Как выглядит природная сера.  Сера: «минерал красоты. В каких продуктах содержится сера

Представляет собой пример хорошо выра­женного энантиотропного полиморфизма. Она известна в трех кристалличе­ских модификациях, входящих в группу серы: α-сера, β-сера (сульфурит), γ-сера (розицкит). Наиболее устойчи­вой модификацией в нормальных условиях является ромбическая (α-сера), к которой относятся естественные кристаллы серы. Вторая, моноклинная модификация (β-сера) наиболее устойчива при высоких температурах. Моноклинная при охлаждении до температуры 95,5° С переходит в ромбиче­скую. В свою очередь, ромбическая при нагревании до этой температуры переходит в моноклинную и при температуре 119° С плавится. Различают кристаллическую и аморфную серу. Кристаллическая сера растворяется в органических соединениях (скипидаре, сероуглероде и керосине), тогда как аморфная сера в сероуглероде не растворяется. Примеси аморфной серы снижают температуру плавления кристаллической серы и затрудняют ее очистку.


Химический состав . Сера часто встречается химически чистой, иногда содержит до 5,2% селена (селенистая сера), а также и . Очень часто сера загрязнена механическими примесями глинистых, а также битуминозных веществ.

Структурная ячейка содержит 128S. Пространственная группа D 242h - Fddd; а 0 = 10,48, b 0 =12,92 с 0 = 24,55; а 0: b 0: с 0 = 0,813: 1,1: 1,903. В основе структуры ромбической серы лежит сложная молекулярная решетка. Элементарная ячейка состоит из 16 электрически нейтральных молекул, объединенных в цепочку замкнутых, зигзагообразных «сморщенных» колец из 8 атомов серы

s - s - 2.12А, s 8 - s 8 = 3,30 А

Агрегаты и габитус . Сера встречается в виде с плова и землистых скоплений, а также друз кристаллов, иногда в виде натечных форм и налетов. Часто встречаются хорошо образованные кристаллы бипирамидального (удлиненно-бипирамидального и срезанно-бипирамидального) и тетраэдрообразного габитуса, размер которых достигает нескольких сантиметров. Главными формами на кристаллах ромбической серы являются бипирамиды {111}, {113}, призмы {011}, {101} и пинакоид {001}.

Менее распространенными, но характерными для некоторых месторождений, являются пинакоидальные кристаллы (таблитчатого и пластинчатого облика). Изредка встречаются двойники срастания серы по (111), иногда по (011) и (100). Довольно часто кристаллы серы образуют параллельные сростки.

Физические свойства . Для серы характерны разные оттенки желтого цвета, реже бурого до черного. Цвет черты желтоватый. Блеск на гранях алмазный, на изломе - жирный. В кристаллах просвечивает. Спайность несовершенная по(001),(110), и (111). Твердость-1-2. Хрупкая. Плотность - 2,05-2,08. Сера - хороший теплоизолятор. Обладает полупроводниковыми свойствами. При трении заряжается отрицательным электричеством.

Оптически положительная; 2V = 69° ; ng - 2,240 - 2,245, nm - 2,038. nр = 1,951 - 1,958, ng - nр = 0,287.

Диагностические признаки . Кристаллические формы, цвет, низкая твердость и плотность, жирный блеск на изломе кристаллов, низкая температура плавления - характерные признаки серы. Главные линии на рентгенограммах: 3,85 ; 3,21 и 3,10. В НСl и H 2 S0 4 нерастворима. NH0 3 и царская водка окисляют серу, превращая ее в H 2 S0 4 . Сера легко растворяется в сероуглероде, скипидаре и керосине. П. п. т. легко плавится и загорается голубым пламенем с выделением S0 2 .

Образование и месторождения . Сера широко распространена в природе, ее месторождения возникают: 1) при вулканических извержениях; 2) при поверхностном разложении сульфосолей и сернистых соединений металлов, 3) при раскислении сернокислых соединений (главным образом гипса), 4) при разрушении органических соединений (преимущественно богатых серой асфальтов и нефти), 5) при разрушении органического организмов и 6) при разложении сероводорода (а также S0 2) на земной поверхности. Независимо от этих процессов сера образуется за счет сероводорода и иногда S0 2 и S0 3 , являющихся промежуточными продуктами при разложении других сернистых образований.

Промышленные месторождения серы представлены тремя типами: 1) вулканические месторождения, 2) месторождения, связанные с окислением сульфидов, и 3) осадочные месторождения. Вулканические месторож­дения серы возникают путем кристаллизации возгонов. Сера в виде хорошо образованных кристаллов выстилает выходные отверстия фумарол и мелкие трещины и пустоты. Вулканические месторождения серы известны в Италии, Японии, Чили и других вулканических районах. В Советском Союзе они имеются на Камчатке и Кавказе. Месторождения серы, связанные с окислением сульфидов, характерны для зоны окисления сульфидных месторождений. Их образование обусловлено неполным окислением сульфидов и происходите первую стадию окисления по такой возможной реакции:

RS + Fe 2 (S0 4 ) 3 = 2FeS0 4 + RS0 4 + S.

Наибольшее значение по запасам имеют месторождения серы, которые возникли при формировании осадочных горных пород. В этих месторождениях исходным веществом для образования серы является . Окисление сероводорода происходит следующим образом:

2HS + 0 2 = 2Н 2 0+2S.

Что касается происхождения самого сероводорода и путей его перехода в серу, большинство ученых рассматривает эти процессы с биохимической точки зрения, связывая их с жизнедеятельностью организмов. В конце XIX столетия был открыт ряд микробов, которым свойственна способность перерабатывать (восстанавливать) сернокислые соли в . Вместе с тем установлено, что образуется при гниении белковых соединений и в результате жизнедеятельности некоторых видов лучистого грибка

Actynomicetes. Среди микробов особенно выделяется род Microspira, который населяет дно стоячих водоемов и морских бассейнов, зараженных сероводо­родом. Эти организмы найдены также в подземных водах и нефти на глубинах до 1000-1500 м. Специфическая связь серы в главнейших месторожде­ниях с гипсом, нефтью и другими битумами (например, асфальтом и озоке­ритом) дает основание считать, что органических соединений является источником энергии и окисляется бактериями за счет кислорода, который они получают из сульфатов (например, гипса). В этом случае весь процесс образования сероводорода имеет такой вид:

Са²⁺+SO²⁻ 4 + 2С +2Н 2 0 = H 2 S+Са(НС0 3 ) 2

Переход сероводорода в серу может происходить или по реакции 2H 2 S+ О 2 = 2Н 2 0 + 2S, или же биохимическим путем под влиянием других бактерий, главнейшими среди которых являются Biggiatoa mirabith Thiospirillит. Эти бактерии, поглощая сероводород, перерабатывают его в серу, которую откладывают внутри своих клеток в виде желтых блестя­щих шариков. Бактерии живут в озерах, прудах и мелких частях моря и, падая на дно вместе с другими отложениями, дают начало месторождениям серы.

