Серная кислота признаки вещества. Серная кислота. Свойства, добыча, применение и цена серной кислоты. План изучения темы

ОТНОШЕНИЕ МЕТАЛЛОВ К КИСЛОТАМ

Чаще всего в химической практике используются такие сильные кислоты как серная H 2 SO 4 , соляная HCl и азотная HNO 3 . Далее рассмотрим отношение различных металлов к перечисленным кислотам.

Соляная кислота ( HCl )

Соляная кислота – это техническое название хлороводородной кислоты. Получают ее путем растворения в воде газообразного хлороводорода – HCl . Ввиду невысокой его растворимости в воде, концентрация соляной кислоты при обычных условиях не превышает 38%. Поэтому независимо от концентрации соляной кислоты процесс диссоциации ее молекул в водном растворе протекает активно:

HCl H + + Cl -

Образующиеся в этом процессе ионы водорода H + выполняют роль окислителя , окисляя металлы, расположенные в ряду активности левее водорода . Взаимодействие протекает по схеме:

Me + HCl соль + H 2

При этом соль представляет собой хлорид металла (NiCl 2 , CaCl 2 , AlCl 3 ), в котором число хлорид-ионов соответствует степени окисления металла.

Соляная кислота является слабым окислителем, поэтому металлы с переменной валентностью окисляются ей до низших положительных степеней окисления :

Fe 0 Fe 2+

Co 0 Co 2+

Ni 0 Ni 2+

Cr 0 Cr 2+

Mn 0 Mn 2+ и др .

Пример:

2 Al + 6 HCl → 2 AlCl 3 + 3 H 2

2│ Al 0 – 3 e - → Al 3+ - окисление

3│2 H + + 2 e - → H 2 – восстановление

Соляная кислота пассивирует свинец ( Pb ). Пассивация свинца обусловлена образованием на его поверхности трудно растворимого в воде хлорида свинца (II ), который защищает металл от дальнейшего воздействия кислоты:

Pb + 2 HCl → PbCl 2 ↓ + H 2

Серная кислота ( H 2 SO 4 )

В промышленности получают серную кислоту очень высокой концентрации (до 98%). Следует учитывать различие окислительных свойств разбавленного раствора и концентрированной серной кислоты по отношению к металлам.

Разбавленная серная кислота

В разбавленном водном растворе серной кислоты большинство ее молекул диссоциируют:

H 2 SO 4 H + + HSO 4 -

HSO 4 - H + + SO 4 2-

Образующиеся ионы Н + выполняют функцию окислителя .

Как и соляная кислота, разбавленный раствор серной кислоты взаимодействует только с металлами активными и средней активности (расположенными в ряду активности до водорода).

Химическая реакция протекает по схеме:

Ме + H 2 SO 4( разб .) соль + H 2

Пример :

2 Al + 3 H 2 SO 4( разб .) → Al 2 (SO 4) 3 + 3 H 2

1│2Al 0 – 6e - → 2Al 3+ - окисление

3│2 H + + 2 e - → H 2 – восстановление

Металлы с переменной валентностью окисляются разбавленным раствором серной кислоты до низших положительных степеней окисления :

Fe 0 Fe 2+

Co 0 Co 2+

Ni 0 Ni 2+

Cr 0 Cr 2+

Mn 0 Mn 2+ и др .

Свинец ( Pb ) не растворяется в серной кислоте (если ее концентрация ниже 80%) , так как образующаяся соль PbSO 4 нерастворима и создает на поверхности металла защитную пленку.

Концентрированная серная кислота

В концентрированном растворе серной кислоты (выше 68%) большинство молекул находятся в недиссоциированном состоянии, поэтому функцию окислителя выполняет сера , находящаяся в высшей степени окисления (S +6 ). Концентрированная H 2 SO 4 окисляет все металлы, стандартный электродный потенциал которых меньше потенциала окислителя – сульфат-иона SO 4 2- (0,36 В). В связи с этим, с концентрированной серной кислотой реагируют и некоторые малоактивные металлы .

Процесс взаимодействия металлов с концентрированной серной кислотой в большинстве случаев протекает по схеме:

Me + H 2 SO 4 (конц.) соль + вода + продукт восстановления H 2 SO 4

Продуктами восстановления серной кислоты могут быть следующие соединения серы:

Практика показала, что при взаимодействии металла с концентрированной серной кислотой выделяется смесь продуктов восстановления, состоящая из H 2 S , S и SO 2. Однако, один из этих продуктов образуется в преобладающем количестве. Природа основного продукта определяется активностью металла : чем выше активность, тем глубже процесс восстановления серы в серной кислоте.

Взаимодействие металлов различной активности с концентрированной серной кислотой можно представить схемой:

Алюминий (Al ) и железо (Fe ) не реагируют с холодной концентрированной H 2 SO 4 , покрываясь плотными оксидными пленками, однако при нагревании реакция протекает.

Ag , Au , Ru , Os , Rh , Ir , Pt не реагируют с серной кислотой.

Концентрированная серная кислота является сильным окислителем , поэтому при взаимодействии с ней металлов, обладающих переменной валентностью, последние окисляются до более высоких степеней окисления , чем в случае с разбавленным раствором кислоты:

Fe 0 Fe 3+ ,

Cr 0 Cr 3+ ,

Mn 0 Mn 4+ ,

Sn 0 Sn 4+

Свинец ( Pb ) окисляется до двухвалентного состояния с образованием растворимого гидросульфата свинца Pb ( HSO 4 ) 2 .

