В чем суть метода сечения. Метод сечений. Напряжение. Растяжение и сжатие

Этапы метода сечения

Метод сечений состоит из четырех последовательных этапов: разрезать, отбросить, заменить, уравновесить.

Разрежем стержень, находящийся в равновесии под действием некоторой системы сил (рис. 1.3, а) на две части плоскостью, перпендикулярной к его оси z.

Отбросим одну из частей стержня и рассмотрим оставленную часть.

Поскольку мы как бы разрезали бесчисленное множество пружинок, соединявших бесконечно близкие частицы тела, разделенного теперь на две части, в каждой точке поперечного сечения стержня необходимо приложить силы упругости, которые при деформации тела возникли между этими частицами. Иными словами,заменим действие отброшенной части внутренними силами (рис. 1.3, б).

Деформации рассматриваемого тела (элементов конструкции) возникают от приложения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод разреза).

Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) – это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле.

На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил:

Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть
Рис.1. Метод сечений.

При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела:

где х 0 , у 0 , z 0 - базовая система координат осей.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’ } и {S" }- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S ’ } = – {S ” } (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремыПуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А " , точку С " , систему внутренних усилий для левой части {S ’ } сводим к главному вектору и главному моменту внутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сечения А”; определяется, соответственно, точкой С " (рис.1 б,в).

Здесь в соответствие с четвертой аксиомой статики по-прежнему имеют место следующие соотношения:

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С" или С " зададимся соответственно левой (с", х", у", z") или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’ 1 а, а x’ 2 b и т.д., где а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора или и главного момента или на координатные оси следящей системы (рис.1 б, в):

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

N x - нормальная сила, признак центрального растяжения или сжатия;

М x - внутренний крутящий момент, возникает при кручении;

Q z , Q у - поперечные или перерезывающие силы – признак сдвиговых деформаций,

М у, М z - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

С учетом эквивалентности нулю исходной системы сил (1) имеет место:

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой. z (P i ) = M z + M z (P i ) + … + M z (P k ) = 0 > M z

Здесь для простоты обозначений системы координат с" х" у" z" и с" х" у" т" заменены единой оxуz .

Взаимодействие между частями конструкции (тела) характе­ризуется внутренними силами, которые возникают внутри нее под действием внешних нагрузок.

Определяются внутренние силы с помощью метода сечений . Суть метода сечения в следующем: если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также будет находится в равновесии, следовательно, к ней применимы уравнения равновесия. То есть, не влияют на условия равновесия тела, так как являются самоуравновешенными.

Рассмотрим тело, к которому приложена некоторая система внешних сил F 1 , F 2 , …, F n , удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия. Если необходимо, то определяются опорные реакции из уравнений равновесия (берем объект, отбрасываем связи, заменяем отброшенные связи реакциями, составляем уравнения равновесия и ). Реакции можно не находить, если они не входят в число внешних сил, приложенных по одну сторону от рассматриваемых сечений.

Мысленно рассекаем тело произвольным сечением, отбрасываем левую часть тела и рассматриваем равновесие оставшейся части.


Если бы не было внутренних сил, оставшаяся неуравновешенная часть тела начала бы двигаться под действием внешних сил. Для сохранения равновесия, действие отброшенной части тела заменяем внутренними силами приложенными к каждой частице тела.


Из теоретической механики известно, что любая система сил может быть приведена в любую точку пространства в виде главного вектора сил \vec{R} и главного момента сил \vec{M} (теорема Пуансо). Модуль и направление этих векторов неизвестны.


Удобнее всего определять эти вектора через их проекции на оси x,y,z. $$\vec{R} = \vec{N} + \vec{Q_x}+\vec{Q_y}, \ \ \vec{M} = \vec{M_k} + \vec{M_x}+\vec{M_y} $$ или


Проекции векторов \vec{R} и \vec{M} носят следующие названия:

  • N - продольное усилие,
  • Q x и Q y - поперечные (перерезывающие) силы соответственно вдоль осей x и y,
  • M k - крутящий момент (обозначается иногда буквой T),
  • M x , M y - изгибающие моменты соответственно вокруг осей x и y

В общем случае для определения внутренних усилий имеем 6 неизвестных, которые можно определить из 6 уравнений равновесия.

где \sum F_i, \sum M(F)_i – внешние силы и моменты, действующие на оставленную часть тела.

Решив систему из 6-и уравнений с 6-ю неизвестными, определяем все внутренние усилия. В сечении могут присутствовать не все шесть внутренних
силовых факторов одновременно – это зависит от вида внешней нагрузки и способа ее приложения.

Пример: для стержня

Общее правило определения любого внутреннего усилия:

Усилия Q x , Q y , N равняются алгебраической сумме проекций всех сил, расположенных по одну сторону от выбранного сечения, соответственно на оси x, y или z .