Месторождения , в которых сера возникает одновременно с породами, которые ее содержат, носят название сингенетических. Они известны в Сици­лии, в Советском Союзе (в Туркмении, Поволжье, Дагестане, Приднестровье и других местах). Особенностью сингенетических месторождений серы является ее тесная связь с определенным стратиграфическим горизонтом. Когда сера образуется за счет сероводорода, который циркулирует по трещинам горных пород, возникают эпигенетические месторождения. К ним относятся месторождения Техаса и Луизианы в США; в России - Шор-Су в Фергане, а также месторождения в районе Махачкалы, Казбека и Грозного. Для многих из этих месторождений характерны явления пере­кристаллизации, в результате которой возникают крупнокристаллические скопления серы. Например, в Роздольском месторождении первичная сера представлена скрытокристаллической разностью, а вторичная (перекристаллизованная) - крупнокристаллической разностью с отдельными кристаллами до 5 см.

В России месторождения серы развиты в Приднестровье, где сера встречается в гипсово-известняковой толще верхнего тортона в виде скрытокристаллических скоплений в пелитоморфном известняке (Роздоль-ское и Язовское месторождения), а также в виде крупных кристаллов в пустотах в тесной ассоциации с целестином и крупнокристаллическим кальцитом (Роздольское месторождение). В Средней Азии (Гаурдак и Шор-Су) сера наблюдается в трещинах и пустотах разных осадочных пород в ассоциации с битумами, гипсом, целестином, кальцитом и арагонитом. В Каракумах - в виде холмов, покрытых кремнистыми породами в ассоциации с гипсом, квасцами, кварцем, халцедоном и т. д. Осадочные месторождения серы известны в Поволжье. Крупные месторождения серы за гра­ницей известны в Сицилии, а также в США в штатах Техас и Луизиана, где они связаны с соляными куполами.

Взаимодействия серы в организме

Сера важна для хорошей проницаемости клеточных мембран, благодаря участию этого элемента в клетку проникают нужные вещества и выводятся продукты обмена. С участием серы стабилизируется уровень глюкозы в крови, обеспечивается выработка энергии для роста и деления клеток (за счет участия в окислительно-восстановительных реакциях), регулируется свертываемость крови (в составе гепарина).

Сера участвует в синтезе некоторых жизненно важных аминокислот – таких как:

  • таурин – входит в состав желчи и отвечает за эмульгирование поступивших с пищей жиров, тонизирует сердечную мышцу и снижает артериальное давление, способствует образованию новых клеток в тканях мозга, связанных с укреплением памяти;
  • метионин – необходим для выработки фосфолипидов (лецитина, холина и др.) и адреналина, снижает уровень холестерина в крови и улучшает работу сердечно-сосудистой системы, предотвращает ожирение печени, обладает противорубцовой активностью;
  • цистин – формирует дисульфидные мостики и поддерживает структуру белков, пептидов. От него зависит биологическая активность инсулина, гормонов окситоцина, вазопрессина, соматостатина. Он нужен для жесткости и стабильности кератина;
  • цистеин – компонент кератинов, которые представляют собой главные структурные белки ногтей, волос и кожного эпидермиса, помогает формировать и упорядочивать коллагеновые волокна, входит в активное ядро некоторых пищеварительных ферментов, считается одним из наиболее сильных антиоксидантов, особенно в присутствии селена и витамина С .

Витамин U (метил-метионин-сульфоний) – витаминное вещество, которое синтезируется из серосодержащей аминокислоты метионина. Его характеризуют как противоязвенный фактор, поскольку оно отвечает за заживление воспаленных слизистых оболочек желудка и кишечника. Кроме того, сера принимает участие в синтезе витаминов группы В в кишечнике, в выработке некоторых гормонов. Этот элемент необходим для связывания аминокислотных цепочек, образующих инсулин. В составе гемоглобина сера способствует связыванию кислорода и доставке его к тканям и органам.

Польза серы для организма

Жизненно важные взаимодействия серы для существования человеческого организма обусловливают и ту пользу, которую несет нам это вещество. Прежде всего, это элемент для защиты от агрессивных свободных радикалов. Благодаря сере организм может замедлить процессы старения, противостоять злокачественным новообразованиям, инфекциям, различным заболеваниям. Польза серы и в том, что она:

  • поддерживает обменные процессы;
  • обеспечивает эластичность суставов и прочность соединительной ткани;
  • уменьшает мышечные и суставные боли за счет воздействия на нервные окончания;
  • снимает судороги и избавляет от повышенного мышечного тонуса;
  • улучшает работу печени, участвуя в синтезировании желчи;
  • способствует связыванию, нейтрализации и выведению токсинов;
  • усиливает активность поступающих в организм витаминов;
  • улучшает текстуру кожи, укрепляет волосы;
  • формирует хрящевую ткань, укрепляет мышечный каркас;
  • усиливает иммунитет;
  • регулирует водно-солевой баланс, предотвращая отеки;
  • активизирует кровообращение и метаболизм в тканях;
  • ускоряет заживление и восстановление тканей различных органов;
  • оказывает противоаллергическое действие.

Сера повышает сопротивляемость организма инфекциям и его устойчивость к радиоизлучению, обладает противовоспалительным действием. Восстановительные и антибактериальные свойства серы активно применяются в лечении дерматологических заболеваний, в терапии ран и ожогов.

Особую роль выполняет ушная сера, которая вырабатывается в слуховом проходе сальными и апокриновыми железами. Она содержит вещества, создающие в ухе, кислую рН-среду, в которой гибнут грибки и бактерии. Если часто использовать моющие средства, скрести слуховой проход ватными палочками, то кислотно-щелочной баланс нарушится, провоцируя развитие инфекций. Активизации воспалений может способствовать избыточная выработка ушной серы, вызванная нарушением обмена веществ. В этом случае серная пробка удерживает воду и отшелушенный эпителий, создавая благоприятную среду для бактерий и грибков.

Роль в возникновении и течении различных заболеваний

Уменьшение содержания серы с возрастом или по другим причинам ослабляет антиоксидантную защиту организма, провоцируя развитие различных патологий, в том числе злокачественных. При острых воспалительных заболеваниях органов дыхания (пневмония, бронхит) недостаток серы может ухудшить течение болезни, тогда как прием серосодержащих препаратов быстро уменьшает проявления интоксикации и ускоряет выздоровление. Дисбаланс серы может стать причиной развития остеохондроза, межпозвоночных грыж. С помощью серы часто удается остановить развивающийся сколиоз, снизить потребность в инсулине при сахарном диабете, уменьшить боли при бурсите и артрите, снять мышечные судороги.

Основные функции в организме


Функции серы в организме человека настолько широки и важны, что это вещество отнесено к категории жизнеобеспечивающих и названо макроэлементом – поскольку в органах и тканях содержится около 2 г серы на каждый килограмм массы тела. С возрастом уровень содержания серы может понизиться из-за замедления обменных процессов в организме. Серу можно обнаружить практически во всех тканях, но основная ее масса откладывается в коже, ногтях и волосах, в нервных волокнах, костях и мышцах. Этот элемент поступает в организм только извне – с продуктами питания, где содержится в виде органических соединений (кислоты, спирты, эфиры) и неорганических солей (сульфаты, сульфиды). Органические соединения расщепляются и всасываются в кишечнике, неорганические – выводятся из организма со стулом без всасывания. Основная часть остатков серы и ее усвоенных соединений выводится почками, и немного – через кожу и легкие.