Примеры:

Активный металл

8 A1 + 15 H 2 SO 4( конц .) →4A1 2 (SO 4) 3 + 12H 2 O + 3H 2 S

4│2 Al 0 – 6 e - → 2 Al 3+ - окисление

3│ S 6+ + 8 e → S 2- – восстановление

Металл средней активности

2 Cr + 4 H 2 SO 4(конц.) → Cr 2 (SO 4) 3 + 4 H 2 O + S

1│ 2Cr 0 – 6e →2Cr 3+ - окисление

1│ S 6+ + 6 e → S 0 - восстановление

Металл малоактивный

2Bi + 6H 2 SO 4( конц .) → Bi 2 (SO 4) 3 + 6H 2 O + 3SO 2

1│ 2Bi 0 – 6e → 2Bi 3+ – окисление

3│ S 6+ + 2 e → S 4+ - восстановление

Азотная кислота ( HNO 3 )

Особенностью азотной кислоты является то, что азот, входящий в состав NO 3 - имеет высшую степень окисления +5 и поэтому обладает сильными окислительными свойствами. Максимальное значение электродного потенциала для нитрат-иона равно 0,96 В, поэтому азотная кислота – более сильный окислитель, чем серная. Роль окислителя в реакциях взаимодействия металлов с азотной кислотой выполняет N 5+ . Следовательно, водород H 2 никогда не выделяется при взаимодействии металлов с азотной кислотой (независимо от концентрации ). Процесс протекает по схеме:

Me + HNO 3 соль + вода + продукт восстановления HNO 3

Продукты восстановления HNO 3 :

Обычно при взаимодействии азотной кислоты с металлом образуется смесь продуктов восстановления, но как правило, один из них является преобладающим. Какой из продуктов будет основным, зависит от концентрации кислоты и активности металла.

Концентрированная азотная кислота

Концентрированным считают раствор кислоты плотностью ρ > 1,25 кг/м 3 , что соответствует
концентрации > 40%. Независимо от активности металла реакция взаимодействия с
HNO 3 (конц.) протекает по схеме:

Me + HNO 3 (конц.) соль + вода + NO 2

С концентрированной азотной кислотой не взаимодействуют благородные металлы (Au , Ru , Os , Rh , Ir , Pt ), а ряд металлов (Al , Ti , Cr , Fe , Co , Ni ) при низкой температуре пассивируются концентрированной азотной кислотой. Реакция возможна при повышении температуры, она протекает по схеме, представленной выше.

Примеры

Активный металл

Al + 6 HNO 3( конц .) → Al (NO 3 ) 3 + 3 H 2 O + 3 NO 2

1│ Al 0 – 3 e → Al 3+ - окисление

3│ N 5+ + e → N 4+ - восстановление

Металл средней активности

Fe + 6 HNO 3(конц.) → Fe(NO 3) 3 + 3H 2 O + 3NO

1│ Fe 0 – 3e → Fe 3+ - окисление

3│ N 5+ + e → N 4+ - восстановление

Металл малоактивный

Ag + 2HNO 3( конц .) → AgNO 3 + H 2 O + NO 2

1│ Ag 0 – e → Ag + - окисление

1│ N 5+ + e → N 4+ - восстановление

Разбавленная азотная кислота

Продукт восстановления азотной кислоты в разбавленном растворе зависит от активности металла , участвующего в реакции:


Примеры:

Активный металл

8 Al + 30 HNO 3(разб.) → 8Al(NO 3) 3 + 9H 2 O + 3NH 4 NO 3

8│ Al 0 – 3e → Al 3+ - окисление

3│ N 5+ + 8 e → N 3- - восстановление

Выделяющийся в процессе восстановления азотной кислоты аммиак сразу взаимодействует с избытком азотной кислоты, образуя соль – нитрат аммония NH 4 NO 3 :

NH 3 + HNO 3 → NH 4 NO 3.

Металл средней активности

10Cr + 36HNO 3( разб .) → 10Cr(NO 3) 3 + 18H 2 O + 3N 2

10│ Cr 0 – 3 e → Cr 3+ - окисление

3│ 2 N 5+ + 10 e → N 2 0 - восстановление

Кроме молекулярного азота (N 2 ) при взаимодействии металлов средней активности с разбавленной азотной кислотой образуется в равном количестве оксид азота (I ) – N 2 O . В уравнении реакции нужно писать одно из этих веществ .

Металл малоактивный

3Ag + 4HNO 3( разб .) → 3AgNO 3 + 2H 2 O + NO

3│ Ag 0 – e → Ag + - окисление

1│ N 5+ + 3 e → N 2+ - восстановление

«Царская водка»

«Царская водка» (ранее кислоты называли водками) представляет собой смесь одного объема азотной кислоты и трех-четырех объемов концентрированной соляной кислоты, обладающую очень высокой окислительной активностью. Такая смесь способна растворять некоторые малоактивные металлы, не взаимодействующие с азотной кислотой. Среди них и «царь металлов» - золото. Такое действие «царской водки» объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (III ), или хлорида нитрозила – NOCl :

HNO 3 + 3 HCl → Cl 2 + 2 H 2 O + NOCl

2 NOCl → 2 NO + Cl 2

Хлор в момент выделения состоит из атомов. Атомарный хлор является сильнейшим окислителем, что и позволяет «царской водке» воздействовать даже на самые инертные «благородные металлы».

Реакции окисления золота и платины протекают согласно следующим уравнениям:

Au + HNO 3 + 4 HCl → H + NO + 2H 2 O

3Pt + 4HNO 3 + 18HCl → 3H 2 + 4NO + 8H 2 O

На Ru , Os , Rh и Ir «царская водка» не действует.

Е.А. Нуднoва, М.В. Андрюxова


Каждый человек на уроках химии изучал кислоты. Она из них называется серной кислотой и обозначается НSO 4 . О том, какие есть свойства серной кислоты, расскажет наша статья.