Моменты M x , M y , M k равняются алгебраической сумме моментов всех сил, расположенных по одну сторону от выбранного сечения, соответственно относительно осей x, y или z, проходящих через центр тяжести выбранного сечения.

При использовании приведенного правила необходимо принять правило знаков для внутренних усилий.

Правило знаков

  • Нормальная растягивающая сила (направлена от сечения) считается положительной, а сжимающая – отрицательной.
  • Крутящий момент в сечении, направленный против часовой стрелки, считается положительным, по часовой стрелке – отрицательным.
  • Положительному изгибающему моменту соответствуют сжатые волокна сверху, отрицательному – снизу.
  • Знак поперечной силы удобно определять по тому, в каком направлении пытается повернуть отсеченную часть балки результирующая поперечной нагрузки относительно рассматриваемого сечения: если по часовой стрелке - сила считается положительной, против часовой стрелки - отрицательной.

1 График изменения внутреннего усилия по заданной оси тела называется эпюрой.

Основными понятиями науки о сопротивлении материалов являются понятия реального объекта и расчетной схемы, внешних и внутренних силовых факторов, геометрических характеристик, напряжений (полное, нормальное, касательное), деформаций и перемещений (линейные, угловые). Сюда относятся также основные физические законы, общие гипотезы и методы, при помощи которых устанавливаются зависимости между этими понятиями.

При выборе расчетной схемы в геометрию реального объекта вводятся упрощения.

Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схеме стержня, оболочки, пластины, массива.

Под стержнем понимается тело, одно из измерений которого (длина) значительно больше двух других. Геометрия стержня может быть образована путем перемещения плоской фигуры вдоль некоторой кривой. Эта кривая называется осью стержня, а плоская фигура, имеющая свой центр тяжести на оси и нормальная к ней, называется поперечным сечением. Для стержня обозначим продольную ось – z , в поперечном сечении главные оси – x и y .

Оболочка – такое геометрическое тело, у которого одно из измерений (толщина) значительно меньше других (радиусов кривизны и габаритных размеров). К оболочкам могут быть отнесены стенки баков, купола и др.

Как и всякая наука, сопротивление материалов идет от простого к сложному, решая сначала элементарные задачи растяжения-сжатия, сдвига, изгиба и кручения, а затем используя эти решения для более сложных задач.

Внешние силы, действующие на реальный объект, чаще всего известны. Обычно необходимо определить внутренние силы (результат взаимодействия между отдельными частями данного тела), которые неизвестны по величине и направлению, но знание которых необходимо для прочностных и деформационных расчетов. Определение внутренних сил осуществляется с помощью так называемого метода сечений , сущность которого заключается в следующем:

4. Внутренние силы находятся в равновесии с внешними силами, они могут быть определены из уравнений равновесия статики:

(1.1)

Любой внутренний силовой фактор в сечении равен алгебраической сумме соответствующих внешних сил, действующих с одной стороны от сечения.

Внутренний силовой фактор в сечении численно равен интегральной сумме соответствующих элементарных внутренних сил или моментов по всей площади сечения:

(1.1)

Классификация основных видов нагружения связана с внутренним силовым фактором, возникающим в сечении. Так, если в поперечных сечениях возникает только продольная сила N , а другие внутренние силовые факторы обращаются в нуль, то на этом участке имеет место растяжение или сжатие, в зависимости от направления силы N . Нагружение, когда в поперечном сечении возникает только поперечная сила Q , называют сдвигом.

Если в поперечном сечении возникает только крутящий момент М к (М z ), то стержень работает на кручение. В случае, когда от внешних сил, приложенных к стержню, возникает только изгибающий момент М х (или М у ), то такой вид нагружения называют чистым изгибом. Если в поперечном сечении наряду с изгибающим моментом (например, М х ) возникает поперечная сила Q y , то такой вид нагружения называют плоским поперечным изгибом (в плоскости yz ). Вид нагружения, когда в поперечном сечении стержня возникают только изгибающие моменты М х и М у , называют косым изгибом (плоским или пространственным). При действии в поперечном сечении нормальной силы N и изгибающих моментов М х и М у возникает нагружение, называемое сложным изгибом с растяжением (сжатием) или внецентренным растяжением (сжатием). При действии в сечении изгибающего момента и крутящего момента возникает изгиб с кручением.

Общим случаем нагружения называют случай, когда в поперечном сечении возникают все шесть внутренних силовых факторов.

К особым видам нагружения следует отнести смятие, когда деформация носит местный характер, не распространяясь на все тело, и продольный изгиб (частный случай общего явления потери устойчивости).

Находящемся в равновесии под действием .

Рассмотрим идеально упругий призматический стержень прямоугольного поперечного сечения (рис. 1.2, а).

Выделим внутри стержня какие-либо две частицы K и L, расположенные на бесконечно малом расстоянии друг от друга. Для большей наглядности предположим, что между этими частицами имеется некоторая пружинка, удерживающая их на определенном расстоянии друг от друга. Пусть натяжение пружинки равно нулю.