Одна из самых важных функций серы в человеческом организме – участие в синтезе глутатиона. Это аминокислота-антиоксидант, которая не только защищает клетки от разрушения свободными радикалами, но и отвечает за баланс окислительных и восстановительных процессов внутри каждой клетки.

Еще одна важная функция серы – она помогает формировать дисульфидные связи: это своего рода мостики между структурными элементами в молекуле белка, благодаря которым молекула сохраняет форму. Стабильность белковых молекул важна для обеспечения упругости кожи и волос, прочности и эластичности коллагеновых волокон не только в дермальном слое кожи, но и в сосудистых стенках и мышечной ткани. Соединение серы – хондроитин сульфат – важнейший компонент хрящей и связок, сердечных клапанов. Сера входит в состав меланина, отвечающего за пигментацию кожи и ее защиту от вредного воздействия ультрафиолетовых лучей.

В каких продуктах содержится сера


Сера поступает в наш организм с продуктами, в которых много белка в составе аминокислот, сульфатидов и других органических соединений. Богаты серой некоторые бобовые, довольно много серы в зелени и листовых овощах темно-зеленого цвета, потому что они содержат витамины группы В, в составе которых тоже есть сера.

Наличие серы в некоторых продуктах (в мг на кг веса)

Больше 1000 Рыба (сардины, горбуша, щука, морской окунь, камбала).
Морепродукты (омары, морские раки, устрицы, крабы).
Куриные яйца (желток)
Больше 200 Рыба (минтай, карп, селедка, мойва).
Мясо (курятина, индейка, говядина, свинина, баранина).
Бобовые (горох, соя, фасоль).
Семена мака, кунжута, подсолнечника.
Перепелиные яйца
50-100 Молочные продукты (кефир, сгущенка).
Крупы (пшеничная, ржаная, перловая, гречневая, овсяная).
Орехи (грецкий, миндальный, кешью).
Макароны, хлеб.
Репчатый лук, чеснок
20-50 Молоко, твердый сыр, мороженое, сметана.
Рис.
Овощи (картофель, капуста различных видов, свекла, спаржа).
Бананы, ананасы
Менее 20 Фрукты (яблоко, лимон, груша, слива).
Ягоды (вишня, виноград, земляника, малина, крыжовник).
Овощи (морковь, помидор, свекла, тыква)

Пополнить запасы серы в организме помогут продукты, содержащие эфирные масла, например, репчатый лук, чеснок, хрен, редька, горчица, репа и брюква. Отдельно нужно сказать о капусте. Она содержит фитонциды, как и эфиромасличные овощи, метионин (серосодержащую аминокислоту) и минеральные соли с серой, а поэтому считается одним из лучших продуктов по усвояемости серы и самым доступным пищевым источником этого элемента. Богаты серой брюссельская, цветная, савойская капуста, кольраби и брокколи.

Как сохранить серу в пище

Для того чтобы в процессе кулинарной обработки продуктов сера сохранилась в наибольшем количестве, есть несколько секретов:

  • лук или чеснок измельчить и оставить на 10 минут, прежде чем использовать в приготовлении – сера в них станет более устойчивой к нагреванию;
  • брокколи в слегка пропаренном виде (3-4 минуты) содержит втрое больше серы, чем после термообработки;
  • все виды капусты перед приготовлением нужно порезать на кусочки, разобрать на соцветия или нашинковать, оставить на 10 минут, затем слегка протушить или приготовить на пару – это позволит максимально сохранить в них серу;
  • серосодержащие продукты желательно готовить без продолжительного отваривания или тушения.

Обжаривание при высокой температуре сводит содержание серы до минимума.

Усвояемость минерала

Усвояемость серы ухудшается в присутствии таких элементов как барий (много в морской капусте и морепродуктах), мышьяк (им богат рис). А также молибден (содержится в бобовых и в мясных субпродуктах), селен (грибы, кукуруза, пшеничные отруби), свинец (этот элемент накапливается в грибах, его много в консервах, корнеплодах).

СОВЕТ! Усвояемость серы улучшается в присутствии железа , поэтому полезно включать в меню продукты, богатые обоими этими элементами: например, гречка, горох, курятина и крольчатина, морская рыба, яичный желток, ржаной хлеб

Повысить усвояемость серы помогут блюда, где много фтора : морская рыба и морепродукты (устрицы), крупы (овсянка, гречка). А также ржаные отруби, некоторые овощи (тыква, лук), грейпфруты, грецкие орехи и мед.

Сочетание с другими питательными веществами

Попадая в организм с едой, сера способствует улучшению проницаемости клеточных мембран, благодаря чему питательные вещества могут свободно поступать внутрь клеток. В присутствии серы улучшается усвоение витаминов С и , других питательных веществ, обладающих свойствами антиоксидантов.

Суточные нормы


Достоверных клинических данных о том, как сера влияет на человеческий организм, и в какой дозе мы должны ежедневно ее получать, пока нет. Одни ученые полагают, что ежедневно мы нуждаемся в поступлении 1,2 г серы для нормальной работы организма, другие уверены, что необходимо получать 4-5 г элемента в сутки. В любом случае, здоровый человек будет чувствовать себя хорошо, потребляя каждый день с продуктами 3-4 г серы. Необходимое количество этого вещества легко получить при рационально составленном меню, где включены мясо и рыба, крупы и зелень, фрукты и овощи. Веганам и поклонникам жестких безбелковых диет следует тщательно разрабатывать рацион и, возможно, включать в него пищевые добавки, чтобы организм получал достаточное количество аминокислот и не испытывал дефицита серы.

Увеличить ежедневную норму серы до 3 г в сутки рекомендуют тем, кто интенсивно расходует аминокислоты. Это дети и подростки в период интенсивного роста, спортсмены при наборе мышечной массы и во время активных тренировок, пациенты с переломами или патологиями в опорно-двигательном аппарате, все люди в период повышенных физических нагрузок или нервного перенапряжения. Обычно врачи рекомендуют увеличить в рационе количество белковой пищи, и этого бывает достаточно для соблюдения баланса серы. Но при необходимости назначают биоактивные добавки с тиамином, метионином, биотином и другими серосодержащими компонентами.

Что происходит при дефиците минерала

Роль серы для человеческого организма еще недостаточно изучена, а потому отсутствуют клинические данные о том, как влияет на него недостаток или избыток серы и какие значения этого вещества вообще считать дефицитными либо избыточными для человека.

Однако некоторые экспериментальные данные все же накоплены, и они свидетельствуют о том, что при недостаточном количестве серы происходит:

  • замедление клеточного роста;
  • ухудшение репродуктивных функций;
  • нарушение пигментного обмена;
  • повышение содержания сахара в крови;
  • развитие заболеваний печени (жировой дистрофии);
  • почечные кровоизлияния.

СОВЕТ! При потускневших и ломких волосах, слоящихся ногтях и сухой дряблой коже, возможно, в организме не хватает серы, поэтому рекомендуется ввести в ежедневное меню дополнительные белковые продукты, крупы, листовые зеленые овощи

Какие факторы способствуют развитию дефицита серы, пока не выяснено до конца. Ученые предполагают, что виновником может оказаться дисбактериоз кишечника. Кроме того, дефицит серы может быть спровоцирован избытком селена в организме. Этот элемент способен встраиваться в аминокислоты вместо серы. Следует помнить, что у серы низкая скорость накопления в организме, и понадобится от 1 до 6 месяцев, чтобы восстановить запасы этого макроэлемента до необходимого уровня. Однако и потери депонированной в тканях и органах серы тоже занимают примерно такое же время.