Физические свойства серной кислоты

Чистая серная кислота или моногидрат - это бесцветная маслянистая жидкость, которая застывает в кристаллическую массу при температуре +10°С. Серная кислота, предназначенная для реакций, содержит 95 % H 2 SO 4 и имеет плотность 1,84г/см 3 . 1 литр такой кислоты весит 2кг. Затвердевает кислота при температуре -20°С. Теплоте плавления 10,5кДж/моль при температуре 10,37°С.

Свойства концентрированной серной кислоты разнообразны. Например, при растворении этой кислоты в воде будет выделено большое количество теплоты (19ккал/моль) вследствие образования гидратов. Эти гидраты можно выделить из раствора при низких температурах в твердом виде.

Серная кислота - это один из самых основных продуктов в химической промышленности. Она предназначена для производства минеральных удобрений (сульфат аммония, суперфосфат), разнообразных солей и кислот, моющих и лекарственных средств, искусственных волокон, красителей, взрывчатых веществ. Также серная кислота имеет применение в металлургии (например, разложение урановых руд), для очистки нефтепродуктов, для осушки газов и так далее.

Химические свойства серной кислоты

Химические свойства серной кислоты такие:

  1. Взаимодействие с металлами:
    • разбавленная кислота растворяет только те металлы, которые стоят левее водорода в ряду напряжений, например H 2 +1 SO 4 + Zn 0 = H 2 O + Zn +2 SO 4 ;
    • окислительные свойства серной кислоты велики. При взаимодействии с различными металлами (кроме Pt, Au) она может восстанавливаться до H 2 S -2 , S +4 O 2 или S 0 , например:
    • 2H 2 +6 SO 4 + 2Ag 0 = S +4 O 2 + Ag 2 +1 SO 4 + 2H 2 O;
    • 5H 2 +6 SO 4 +8Na 0 = H 2 S -2 + 4Na 2 +1 SO 4 + 4H 2 O;
  2. Концентрированная кислота H 2 S +6 O 4 также реагирует (при нагревании) с некоторыми неметаллами, превращаясь при этом в соединения серы с более низкой степенью окисления, например:
    • 2H 2 S +6 O 4 + С 0 = 2S +4 O 2 + C +4 O 2 + 2H 2 O;
    • 2H 2 S +6 O 4 + S 0 = 3S +4 O 2 + 2H 2 O;
    • 5H 2 S +6 O 4 + 2P 0 = 2H 3 P +5 O 4 + 5S +4 O 2 + 2H 2 O;
  3. С основными оксидами:
    • H 2 SO 4 + CuO = CuSO 4 + H 2 O;
  4. С гидроксидами:
    • Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O;
    • 2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O;
  5. Взаимодействие с солями при обменных реакциях:
    • H 2 SO 4 + BaCl 2 = 2HCl + BaSO 4 ;

Образование BaSO 4 (белого осадка, нерастворимого в кислотах) используется для определения этой кислоты и растворимых сульфатов.

Моногидрат - это ионизирующий растворитель, имеющий кислотный характер. В нём очень хорошо растворять сульфаты многих металлов, например:

  • 2H 2 SO 4 + HNO 3 = NO 2 + + H 3 O + + 2HSO 4 - ;
  • HClO 4 + H 2 SO 4 = ClO 4 - + H 3 SO 4 + .

Концентрированная кислота - это довольно сильный окислитель, особенно при нагревании, например 2H 2 SO 4 + Cu = SO 2 ­ + CuSO 4 + H 2 O.

Действуя как окислитель, серная кислота, как правило, восстанавливается до SO 2 . Но она может быть восстановлена и до S и даже до H 2 S, например H 2 S + H 2 SO 4 = SO 2 + 2H 2 O + S.

Моногидрат почти не может проводить электрический ток. И, наоборот, водные растворы кислоты - это хорошие проводники. Серная кислота сильно поглощает влагу, поэтому ее используют для осушки разных газов. Как осушитель, серная кислота действует до тех пор, пока над её раствором давление водяного пара меньше, чем его давление в газе, который осушают.

Если закипятить разбавленный раствор серной кислоты, то из него уберется вода, при этом температура кипения будет повышаться до 337°С, например, когда начинают перегонять серную кислоту в концентрации 98,3%. И наоборот, из растворов, которые более концентрированные, испаряется лишний серный ангидрид. Пар кипящей при температуре 337°С кислоты частично разложен на SO 3 и H 2 O, которые при охлаждении опять будут соединены. Высокая температура кипения этой кислоты подходит для использования её в выделении легколетучих кислот из их солей при нагревании.

Меры предосторожности при работе с кислотой

При обращении с серной кислотой необходимо быть предельно осторожными. При попадании этой кислоты на кожу, кожа становится белой, потом буроватой и появляется покраснение. Окружающие ткани при этом распухают. При попадании этой кислоты на любой участок тела, ее необходимо быстро смыть водой, а обожжённое место смазать раствором соды.

Теперь Вы знаете, что серная кислота, свойства которой хорошо изучены, просто незаменима для разнообразного производства и добычи ископаемых.

Разбавленная и концентрированная серная кислота - это настолько важные химические продукты, что в мире их вырабатывается больше, чем любых других веществ. Экономическое богатство страны может быть оценено по объему производимой в ней серной кислоты.

Процесс диссоциации

Серная кислота находит применение в виде водных растворов различной концентрации. Она подвергается реакции диссоциации в два этапа, производя H + -ионы в растворе.

H 2 SO 4 = H + + HSO 4 - ;

HSO 4 - = H + + SO 4 -2 .

