекты, то со временем можно увидеть их новые изменения и перемещения.
  • Если вашей целью является изучение самых дальних галактик и туманностей, то купите рефлектор с диаметром от 250 мм, дополненный азимутальной подставкой.
  • Любителям астрофотографирования не обойтись без катадиоптрического оптического прибора с мощной апертурой (400 мм) и самой длинной фокусировкой от 1000 мм. Можно добавить к комплекту экваториальную монтировку с автоматическим приводом.
  • Своему ребенку можно подарить бюджетный и простой в использовании телескоп-рефрактор из детской серии, оснащенный апертурой 70 мм на азимутальной опоре. А дополнительный адаптер, поможет сделать эффектные фото Луны и наземных объектов.

Видеоматериал

Мы очень надеемся, что прочитав нашу статью, вы стали знатоком в области телескопии, а выбрать хороший телескоп для дома не будет для вас проблемой. Наблюдать за Луной, звездами, планетами, галактиками, интересными туманностями крайне захватывающе и необычайно интересно! Желаем вам новых открытий и долгой службы вашего телескопа!