Избыток серы в организме


Избыточное накопление серы стало в последние годы предметом особого внимания ученых, поскольку в продуктах, которые мы ежедневно съедаем, становится все больше пищевых добавок с сульфитами (это Е220 и Е228) – они продлевают сроки хранения, используются как консерванты и антиоксиданты. Много соединений серы мы получаем из минеральных удобрений, которые активно всасываются овощами и бобовыми, попадают через корма в мясо животных и через загрязненную воду – в рыбу. Больше всего серы мы получаем с копчеными продуктами, пивом, подкрашенным вином, картофелем и другими корнеплодами. Избыточное поступление серы с продуктами не вызывает отравлений, однако этот элемент накапливается в организме, и некоторые врачи склонны связывать участившиеся обращения пациентов по поводу бронхиальной астмы именно с увеличение потребления соединений серы.

Избыток серы может возникнуть и как токсическое состояние – если ее оказалось слишком много в организме из-за вдыхания частичек вещества либо употребления продуктов, выросших на почвах с повышенным уровнем сернистых соединений. Это состояние проявляется следующими симптомами:

  • кожа зудит, появляется мелкая сыпь, часто возникают фурункулы;
  • глаза слезятся, появляется ощущение «песка в глазах», светобоязнь, развиваются дефекты роговицы;
  • беспокоит тошнота, головная боль, головокружение и общая слабость;
  • часто развиваются респираторные заболевания;
  • ослабевает слух;
  • нарушается пищеварение, возникают проблемы со стулом;
  • снижается масса тела;
  • становится трудно запоминать и сосредоточиваться, понижаются интеллектуальные способности.

Особую опасность несет вдыхание сернистого газа. Известны случаи, когда вдыхание паров сероводорода приводило к мгновенной смерти из-за судорожного сжатия дыхательных путей и остановки дыхания. Даже оставшись в живых после отравления сернистым газом, человек может получить тяжелые поражения легких и желудочно-кишечного тракта, параличи, психические нарушения, страдания от сильных головных болей.


Самое известное из лечебных применений серы – это бальнеотерапия, когда богатая сероводородом вода из подземных источников применяется для принятия лечебных ванн. Сероводородные ванны могут содержать разные концентрации активных элементов, суть их воздействия заключается в том, что частички сероводорода проникают сквозь кожу в кровь и оказывают раздражающее действие на нервные окончания, стимулируя работу органов. Чаще всего сероводородные ванны рекомендуют при заболеваниях суставов, мышц и костей, расстройствах нервной системы, при некоторых кожных болезнях, нарушенных обменных процессах.

Лечение серосодержащими минеральными водами показано при некоторых заболеваниях пищеварительной системы. В этом случае тоже речь идет о раздражении чувствительных нервных окончаний слизистых оболочек желудочно-кишечного тракта, поджелудочной железы, печени, из-за чего там начинают активнее работать эндокринные и нервные клетки, регулируя моторику и секреторные функции.

Свойство серы связывать и нейтрализовать токсины, учтено в противоаллергических препаратах с этим веществом. Препараты серы рекомендуют при синдроме хронической усталости и при вегетососудистой дистонии.

Препараты, содержащие минерал

Аптечные формы препаратов серы могут содержать разные формы этого элемента – осажденную (для мазей и присыпок), очищенную (для приема внутрь как слабительного и отхаркивающего средства), коллоидную серу (которая способна растворяться в воде). Они выпускаются в виде мазей, растворов для примочек, форм для приема внутрь, растворов для внутривенных и внутримышечных инъекций.

Местные средства с содержанием серы эффективны в борьбе с демодексом, грибковыми инфекциями, при педикулезе. Препараты серы способны не только формировать новые клетки эпидермиса, но и отшелушивать старые за счет кератолитического действия. Это свойство нашло применение в средствах против веснушек и пигментных пятен.

При приеме внутрь препараты серы действуют как слабительное, стимулируя перистальтику, оказывают противоглистное действие (особенно эффективны против остриц).

Внутривенные инъекции препаратов серы могут рекомендоваться в качестве неспецифического раздражителя при хроническом полиартрите и ишиасе, при острых и хронических отравлениях солями тяжелых металлов или синильной кислотой. Внутримышечные инъекции суспензии с 2%-м содержанием серы могут назначаться для повышения температуры тела (пирогенная терапия) при прогрессивном параличе.

Сера как популярный косметический ингредиент


Сера обладает кератолитическими и кератопластическими свойствами. Она входит в состав цистеина, отвечающего за прочность и целостность эпидермиса, но в то же время способна в высокой концентрации разрывать связи между кератиноцитами и вызывать их отшелушивание. Благодаря укреплению эпидермального слоя средства с содержанием серы предотвращают потерю воды кожей и предупреждают ее сухость. В кератиноцитах волос сера укрепляет дисульфидные связи, за счет чего придает им гладкость и блеск, предупреждает обезвоживание и предотвращает ломкость.

Еще одна важная для красоты функция серы – укрепление соединительной ткани, формирование новых волокон коллагена и упорядочивание их расположения, что позволяет добиться упругой и эластичной кожи, значительного снижения ее дряблости и разглаживания мимических морщин, подтягивания овала лица и общего внешнего омоложения. Волокна коллагена входят в состав сосудистых стенок, и их укрепление, повышение эластичности позволяет коже получать больше кислорода и питательных веществ, а значит иметь здоровый цвет и плотную текстуру.

Препараты с соединениями серы традиционно применяются для осветления кожи, уменьшения проявлений веснушек и пигментных пятен. Противовоспалительные и антибактериальные свойства серы нашли применение в препаратах для лечения жирной себореи и угревой болезни. Они регулируют выделение кожного сала, снимают воспаления, обладают рассасывающим действием в отношении глубоких угревых формирований и не застарелых рубцов, в том числе постакне.

Соединения серы сульфиты – частые компоненты косметических средств со стабилизирующим и антибактериальным, противогрибковым действием. Обычно сульфиты включают в состав гигиенических средств, которые не остаются на коже надолго и смываются водой – это шампуни, гели для душа, пенки для умывания. Наиболее хорошо известны лаурилсульфат и лауретсульфат натрия. Они отлично справляются с жиром на коже и волосах и являются сильными консервантами, хотя способны становиться раздражителями для чувствительной кожи.

Антиоксидантные свойства серы в составе косметических средств, особенно если они содержат дополнительно витамин С, позволяют предохранить кожу и волосы от вредного воздействия плохой экологии и солнечной радиации, замедлить процессы старения.

Для чего нужна сера человеческому организму, какие функции выполняет, в каких продуктах содержится, смотрите в видео ниже.

Сера - S. Наиболее устойчивую при комнатной температуре α-модификацию серы называют обычно ромбической серой или просто серой.

Химический состав . В ряде случаев устанавливается химически чистая сера, но обычно загрязнена посторонними механическими примесями: глинистым или органическим веществом, капельками нефти, газами и пр. Известны редкие разновидности с изоморфной примесью Se обычно до 1%, изредка до 5,2% - селенистая сера, а также Те, иногда As и в исключительных случаях Тl.