Серная кислота является сильной, и первый этап ее диссоциации происходит настолько интенсивно, что практически все исходные молекулы распадаются на H + -ионы и HSO 4 -1 -ионы (гидросульфата) в растворе. Последние частично распадаются дальше, выделяя другой H + -ион и оставляя сульфат-ион (SO 4 -2) в растворе. Однако гидросульфат, будучи слабой кислотой, все же превалирует в растворе над H + и SO 4 -2 . Полная диссоциация его происходит только, когда плотность раствора серной кислоты приближается к т. е при сильном разбавлении.

Свойства серной кислоты

Она является особенной в том смысле, что может действовать как обычная кислота или как сильный окислитель - в зависимости от ее температуры и концентрации. Холодный разбавленный раствор серной кислоты реагирует с активными металлами с получением соли (сульфата) и выделением газа водорода. Например, реакция между холодной разбавленной Н 2 SO 4 (в предположении ее полной двухэтапной диссоциации) и металлическим цинком выглядит так:

Zn + Н 2 SO 4 = ZnSO 4 + H 2 .

Горячая серная кислота концентрированная, плотность которой около 1,8 г/см 3 , может действовать в качестве окислителя, реагируя с материалами, которые обычно инертны к кислотам, такими, например, как металлическая медь. В процессе реакции медь окисляется, а масса кислоты уменьшается, образуется раствор (II) в воде и газообразная двуокись серы (SO 2) вместо водорода, чего можно было бы ожидать при взаимодействии кислоты с металлом.

Cu + 2Н 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.

Как вообще выражается концентрация растворов

Собственно, концентрация любого раствора может быть выражена различными способами, но наиболее широко используется весовая концентрация. Она показывает количество граммов в определенной массе или объеме раствора или растворителя (обычно 1000 г, 1000 см 3 , 100 см 3 и 1 дм 3). Вместо массы вещества в граммах можно брать его количество, выраженное в молях, - тогда получается молярная концентрация на 1000 г или 1 дм 3 раствора.

Если молярная концентрация определена по отношению не к количеству раствора, а только к растворителю, то она носит название моляльности раствора. Для нее характерна независимость от температуры.

Зачастую весовую концентрацию указывают в граммах на 100 г растворителя. Умножая этот показатель на 100 %, получают ее в весовых процентах (процентная концентрация). Именно этот способ является наиболее часто употребляемым в применении к растворам серной кислоты.

Каждой величине концентрации раствора, определенной при данной температуре, соответствует вполне конкретная его плотность (например, плотность раствора серной кислоты). Поэтому иногда раствор характеризуют именно ею. Например, раствор Н 2 SO 4 , характеризующийся процентной концентрацией 95,72 %, имеет плотность 1,835 г/см 3 при t = 20 °С. Как же определить концентрацию такого раствора, если дана только плотность серной кислоты? Таблица, дающая такое соответствие, является неотъемлемой принадлежностью любого учебника по общей или аналитической химии.

Пример пересчета концентрации

Попробуем перейти от одного способа выражения концентрации раствора к другому. Предположим, что мы имеем раствор Н 2 SO 4 в воде с процентной концентрацией 60 %. Сначала определим соответствующую плотность серной кислоты. Таблица, содержащая процентные концентрации (первый столбец) и соответствующие им плотности водного раствора Н 2 SO 4 (четвертый столбец), приведена ниже.

По ней определяем искомую величину, которая равна 1,4987 г/см 3 . Вычислим теперь молярность данного раствора. Для этого необходимо определить массу Н 2 SO 4 в 1 л раствора и соответствующее ей число молей кислоты.

Объем, который занимают 100 г исходного раствора:

100 / 1,4987 = 66,7 мл.

Так как в 66,7 миллилитрах 60%-ного раствора содержится 60 г кислоты, то в 1 л ее будет содержаться:

(60 / 66,7) х 1000 = 899, 55 г.

Молярный вес серной кислоты равен 98. Отсюда число молей, содержащихся в 899,55 г ее граммах, будет равно:

899,55 / 98 = 9,18 моль.

Зависимость плотности от концентрации приведена на рис. ниже.

Использование серной кислоты

Она применяется в различных отраслях промышленности. В производстве чугуна и стали она используется для очистки поверхности металла, прежде чем он покрывается другим веществом, участвует в создании синтетических красителей, а также других типов кислот, таких как соляная и азотная. Она также применяется в производстве фармпрепаратов, удобрений и взрывчатых веществ, а еще является важным реагентом при удалении примесей из нефти в нефтеперерабатывающей промышленности.

Это химическое вещество является невероятно полезным и в быту, и легко доступно как раствор серной кислоты, используемый в свинцово-кислотных аккумуляторных батареях (например, тех, что стоят в автомобилях). Такая кислота, как правило, имеет концентрацию примерно от 30% до 35% H 2 SO 4 по весу, остальное - вода.

Для многих бытовых приложений 30% Н 2 SO 4 будет более чем достаточно, чтобы удовлетворить свои потребности. Однако в промышленности требуется и значительно более высокая концентрация серной кислоты. Обычно в процессе производства она сначала получается достаточно разбавленной и загрязненной органическими включениями. Концентрированную кислоту получают в два этапа: сначала ее доводят до 70 %, а затем - на втором этапе - поднимают до 96-98 %, что является предельным показателем для экономически рентабельного производства.

Плотность серной кислоты и ее сорта

Хотя почти 99%-ную серную кислоту можно получить кратковременно при кипении, но последующая потеря SO 3 в точке кипения приводит к снижению концентрации до 98,3%. Вообще, разновидность с показателем 98% более устойчива в хранении.