Сингония ромбическая. Кристаллическая структура . Согласно рентгенометрическим исследованиям, ромбическая сера обладает редкой для неорганических соединений молекулярной, и притом очень сложной, решеткой. В кристаллической структуре каждый атом серы с двух сторон имеет сферы, пересекающиеся со сферами соседних атомов, причем цепочки, состоящие из 8 атомов, замкнуты.

Отсюда - молекула серы S 8 . Элементарная ячейка сложена 16 такими электрически нейтральными молекулами (кольцами), очень слабо связанными друг с другом вандерваальсовской связью. Облик кристаллов . Кристаллы чаще имеют пирамидальный или усеченнопирамидальный вид. Агрегаты . Часто встречается в сплошных, иногда землистых массах. Изредка наблюдаются натечные почковидные формы и налеты (в районах вулканических извержений).

Цвет . У α-серы наблюдаются различные оттенки желтого цвета: соломенно-желтый, медово-желтый, желтовато-серый, бурый и черный (от углеродистых примесей). Черты почти не дает, порошок слабожелтоватый. Блеск на гранях алмазный, в изломе жирный. В кристаллах просвечивает. Твердость 1-2. Хрупка. Спайность несовершенная. Удельный вес 2,05-2,08. Прочие свойства . Электропроводность и теплопроводность очень слабые (хороший изолятор). При трении заряжается отрицательным электричеством. Растрескивается от теплоты руки.

Диагностические признаки . Характерный цвет, низкая твердость, хрупкость, жирный блеск в изломе кристаллов и легкоплавкость. П. п. тр. и от спички легко плавится (при 112,8°С) и загорается голубым пламенем с выделением характерного запаха SO 2 .

Самородная сера - единственный среди рассматриваемых в классе самородных элементов минерал, обладающий молекулярным строением вещества. S характеризуется совершенно особыми свойствами. Наличие в решетке в качестве структурных единиц электрически нейтральных молекул S 8 объясняет такие свойства, как плохая электропроводность, низкая теплопроводность, слабая связь между молекулами.

Происхождение . Самородная сера встречается исключительно в самой верхней части земной коры и на ее поверхности. Образуется различными путями:

При вулканических извержениях, осаждаясь в виде возгонов на стенках кратеров, в трещинах пород, иногда изливаясь в жидком виде с горячими водами в виде потоков (Япония). Возникает в результате неполного окисления сероводорода H 2 S в сольфатарах или как продукт реакции H 2 S с сернистым газом: 2H 2 S + 20 = 2Н 2 O + 2S; H 2 S + SO 2 = Н 2 O + О + 2S;

Сольфатары (итал., единственное число solfatara, от solfo - сера), струи сернистого газа и сероводорода с примесью паров воды, углекислого и других газов, выделяющиеся из каналов и трещин на стенках и дне кратера, на склонах вулканов.

При разложении сернистых соединений металлов, главным образом пирита, в нижних частях зоны окисления рудных месторождений. Обычно сильно загрязнена различными механическими примесями;

При разложении гипсоносных осадочных толщ. Часто наблюдается парагенезис самородной серы с гипсом, на разъеденных участках которого она образуется в виде кристаллических и порошковатых масс;

Осадочным (биохимическим) путем в осадочных породах, представленных пластами, содержащими гипс, твердые и жидкие битумы (асфальт, нефть) и др. Этот тип месторождений широко распространен на земном шаре и имеет большое промышленное значение. Происхождение серы биохимическим путем связывают с жизнедеятельностью анаэробных бактерий, в результате чего образуется сероводород, неполное окисление которого приводит к выпадению серы.

Применение . Основное количество серы расходуется на производство серной кислоты, используемой во многих отраслях промышленности; затем в сельском хозяйстве (для борьбы с вредителями); в резиновом производстве (процесс вулканизации резины); при изготовлении спичек, фейерверков, красок и пр.

Алмаз

Алмаз - С. Название происходит от греческого слова "адамас" - непреодолимый (очевидно, имеется в виду наивысшая твердость и устойчивость по отношению к физическим и химическим агентам). Имя собственное образца – «Горняк»

Разновидности :

-борт - неправильной формы сростки и шаровидные лучистые агрегаты;

-карбонадо - тонкозернистые пористые агрегаты, окрашенные аморфным графитом и посторонними примесями в буровато-черный цвет.

Химический состав . Бесцветные разновидности состоят из чистого углерода. Окрашенные и непрозрачные разновидности в несгораемом остатке, достигающем иногда нескольких процентов, обнаруживают SiO 2 , MgO, CaO, FeO,Fe 2 O 3 , A1 2 O 3 , ТiO 2 и др. В виде включений в алмазах нередко наблюдается графит и некоторые другие минералы.

Кристаллическая решетка алмаза. А - изображение центров атомов; В - та же решетка в виде тетраэдров, вершины и центры которых являются центрами атомов углерода

Сингония кубическая. Облик кристаллов октаэдрический, менее обычен додекаэдрический, редко кубический и изредка тетраэдрический. Грани кристаллов часто бывают представлены выпуклыми и неровными, иногда разъеденными поверхностями. Наблюдаются двойники срастания. Размеры отдельных кристаллов варьируют от мельчайших до очень крупных, весящих несколько сот и даже тысяч каратов (метрический карат = 0,2 г). Крупнейшие кристаллы весили (в каратах): "Коллинан" - 3025, "Эксцельзиор" - 969,5, "Виктория" - 457, "Орлов" - 199,6.

Цвет . Бесцветный водяно-прозрачный или окрашенный в голубой, синий, желтый, бурый и черный цвета. Блеск сильный алмазный. Твердость 10. Абсолютная твердость в 1000 раз превышает твердость кварца и в 150 раз - корунда. Хрупок . Спайность средняя. Плотность 3,47-3,56. Электропроводность слабая.

Диагностические признаки . Алмаз является единственным минералом по своей исключительной твердости. Характерны также сильный алмазный блеск и часто кривоплоскостные грани кристаллов. Мелкие зерна в шлихах легко узнаются по люминесценции, резко проявляющейся в ультрафиолетовых лучах. Цвета люминесценции обычно голубовато-синие, иногда зеленые.

Происхождение . Коренные месторождения генетически связаны с ультраосновными глубинными магматическими породами: перидотитами, кимберлитами и др. В этих породах кристаллизация алмаза происходит, очевидно, на больших глубинах в условиях высоких температур и давления. Судя по формам и условиям нахождения, алмаз кристаллизовался в магмах одним из первых. Не ясно, кристаллизовался ли алмаз за счет углерода самой магмы или за счет углерода, усваивавшегося из окружающих пород. В ассоциациях с алмазом наблюдаются: графит, оливин - (Mg, Fe) 2 SiO 4 , хромшпинелиды - (Fe,Mg)(Cr,Al,Fe) 2 O 4 , магнетит - FeFe 2 O 4 , гематит - Fe 2 O 3 и др.

Россыпные месторождения алмаза, устойчивого в экзогенных условиях, образуются за счет разрушения и размыва алмазоносных пород.

Кимберлит (от названия г. Кимберли в Южной Африке), магматическая ультраосновная брекчиевидная горная порода эффузивного облика, выполняющая кимберлитовые трубки взрыва.

Кимберлитовая трубка - вертикальное или близкое к вертикальному геологическое тело, образовавшееся при прорыве газов сквозь земную кору. Кимберлитовая трубка заполнена кимберлитом.

Применение . Совершенно прозрачные алмазы применяются в ювелирном деле как драгоценные камни (бриллианты). Для технических целей употребляются мелкие алмазы, а также борт и карбонадо. Эти разновидности используются в металлообрабатывающей, камнеобрабатывающей, абразивной и других отраслях промышленности.

Графит


Графит - С. Название происходит от греческого слова "графо" - пишу. Разновидности :

Графитит - скрытокристаллическая разность;

Шунгит - аморфная разность, образовавшаяся в результате природного коксования углей.

Химический состав графита редко отличается чистотой. В значительных количествах (до 10-20%) часто присутствует зола, состоящая из различных компонентов (SiO 2 , Аl 2 O 3 , FeO, MgO, СаО, Р 2 О 5 , CuO и др.), иногда вода, битумы и газы (до 2%).

Сингония гексагональная. Кристаллическая структура в сравнении с алмазом приведена на рисунке. Различия физических свойств алмаза и графита обусловлены различием в строении кристаллических решеток этих минералов. Ионы углерода в графите лежат листами, представленными плоскими гексагональными сетками.

Расположение центров атомов в алмазе (А) и в графите (Б)

Облик кристаллов . Хорошо образованные кристаллы встречаются крайне редко. Они имеют вид шестиугольных пластинок или табличек, иногда с треугольными штрихами на грани. Агрегаты часто тонкочешуйчатые. Реже распространены шестоватые или волокнистые массы. Цвет графита железно-черный до стально-серого. Черта черная блестящая. Блеск сильный металловидный; скрытокристаллические агрегаты матовые. В тончайших листочках просвечивает серым цветом. Твердость 1. В тонких листочках гибок. Жирен на ощупь. Мажет бумагу и пальцы. Спайность совершенная. Удельный вес 2,09-2,23 (изменяется в зависимости от степени дисперсности и наличия тончайших пор), у шунгита 1,84-1,98. Прочие свойства . Обладает высокой электропроводностью, что обусловлено очень плотной упаковкой атомов в листах.

Диагностические признаки . Легко узнается по цвету, низкой твердости и жирности на ощупь. От сходного с ним молибденита (MoS 2) отличается более темным железно-черным цветом и более слабым блеском.

П. п. тр. не плавится. При накаливании в струе кислорода сгорает труднее, нежели алмаз. Улетучивается, не плавясь, лишь в пламени вольтовой дуги. В кислотах не растворяется. Порошок в смеси с KNO 3 при нагревании дает вспышку.

Происхождение . В природе графит образуется при восстановительных процессах в условиях высоких температур.

Широко распространены метаморфические месторождения графита, возникшие за счет каменных углей или битуминозных отложений в условиях регионального метаморфизма или под влиянием интрузий магмы.

Встречается иногда среди магматических горных пород разнообразного состава. Источником углерода во многих случаях являются вмещающие углеродсодержащие горные породы.

Известны случаи находок графита в пегматитах. Встречаются месторождения на контактах известняков с изверженными породами в провинциях Онтарио и Квебек в Канаде, а также жильные месторождения крупнолистоватого графита, например на о. Цейлон.

Применение . Графит применяется для самых различных видов производства: для изготовления графитовых тиглей, в литейном деле; производстве карандашей; электродов; для смазки трущихся частей; в красочной промышленности и др.

Группа « полуметаллов»

В эту группу, кроме мышьяка, входят сурьма и висмут, т. е. элементы больших периодов V группы таблицы Менделеева. Все они в природных условиях хотя и редко, но наблюдаются в самородном состоянии, кристаллизуясь в одной (тригональной) сингонии и образуя, однотипные кристаллические решетки. Несмотря на это, элементы группы полуметаллов не встречаются совместно и не дают в природе ни твердых растворов, ни определенных соединений. Исключение составляют мышьяк и сурьма, которые при высоких температурах образуют твердые растворы во всех пропорциях, а при низких температурах - лишь устойчивое интертметаллическое соединение AsSb (аллемонтит).

Интерметаллические соединения - химические соединения металлов друг с другом.

Сера - золотисто-желтое токсическое вещество
и признак активной вулканической деятельности
Токсические и ядовитые камни и минералы

Сера (лат. Sulfur) S, химический элемент VI группы периодической системы Д.И. Менделеева; атомный номер 16, атомная масса 32,06. Природная сера состоит из четырех стабильных изотопов: 32 S (95,02%), 33 S (0,75%), 34 S (4,21%), 36 S (0,02%). Получены искусственные радиоактивные изотопы 31 S (T ½ = 2,4 сек), 35 S (T ½ = 87,1 сут), 37 S (Т ½ = 5,04 мин) и другие.

Историческая справка.

Сера в самородном состоянии, а также в виде сернистых соединений известна с древнейших времен. Она упоминается в Библии и Торе евреев (рукописи Мертвого моря), поэмах Гомера и других. Сера входила в состав "священных" курений при религиозных обрядах (одурманивание пришедших – пьют ртруть и дают красную киноварь в порошке); считалось, что запах горящей серы в сатанинских обрядах ("Все женщины - ведьмы", г. Альмаден, Испания, континент, вместо работы в шахтах на промышленной красной киновари) отгоняет духов (вызывает фрагментированные поражения ствола спинного мозга и головного мозга в основании входащих в него нервов). Серу не применяют в церкви на службах - вместо нее используют более безопасный порошок янтаря (в т.ч. амброид - похож на серу, тоже хрупкий, но более легкий по весу и электризуется при трении, в отличие от серы). Серу в церкви не воскуривают (ересь). Вызывает аборты.

Сера давно стала компонентом зажигательных смесей для военных целей, например "греческого огня" (10 в. н. э.). Около 8 века в Китае стали использовать серу в пиротехнических целях. Издавна серой и ее соединениями лечили кожные заболевания. В период средневековой алхимии (обработка золотисто-желтого и беловатого с серебром и платиной золота жидкой ртутью и красной киноварью с целью получения белой амальгамы, похожей на серебро, т.н. "белое золото") возникла гипотеза, согласно которой сера (начало горючести) и ртуть (начало металличности) считали составными частями всех металлов. Элементарную природу серы установил А. Л. Лавуазье и включил ее в список неметаллических простых тел (1789). В 1822 году Э. Мичерлих доказал аллотропию серы.


Щетка кристаллов серы (60х40 см) с о-ва Сицилия (Италия). Фото: В.И. Дворядкин.


Золото в гальке кварца из битакских конгломератов. Симферополь, Крым (Украина). Фото: А.И. Тищенко.
Страшный имитатор серы, особенно в кристаллах и включениях. Золото - ковкое, сера - хрупкая.

Распространение серы в природе.

Сера относится к весьма распространенным химическим элементам (кларк 4,7 * 10 -2); встречается в свободном состоянии (самородная сера) и в виде соединений - сульфидов, полисульфидов, сульфатов. Вода морей и океанов содержит сульфаты натрия, магния, кальция. Известно более 200 минералов серы, образующихся при эндогенных процессах. В биосфере образуется свыше 150 минералов сера (преимущественно сульфатов); широко распространены процессы окисления сульфидов до сульфатов, которые в свою очередь восстанавливаются до вторичного H 2 S и сульфидов. Очень опасна - проявляется на вулканах, где наблюдается дефицит воды, сухая возгонка от очагов раскаленной магмы по фумаролам, видимым и невидимым трещинам, с вторичной пиритизацией и пр.