Товарные сорта кислоты различаются по ее процентной концентрации, причем для них выбраны те ее значения, при которых минимальны температуры кристаллизации. Это сделано для уменьшения выпадения кристаллов серной кислоты в осадок при транспортировке и хранении. Основные сорта таковы:

  • Башенная (нитрозная) - 75 %. Плотность серной кислоты этого сорта равна 1670 кг/м 3 . Получают его т.наз. нитрозным методом, при котором получаемый при обжиге первичного сырья обжиговый газ, содержащий двуокись серы SO 2 , в футерованных башнях (отсюда и название сорта) обрабатывают нитрозой (это тоже H 2 SO 4 , но с растворенными в ней оксидами азота). В результате выделяются кислота и оксиды азота, которые не расходуются в процессе, а возвращаются в производственный цикл.
  • Контактная - 92,5-98,0 %. Плотность серной кислоты 98%-ной этого сорта равна 1836,5 кг/м 3 . Получают ее также из обжигового газа, содержащего SO 2 , причем процесс включает окисление двуокиси до ангидрида SO 3 при ее контакте (отсюда и название сорта) с несколькими слоями твердого ванадиевого катализатора.
  • Олеум - 104,5 %. Плотность его равна 1896,8 кг/м 3 . Это раствор SO 3 в H 2 SO 4 , в котором первого компонента содержится 20 %, а кислоты - именно 104,5 %.
  • Высокопроцентный олеум - 114,6 % . Его плотность - 2002 кг/м 3 .
  • Аккумуляторная - 92-94 %.

Как устроен автомобильный аккумулятор

Работа этого одного из самых массовых электротехнических устройств полностью основана на электрохимических процессах, происходящих в присутствии водного раствора серной кислоты.

Автомобильный аккумулятор содержит разбавленный серно-кислотный электролит, а также положительный и отрицательный электроды в виде нескольких пластин. Положительные пластины выполнены из красновато-коричневого материала - диоксида свинца (PbO 2), а отрицательные - из сероватого «губчатого» свинца (Pb).

Поскольку электроды изготовлены из свинца или свинцовосодержащего материала, то этот тип батареи часто называют Работоспособность его, т. е. величина выходного напряжения, напрямую определяется тем, какова в данный момент времени плотность серной кислоты (кг/м3 или г/см 3), залитой в аккумулятор в качестве электролита.

Что происходит с электролитом при разряде аккумулятора

Электролит свинцово-кислотного аккумулятора представляет собой раствор аккумуляторной серной кислоты в химически чистой дистиллированной воде с процентной концентрацией по 30 % при полной зарядке. Чистая кислота имеет плотность 1,835 г/см 3 , электролит - около 1,300 г/см 3 . Когда аккумулятор разряжается, в нем происходят электрохимические реакции, в результате которых из электролита отбирается серная кислота. Плотность от концентрации раствора зависит практически пропорционально, поэтому она должна уменьшаться вследствие снижения концентрации электролита.

До тех пор, пока ток разряда протекает через аккумулятор, кислота вблизи его электродов активно используется, и электролит становится все более разбавленным. Диффузия кислоты из объема всего электролита и к электродным пластинам поддерживает примерно постоянную интенсивность химических реакций и, как следствие, выходное напряжение.

В начале процесса разряда диффузия кислоты из электролита в пластины происходит быстро потому, что образующийся при этом сульфат еще не забил поры в активном материале электродов. Когда сульфат начинает формироваться и заполнять поры электродов, диффузия происходит более медленно.

Теоретически можно продолжить разряд до тех пор, пока все кислота не будет использована, и электролит будет состоять из чистой воды. Однако опыт показывает, что разряды не должны продолжаться после того, как плотность электролита упала до 1,150 г/см 3 .

Когда плотность падает от 1,300 до 1,150, это означает, что столько сульфата было сформировано в процессе реакций, и он заполняет все поры в активных материалах на пластинах, т. е. из раствора уже отобрана почти вся серная кислота. Плотность от концентрации зависит пропорционально, и точно так же от плотности зависит заряд аккумулятора. На рис. ниже показана зависимость заряда аккумулятора от плотности электролита.

Изменение плотности электролита является лучшим средством определения состояния разряда аккумулятора, при условии, что он используется надлежащим образом.

Степени разряда автомобильного аккумулятора в зависимости от плотности электролита

Плотность его должна измеряться каждые две недели и постоянно должна вестись запись показаний для использования в будущем.

Чем плотнее электролит, тем больше кислоты он содержит, и тем более заряжен аккумулятор. Плотность в 1,300-1,280 г/см 3 указывает на полный заряд. Как правило, различаются следующие степени разряда аккумулятора в зависимости от плотности электролита:

  • 1,300-1,280 - полностью заряжен:
  • 1,280-1,200 - более чем наполовину разряжен;
  • 1,200-1,150 - заряжен менее чем наполовину;
  • 1,150 - практически разряжен.

У полностью заряженного аккумулятора перед подключением его автомобильной сети напряжение каждой ячейки составляет от 2,5 до 2,7 В. Как только подключается нагрузка, напряжение быстро падает примерно до 2,1 В в течение трех или четырех минут. Это происходит из-за формирования тонкого слоя сульфата свинца на поверхности отрицательных электродных пластин и между слоем перекиси свинца и металлом положительных пластин. Окончательное значение напряжения ячейки после подключения к автомобильной сети составляет около 2,15-2,18 вольт.