Эти реакции происходят при участии микроорганизмов. Многие процессы биосферы приводят к концентрации серы - она накапливается в гумусе почв, углях, нефти, морях и океанах (8,9 * 10 -2 %), подземных водах, в озерах и солончаках. В глинах и сланцах серы в 6 раз больше, чем в земной коре в целом, в гипсе - в 200 раз, в подземных сульфатных водах - в десятки раз. В биосфере происходит круговорот серы: она приносится на материки с атмосферными осадками и возвращается в океан со стоком. Источником сера в геологическом прошлом Земли служили главным образом продукты извержения вулканов, содержащие SO 2 и H 2 S. Хозяйственная деятельность человека ускорила миграцию серы; интенсифицировалось окисление сульфидов.


Сера (желтая). Роздольское м-ние, Прикарпатье, Зап. Украина. Фото: А.А. Евсеев.


Арагонит (белая), сера (желтая). Чианчиана, Сицилия, Италия. Фото: А.А. Евсеев.

Физические свойства серы.

Сера - твердое кристаллическое вещество, устойчивое в виде двух аллотропических модификаций. Ромбическая α-S лимонно-желтого цвета, плотность 2,07 г/см 3 , t пл 112,8 o С, устойчива ниже 95,6 o С; моноклинная β-S медово-желтого цвета, плотность 1,96 г/см 3 , t пл 119,3 o С, устойчива между 95,6 o С и температурой плавления. Обе эти формы образованы восьмичленными циклическими молекулами S 8 с энергией связи S-S 225,7 кдж/моль.

При плавлении сера превращается в подвижную желтую жидкость, которая выше 160 o С буреет, а около 190 o С становится вязкой темно-коричневой массой. Выше 190 o С вязкость уменьшается, а при 300 o С сера вновь становится жидкотекучей. Это обусловлено изменением строения молекул: при 160 o С кольца S 8 начинают разрываться, переходя в открытые цепи; дальнейшее нагревание выше 190 o С уменьшает среднюю длину таких цепей.

Если расплавленную серу, нагретую до 250-300 o С, влить тонкой струей в холодную воду, то получается коричнево-желтая упругая масса (пластическая сера). Она лишь частично растворяется в сероуглероде, в осадке остается рыхлый порошок. Растворимая в CS 2 модификация называется λ-S, а нерастворимая - μ-S. Температура плавления, 113 o С (ромб.), 119 o С (монокл.). Температура кипения 444 o С.

При комнатной температуре обе эти модификации превращаются в устойчивую хрупкую α-S. t кип серы 444,6 o С (одна из стандартных точек международной температурной шкалы). В парах при температуре кипения, кроме молекул S 8 , существуют S 6 , S 4 и S 2 . При дальнейшем нагревании крупные молекулы распадаются, и при 900 o С остаются лишь S 2 , которые приблизительно при 1500 o С заметно диссоциируют на атомы. При замораживании жидким азотом сильно нагретых паров серы получается устойчивая ниже -80 o С пурпурная модификация, образованная молекулами S 2 .

Сера - плохой проводник тепла и электричества. В воде она практически нерастворима, хорошо растворяется в безводном аммиаке, сероуглероде и в ряде органических растворителей (фенол, бензол, дихлорэтан и других).

ДОПОГ 2.1
Легковоспламеняющиеся газы
Риск пожара. Риск взрыва. Могут находиться под давлением. Риск удушья. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят)

ДОПОГ 2.2
Газовый баллон Невоспламеняющиеся, нетоксичные газы.
Риск удушья. Могут находиться под давлением. Могут вызывать отморожение (похоже на ожог - бледность, пузыри, черная газовая гангрена - скрип). Емкости могут взрываться при нагревании (сверхопасны – взрыв от искры, пламени, спички, практически не горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Зеленый ромб, номер ДОПОГ, черный или белый газовый баллон (типа "баллон", "термос")

ДОПОГ 2.3
Токсичные газы . Череп и скрещенные кости
Опасность отравления. Могут находиться под давлением. Могут вызывать ожоги и/или отморожения. Емкости могут взрываться при нагревании (сверхопасны – мгновенное распространение газов по окрестности)
Использовать маску для аварийного оставления транспортного средства. Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Белый ромб, номер ДОПОГ, черный череп и скрещенные кости

ДОПОГ 3
Легковоспламеняющиеся жидкости
Риск пожара. Риск взрыва. Емкости могут взрываться при нагревании (сверхопасны – легко горят)
Использовать укрытие. Избегать низких участков поверхности (ям, низин, траншей)
Красный ромб, номер ДОПОГ, черное или белое пламя

ДОПОГ 4.1
Легковоспламеняющиеся твердые вещества , самореактивные вещества и твердые десенсибилизированные взрывчатые вещества
Риск пожара. Легковоспламеняющиеся или горючие вещества могут загораться от искр или пламени. Могут содержать самореактивные вещества, способные к экзотермическому разложению в случае нагревания, контакта с другими веществами (такими как: кислоты, соединения тяжелых металлов или амины), трению или удару.
Это может привести к выделению вредных или легковоспламеняющихся газов или пары или самовоспламенения. Емкости могут взрываться при нагревании (сверхопасны - практически не горят).
Риск взрыва десенсибилизированных взрывчатых веществ после потери десенсибилизатора
Семь вертикальных красных полос на белом фоне, равновеликие, номер ДОПОГ, черное пламя

ДОПОГ 8
Коррозийные (едкие) вещества
Риск ожогов в результате разъедания кожи. Могут бурно реагировать между собой (компоненты), с водой и другими веществами. Вещество, что разлилось / рассыпалось, может выделять коррозийную пару.
Составляют опасность для водной окружающей среды или канализационной системы
Белая верхняя половина ромба, черная - нижняя, равновеликие, номер ДОПОГ, пробирки, руки

Наименование особо опасного при транспортировке груза Номер
ООН
Класс
ДОПОГ
Ангидрид серный, стабилизированный СЕРЫ ТРИОКСИД СТАБИЛИЗИРОВАННЫЙ 1829 8
Ангидрид серист СЕРЫ ДИОКСИД 1079 2
Углероду дисульфид СЕРОУГЛЕРОД 1131 3
Газ СЕРЫ ГЕКСАФТОРИД 1080 2
КИСЛОТА СЕРНАЯ ОТРАБОТАННАЯ 1832 8
КИСЛОТА СЕРНАЯ ДЫМЯЩАЯСЯ 1831 8
КИСЛОТА СЕРНАЯ, что содержит не более 51% кислоты, или ЖИДКОСТЬ АККУМУЛЯТОРНАЯ КИСЛОТНАЯ 2796 8
КИСЛОТА СЕРНАЯ, РЕГЕНЕРИРОВАННАЯ ИЗ КИСЛОГО ГУДРОНА 1906 8
КИСЛОТА СЕРНАЯ, что содержит более 51% кислоты 1830 8
КИСЛОТА СЕРНАЯ 1833 8
СЕРА 1350 4.1
СЕРА РАСПЛАВЛЕНА 2448 4.1
Сера хлористая СЕРЫ ХЛОРИДЫ 1828 8
Сера шестифтористая СЕРЫ ГЕКСАФТОРИД 1080 2
Серы дихлорид 1828 8
СЕРЫ ДИОКСИД 1079 2
СЕРЫ ТЕТРАФТОРИД 2418 2
СЕРЫ ТРИОКСИД СТАБИЛИЗИРОВАННЫЙ 1829 8
СЕРЫ ХЛОРИДЫ 1828 8
СЕРОВОДОРОД 1053 2
СЕРОУГЛЕРОД 1131 3
СПИЧКИ БЕЗОПАСНЫЕ в коробках, книжечках, картонках 1944 4.1
СПИЧКИ ПАРАФИНОВЫЕ „ВЕСТА” 1945 4.1
Спички парафиновые СПИЧКИ ПАРАФИНОВЫЕ „ВЕСТА” 1945 4.1
СПИЧКИ САПЕРНЫЕ 2254 4.1