Когда ток начинает протекать через аккумулятор в течение первого часа работы, происходит падение напряжения до 2 В, объясняемое ростом внутреннего сопротивления ячеек из-за формирования большего количества сульфата, который заполняет поры пластин, и отбора кислоты из электролита. Незадолго до начала протекания электролита максимальна и равна 1,300 г/см 3 . Поначалу его разрежение происходит быстро, но затем устанавливается сбалансированное состояние между плотностью кислоты вблизи пластин и в основном объеме электролита, отбор кислоты электродами поддерживается поступлением новых частей кислоты от основной части электролита. При этом средняя плотность электролита продолжает неуклонно уменьшаться по зависимости, показанной на рис. выше. После первоначального падения напряжение уменьшается более медленно, скорость его снижения зависит от нагрузки аккумулятора. Временной график процесса разряда показан на рис. ниже.

Контроль состояния электролита в аккумуляторе

Для определения плотности используется ареометр. Он состоит из небольшой запаянной стеклянной трубки с расширением на нижнем конце, заполненным дробью или ртутью, и градуированной шкалой на верхнем конце. Эта шкала помечена от 1,100 до 1,300 с различными промежуточными значениями, как показано на рис. ниже. Если этот ареометр помещается в электролит, то он будет опускаться до определенной глубины. При этом он будет вытеснять определенный объем электролита, и когда будет достигнуто равновесное положение, вес вытесненного объема просто будет равен весу ареометра. Поскольку плотность электролита равна отношению его веса к объему, а вес ареометра известен, то каждый уровень его погружения в раствор соответствует определенной его плотности.

Некоторые ареометры не имеют шкалы со значениями плотности, но помечены надписями: «Заряжен», «Половинный разряд», «Полный разряд» или им подобными.

Серная кислота - важнейший продукт химической промышленности. Формула серной кислоты H 2 SO 4 . Бесцветная маслянистая жидкость, тяжелее воды. При смешивании с водой образуются гидраты, происходит сильное разогревание, поэтому категорически запрещено вливать воду в концентрированную серную кислоту. Следует вливать серную кислоту в воду тонкой струйкой при постоянном перемешивании.

Серная кислота отнимает воду от органических веществ, обугливая их. В промышленности способность концентрированной серной кислоты связывать воду используется для осушения газов.

Серная кислота - сильный электролит, в водном растворе диссоциирует полностью. Окрашивает индикаторы лакмус и метилоранж в красный цвет.

Строго говоря, отщепляется один ион водорода (диссоциация по второй ступени очень мала):

H 2 SO 4 = H + + HSO 4 −

Металлы, расположенные в ряду напряжений левее водорода, вытесняют из растворов серной кислоты водород:

Zn + H 2 SO 4 = ZnSO 4 + H 2 (образуется соль - сульфат цинка)

Окислителем в данной реакции является водород кислоты:

Zn 0 + H 2 +1 SO 4 = Zn +2 SO 4 + H 2 0

Концентрированная серная кислота взаимодействует при нагревании и с металлами правее водорода, кроме золота и платины. Окислителем будет сера. В реакции с медью восстанавливается до оксида серы (IV):

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O (выделяется бесцветный газ)

с указанием степеней окисления:

Cu 0 + 2H 2 S +6 O 4 = Cu +2 SO 4 + S +4 O 2 + 2H 2 O

При концентрации близкой к 100 % серная кислота пассивирует железо реакция не идет.

С оксидами металлов реакция протекает с образованием соли и воды:

MgO + H 2 SO 4 = MgSO 4 + H 2 O

в ионном виде (оксиды на ионы не раскладываем!):

MgO + 2H + + SO 4 2− = Mg 2+ + SO 4 2− + H 2 O

MgO + 2H + = Mg 2+ + H 2 O

Серная кислота реагирует с основаниями, с образованием соли и воды:

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O

в ионном виде:

2Na + + 2OH − + 2H + + SO 4 2− = 2Na + + SO 4 2− + 2H 2 O

OH − + H + = H 2 O

Качественной реакцией на сульфат-ион является взаимодействие с солями бария - выпадает белый кристаллический осадок сульфата бария, нерастворимый в азотной кислоте:

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl

2H + + SO 4 2− + Ba 2+ + 2Cl − = BaSO 4 ↓ + 2H + + 2Cl −

SO 4 2− + Ba 2+ = BaSO 4 ↓

Серная кислота используется для получения многих кислот, так как вытесняет их из солей. В лаборатории так можно получать соляную кислоту (при нагревании, с последующим растворением в воде выделяющегося хлороводорода) и др.:

2NaCl + H 2 SO 4 = Na 2 SO 4 + 2HCl

сокращенное ионное уравнение:

Cl − + H + = HCl

Серная кислота применяется в промышленности для очистки нефтепродуктов, поверхности металлов перед нанесением покрытий, очистки (рафинирования) меди, в производстве удобрений, глюкозы и пр.

2. Получение и собирание углекислого газа. Доказательство наличия этого газа в сосуде

Углекислый газ в лаборатории получают, приливая

  1. соляную кислоту к мелу:
    CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2
  2. соляной или серной кислоты к соде:
    Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2

Закрываем пробирку, где идет реакция, пробкой с газоотводной трубкой. Трубку опускаем в колбу (углекислый газ тяжелее воздуха), горлышко желательно прикрыть куском ваты.

Доказываем наличие углекислого газа, приливая в колбу прозрачный раствор известковой воды, взбалтываем. Известковая вода мутнеет вследствие образования нерастворимого карбоната кальция:

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

Физические свойства.

Чистая 100 %-ная серная кислота (моногидрат) представляет собой бесцветную маслянистую жидкость, застывающую в кристаллическую массу при +10 °С. Реактивная серная кислота имеет обычно плотность 1,84 г/см 3 и содержит около 95 % H 2 SO 4 . Затвердевает она лишь ниже -20 °С.

Температура плавления моногидрата равна 10,37 °С при теплоте плавления 10,5 кДж/моль. В обычных условиях он представляет собой очень вязкую жидкость с весьма высоким значением диэлектрической проницаемости (e = 100 при 25 °С). Незначительная собственная электролитическая диссоциация моногидрата протекает параллельно по двум направлениям: [Н 3 SO 4 + ]·[НSO 4 - ] = 2·10 -4 и [Н 3 О + ]·[НS 2 О 7 - ] = 4·10 -5 . Его молекулярно-ионный состав может быть приближенно охарактеризован следующими данными (в %):

H 2 SO 4 HSO 4 - H 3 SO 4 + H 3 O + HS 2 O 7 - H 2 S 2 O 7
99,5 0,18 0,14 0,09 0,05 0,04

При добавлении даже малых количеств воды преобладающей становится диссоциация по схеме:

Н 2 О + Н 2 SО 4 <==> Н 3 О+ + НSO 4 -

Химические свойства.

H 2 SO 4 - сильная двухосновная кислота.

H 2 SO 4 <--> H + + HSO 4 - <--> 2H + + SO 4 2-

Первая ступень (для средних концентраций) приводит к 100%-ой диссоциации:

K 2 = ( · ) / = 1,2 · 10 -2

1) Взаимодействие с металлами:

a) разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn 0 + H 2 +1 SO 4 (разб) --> Zn +2 SO 4 + H 2 O ­

b) концентрированная H 2 +6 SO 4 - сильный окислитель; при взаимодействии с металлами (кроме Au, Pt) может восстанавливаться до S +4 O 2 , S 0 или H 2 S -2 (без нагревания не реагируют также Fe, Al, Cr - пассивируются):

2Ag 0 + 2H 2 +6 SO 4 --> Ag 2 +1 SO 4 + S +4 O 2 + 2H 2 O

8Na 0 + 5H 2 +6 SO 4 --> 4Na 2 +1 SO 4 + H 2 S -2 + 4H 2 O

2) концентрированная H 2 S +6 O 4 реагирует при нагревании с некоторыми неметаллами за счет своих сильных окислительных свойств, превращаясь в соединения серы более низкой степени окисления, (например, S +4 O 2):

С 0 + 2H 2 S +6 O 4 (конц) --> C +4 O 2 + 2S +4 O 2 + 2H 2 O

S 0 + 2H 2 S +6 O 4 (конц) --> 3S +4 O 2 + 2H 2 O

2P 0 + 5H 2 S +6 O 4 (конц) --> 5S +4 O 2 + 2H 3 P +5 O 4 + 2H 2 O

3) с основными оксидами:

CuO + H 2 SO 4 --> CuSO4 + H2O

CuO + 2H + --> Cu 2+ + H 2 O

4) с гидроксидами:

H 2 SO 4 + 2NaOH --> Na 2 SO 4 + 2H 2 O

H + + OH - --> H 2 O

H 2 SO 4 + Cu(OH) 2 --> CuSO 4 + 2H 2 O

2H + + Cu(OH) 2 --> Cu 2+ + 2H 2 O

5) обменные реакции с солями:

BaCl 2 + H 2 SO 4 --> BaSO 4 + 2HCl

Ba 2+ + SO 4 2- --> BaSO 4

Образование белого осадка BaSO 4 (нерастворимого в кислотах) используется для идентификации серной кислоты и растворимых сульфатов.

Моногидрат (чистая, 100%-ая серная кислота) является ионизирующим растворителем, имеющим кислотный характер. В нём хорошо растворяются сульфаты многих металлов (переходя при этом в бисульфаты), тогда как соли других кислот растворяются, как правило, лишь при возможности их сольволиза (с переводом в бисульфаты). Азотная кислота ведет себя в моногидрате как слабое основание

HNO 3 + 2 H 2 SO 4 <==> H 3 O + + NO 2 + + 2 HSO 4 -

хлорная - как очень слабая кислота

H 2 SO 4 + HClO 4 = H 3 SO 4 + + ClO 4 -

Фторсульфоновая и хлорсульфоновая оказываются кислотами несколько более сильными (HSO 3 F > HSO 3 Cl > HClO 4). Моногидрат хорошо растворяет многие органические вещества, имеющие в своём составе атомы с неподелёнными электронными парами (способными к присоединению протона). Некоторые из них могут быть затем выделены обратно в неизменённом состоянии путем простого разбавления раствора водой. Моногидрат обладает высоким значением криоскопической константы (6,12°) и им иногда пользуются как средой для определения молекулярных весов.

Концентрированная H 2 SO 4 является довольно сильным окислителем, особенно при нагревании (восстанавливается обычно до SO 2). Например, она окисляет HI и частично HВr (но не HСl) до свободных галогенов. Окисляются ею и многие металлы - Cu, Hg и др. (тогда как золото и платина по отношению к H 2 SO 4 устойчивы). Так взаимодействие с медью идёт по уравнению:

Cu + 2 H 2 SO 4 = CuSO 4 + SO 2 ­ + H 2 O

Действуя в качестве окислителя, серная кислота обычно восстанавливается до SO 2 . Однако наиболее сильными восстановителями она может быть восстановлена до S и даже H 2 S. С сероводородом концентрированная серная кислота реагирует по уравнению:

H 2 SO 4 + H 2 S = 2H 2 O + SO 2 + S

Следует отметить, что она частично восстанавливается также газообразным водородом и поэтому не может применяться для его осушки.

Рис. 13. Электропроводность растворов серной кислоты.

Растворение концентрированной серной кислоты в воде сопровождается значительным выделением тепла (и некоторым уменьшением общего объёма системы). Моногидрат почти не проводит электрического тока. Напротив, водные растворы серной кислоты являются хорошими проводниками. Как видно на рис. 13, максимальной электропроводностью обладает приблизительно 30 %-ная кислота. Минимум кривой соответствует гидрату состава H 2 SO 4 ·H 2 O.