минерал Сера Самородная

Сера в отличие от других самородных элементов имеет молекулярную решетку, что определяет ее низкую твердость (1,5-2,5), отсутствие спайности, хрупкость, неровный излом и обусловленный им жирный плеск; лишь на поверхности кристаллов наблюдается стеклянный блеск. Удельный вес 2,07 г/см 3 . Сера обладает плохой электропроводимостью, слабой теплопроводностью, невысокой температурой плавления (112,8°С) и воспламенения (248°С). Сера загорается от спички и горит голубым пламенем; при этом образуется сернистый газ, имеющий резкий удушливый запах. Цвет у самородной серы светло-жёлтый, соломенно-желтый, медово-желтый, зеленоватый; сера, содержащая органические вещества, приобретают бурую, серую, черную окраску. Вулканический сера ярко-желтая, оранжевая, зеленоватая. Местами обычно с желтоватым оттенком. Встречается сера в виде сплошных плотных, натечных, землистых, порошковатых масс; также бывают наросшие кристаллы, желваки, налеты, корочки, включения и псевдоморфозы по органическим остаткам. Сингония ромбическая.

Отличительные признаки: для самородной серы характерны: неметаллический блеск и то, что сера загорается от спички и горит, выделяя сернистый газ, имеющий резкий удушливый запах. Наиболее характерным цветом для самородной серы является светло-желтый.

Разновидность

Вулканит (селенистая сера). Оранжево-красного, красно-бурого цвета. Происхождение вулканическое.

Химические свойства

Загорается от спички и горит голубым пламенем, при этом образуется сернистый газ, имеющий резкий удушливый запах. Легко плавится (я (температура плавления 112,8° С). Температура Воспламенения 248°С. Сера растворяется в сероуглероде.

Происхождение серы

Встречается самородная сера естественного и вулканического происхождений. Серобактерии живут в водных бассейнах, обогащенных сероводородом за счет разложения органических остатков, - на дне болот, лиманов, мелких морских заливов. Лиманы Черного моря и залив Сиваш являются примерами таких водоемов. Концентрация серы вулканического происхождения приурочена к жерлам вулканов и к пустотам вулканических пород. При вулканических извержениях выделяются различные соединения серы (H 2 S, SО 2), которые окисляются в поверхностных условиях, что приводит к восстановлению ее; кроме того, сера возгоняется непосредственно из паров.

Иногда при вулканических процессах сера изливается в жидком виде. Это бывает тогда, когда сера, ранее осевшая на стенках кратеров, при повышении температуры расплавляется. Отлагается сера также из горячих водных растворов в результате распада сероводорода и сернистых соединений, выделяющихся в одну из поздних фаз вулканической деятельности. Эти явления сейчас наблюдаются около жерл гейзеров Йеллоустонского парка (США) и Исландии. Встречается совместно с гипсом, ангидритом, известняком, доломитом, каменной и калийной солями, глинами, битуминозными отложениями (нефть, озокерит, асфальт) и пиритом. Также встречается на стенках кратеров вулканов, в трещинах лав и туфов, окружающих жерла вулканов как действующих, так и потухших, вблизи серных минеральных источников.

Спутники. Среди осадочных пород: гипс, ангидрит, кальцит, доломит, сидерит, каменная соль, сильвин, карналлит, опал, халцедон, битумы (асфальт, нефть, озокерит). В месторождениях, образовавшихся в результате окисления сульфидов, - главным образом пирит. Среди продуктов вулканического возгона: гипс, реальгар, аурипигмент.

Применение

Сера широко используется в химической промышленности. Три четверти добычи серы идет на изготовление серной кислоты. Применяется она также для борьбы с сельскохозяйственными вредителями, кроме того, в бумажной, резиновой промышленности (вулканизация каучука), в производстве пороха, спичек, в фармацевтике, стекольной, пищевой промышленности.

Месторождения серы

На территории Евразии все промышленные месторождения самородной серы поверхностного происхождения. Некоторые из них находятся в Туркмении, в Поволжье и др. Породы, содержащие серу, тянутся вдоль левого берега Волги от г. Самара полосой, имеющей ширину в несколько километров, до Казани. Вероятно, сера образовалась в лагунах в пермский период в результате биохимических процессов. Месторождения серы находятся в Раздоле (Львовская область, Прикарпатье), Яворовске (Украина) и в Урало-Эмбинском районе. На Урале (Челябинская обл.) встречается сера, образовавшаяся в результате окисления пирита. Сера вулканического происхождения имеется на Камчатке и Курильских островах. Основные запасы серы капиталистических стран находятся в Ираке, США (штаты Луизиана и Юта), Мексике, Чили, Японии и Италии (о. Сицилия).

Свойства минерала

  • Удельный вес: 2 - 2,1
  • Форма выделения: радиально-лучистые агрегаты
  • Форма выделения: радиально-лучистые агрегаты
  • Классы по систематике СССР: Металлы
  • Химическая формула: S
  • Сингония: ромбическая
  • Цвет: Серно-желтый, желто-оранжевый, желто-бурый, серовато-желтый, серовато-бурый.
  • Цвет черты: Серно-желтая, соломенно-желтая
  • Блеск: жирный
  • Прозрачность: просвечивает мутный
  • Спайность: несовершенная
  • Излом: раковистый
  • Твердость: 2
  • Хрупкость: Да
  • Дополнительно: Легко плавится (при 119°С) и сгорает синим пламенем, превращаясь в SO3. Поведение в кислотах. Не растворяется (в воде также), но растворима в CS2.

Фото минерала

Статьи по теме

  • Характеристика химического элемента №16
    История открытия элемента. Сера (англ. Sulfur, франц. Sufre, нем. Schwefel) в самородном состоянии, а также в виде сернистых соединений известна с самых древнейших времен.
  • Сера, Sulfur, S (16)
    С запахом горящей серы, удушающим действием сернистого газа и отвратительным запахом сероводорода человек познакомился, вероятно, еще в доисторические времена.
  • Сера самородная
    Примерно половина производимой в мире серы добывается из природных запасов

Месторождения минерала Сера Самородная

  • Водинское месторождение
  • Алексеевское месторождение
  • Россия
  • Самарская область
  • Боливия
  • Украина
  • Новояворовск. Львовская обл.