Выделение тепла при растворении моногидрата в воде составляет (в зависимости от конечной концентрации раствора) до 84 кДж/моль H 2 SO 4 . Напротив, смешиванием 66 %-ной серной кислоты, предварительно охлажденной до 0 °С, со снегом (1:1 по массе) может быть достигнуто понижение температуры, до -37 °С.

Изменение плотности водных растворов H 2 SO 4 с её концентрацией (вес. %) дано ниже:

5 10 20 30 40 50 60
15 °С 1,033 1,068 1,142 1,222 1,307 1,399 1,502
25 °С 1,030 1,064 1,137 1,215 1,299 1,391 1,494
70 80 90 95 97 100
15 °С 1,615 1,732 1,820 1,839 1,841 1,836
25 °С 1,606 1,722 1,809 1,829 1,831 1,827

Как видно из этих данных, определение по плотности концентрации серной кислоты выше 90 вес. % становится весьма неточным.

Давление водяного пара над растворами H 2 SO 4 различной концентрации при разных температурах показано на рис. 15. В качестве осушителя серная кислота может действовать лишь до тех пор, пока давление водяного пара над её раствором меньше, чем его парциальное давление в осушаемом газе.

Рис. 15. Давление водяного пара.

Рис. 16. Температуры кипения над растворами H 2 SO 4 . растворов H 2 SO 4 .

При кипячении разбавленного раствора серной кислоты из него отгоняется вода, причём температура кипения повышается вплоть до 337 °С, когда начинает перегоняться 98,3 % H 2 SO 4 (рис. 16). Напротив, из более концентрированных растворов улетучивается избыток серного ангидрида. Пар кипящей при 337 °С серной кислоты частично диссоциирован на H 2 O и SO 3 , которые вновь соединяются при охлаждении. Высокая температура кипения серной кислоты позволяет использовать её для выделения при нагревании легколетучих кислот из их солей (например, HCl из NaCl).

Получение.

Моногидрат может быть получен кристаллизацией концентрированной серной кислоты при -10 °С.

Производство серной кислоты.

1-я стадия. Печь для обжига колчедана.

4FeS 2 + 11O 2 --> 2Fe 2 O 3 + 8SO 2 + Q

Процесс гетерогенный:

1) измельчение железного колчедана (пирита)

2) метод "кипящего слоя"

3) 800°С; отвод лишнего тепла

4) увеличение концентрации кислорода в воздухе

2-я стадия. После очистки, осушки и теплообмена сернистый газ поступает в контактный аппарат, где окисляется в серный ангидрид (450°С - 500°С; катализатор V 2 O 5):

2SO 2 + O 2 <--> 2SO 3

3-я стадия. Поглотительная башня:

nSO 3 + H 2 SO 4 (конц) --> (H 2 SO 4 · nSO 3)(олеум)

Воду использовать нельзя из-за образования тумана. Применяют керамические насадки и принцип противотока.

Применение.

Помните! Серную кислоту нужно вливать малыми порциями в воду, а не на оборот. Иначе может произойти бурная химическая реакция, в результате которой человек может получить сильные ожоги.

Серная кислота - один из основных продуктов химической промышленности. Идет на производство минеральных удобрений (суперфосфат, сульфат аммония), различных кислот и солей, лекарственных и моющих средств, красителей, искусственных волокон, взрывчатых веществ. Применяется в металлургии (разложение руд, напр. урановых), для очистки нефтепродуктов, как осушитель и др.

Практически важно то обстоятельство, что очень крепкая (выше 75 %) серная кислота не действует на железо. Это позволяет хранить и перевозить её в стальных цистернах. Напротив, разбавленная H 2 SO 4 легко растворяет железо с выделением водорода. Окислительные свойства для неё вовсе не характерны.

Крепкая серная кислота энергично поглощает влагу и поэтому часто применяется для осушки газов. От многих органических веществ, содержащих в своём составе водород и кислород, она отнимает воду, что нередко используется в технике. С этим же (а также с окислительными свойствами крепкой H 2 SO 4) связано её разрушающее действие на растительные и животные ткани. Случайно попавшую при работе на кожу или платье серную кислоту следует тотчас же смыть большим количеством воды, затем смочить пострадавшее место разбавленным раствором аммиака и вновь промыть водой.

Молекулы чистой серной кислоты.

Рис.1. Схема водородных связей в кристалле H 2 SO 4 .

Молекулы, образующие кристалл моногидрата, (НО) 2 SO 2 соединены друг с другом довольно сильными (25 кДж/моль) водородными связями, как это схематически показано на рис. 1. Сама молекула (НО) 2 SO 2 имеет структуру искаженного тетраэдра с атомом серы около центра и характеризуется следующими параметрами: (d(S-ОН) = 154 пм, РНО-S-ОН = 104°, d(S=O) = 143 пм, РOSO = 119°. В ионе HOSO 3 - , d(S-ОН) = 161 и d(SO) = 145 пм, а при переходе к иону SO 4 2- тетраэдр приобретает правильную форму и параметры выравниваются .

Кристаллогидраты серной кислоты.

Для серной кислоты известно несколько кристаллогидратов, состав которых показан на рис. 14. Из них наиболее бедный водой представляет собой соль оксония: H 3 O + HSO 4 - . Так как рассматриваемая система очень склонна к переохлаждению, фактически наблюдаемые в ней температуры замерзания лежат гораздо ниже температур плавления.

Рис. 14. Температуры плавления в системе H 2 O·H 2 SO 4 .