Приложим теперь к стержню растягивающую силу (рис. 1.2, б ). Пусть в результате деформации стержня, частица K перейдет в положение , а частица L – в положение . Соединяющая эти частицы пружинка при этом растянется. После снятия внешней нагрузки частицы вернутся в первоначальное положение K и L благодаря усилию, которое возникло в пружинке. Сила, которая возникла между частицами (в пружинке) в результате деформации идеально упругого стержня, называются силой или внутренней силой. Она может быть найдена методом сечений .

Этапы метода сечений

Метод сечений состоит из четырех последовательных этапов: разрезать, отбросить, заменить, уравновесить .

Разрежем стержень, находящийся в равновесии под действием некоторой системы сил (рис. 1.3, а) на две части плоскостью, перпендикулярной к его оси z.

Отбросим одну из частей стержня и рассмотрим оставленную часть.

Поскольку мы как бы разрезали бесчисленное множество пружинок, соединявших бесконечно близкие частицы тела, разделенного теперь на две части, в каждой точке поперечного сечения стержня необходимо приложить силы упругости, которые при деформации тела возникли между этими частицами. Иными словами, заменим действие отброшенной части (рис. 1.3, б).

Внутренние силы в методе сечений

Полученную бесконечную систему сил по правилам теоретической механики можно привести к центру тяжести поперечного сечения. В результате получим главный вектор R и главный момент M (рис. 1.3, в).

Разложим главный вектор и главный момент на составляющие по осям x, y (главные центральные оси) и z.

Получим 6 внутренних силовых факторов , возникающих в поперечном сечении стержня при его деформировании: три силы (рис. 1.3, г) и три момента (рис. 1.3, д).

Сила N - продольная сила

– поперечные силамы,

момент относительно оси z () – крутящий момент

моменты относительно осей x, y () – изгибающие моменты.

Запишем для оставленной части тела уравнения равновесия (уравновесим ):

Из уравнений определяются внутренние усилия, возникающие в рассматриваемом поперечном сечении стержня.

Метод сечений заключается в том что тело мысленно рассекается плоскостью на 2 части, любая из которых отбрасывается и в замен ее к оставшемуся сечению прикладывают силы действующие до разреза, оставленную часть рассматривают как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил. Согласно 3 му закону Ньютона внутренние силы, действующие в сечении оставшейся и отброшенной частей тела равны по модулю, но противоположны следовательно рассматриваем равновесие любой из 2 частей рассеченного тела мы получили одно и тоже значение внутренних сил.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой.

Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения.

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M. В раме при плоском поперечном изгибе возникают три усилия: продольная N, поперечная Q силы и изгибающий момент M.

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называется чистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб - изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

Построение эпюр поперечной силы и изгибающего момента

Для того, чтобы произвести расчет балки на изгиб, необходимо знать величину наибольшего изгибающего момента М и положение сечения, в котором он возникает. Точно также, надо знать и наибольшую поперечную силу Q. Для этой цели строят эпюры изгибающих моментов и поперечных сил. По эпюрам легко судить о том, где будет максимальное значение момента или поперечной силы.



Перед тем, как определять внутренние усилия (поперечные силы и изгибающие моменты) и строить эпюры, как правило, надо найти опорные реакции, возникающие в закреплении стержня. Если опорные реакции и внутренние усилия можно найти из уравнений статики, то конструкция называется статически определимой. Чаще всего мы встречаемся с тремя видами опорных закреплений стержней: жестким защемлением (заделкой), шарнирно-неподвижной опорой и шарнирно-подвижной опорой. На рис. 6.5 показаны эти закрепления. Для неподвижной (рис 6.5,б) и подвижной (рис. 6.5,в) опор приведены два эквивалентных обозначения этих закреплений. Напомним, что при действии нагрузки в одной плоскости в заделке возникают три опорных реакции (вертикальная, горизонтальная реакции и сосредоточенный реактивный момент) (рис. 6.5,а); в шарнирно-неподвижной опоре – две реактивные силы (рис. 6.3,б); в шарнирно-подвижной опоре – одна реакция – сила, перпендикулярная плоскости опирания (рис.6.5,в).

Если внешняя сила вращает отрезанную часть балки по часовой стрелке, то сила является положительной, если внешняя сила вращает отрезанную часть балки против хода часовой стрелки, то сила является отрицательной.

Если под действием внешней силы изогнутая ось балки принимает вид вогнутой чаши, такой, что идущий сверху дождь будет наполнять ее водой, то изгибающий момент является положительным. Если под действием внешней силы изогнутая ось балки принимает вид выпуклой чаши, такой, что идущий сверху дождь не будет наполнять ее водой, то изгибающий момент является отрицательным.

Достаточно очевидно и подтверждается опытом, что балка при изгибе деформируется таким образом, что волокна, расположенные в выпуклой части, растягиваются, а в вогнутой – сжимаются. Между ними лежит слой волокон, который лишь искривляется, не изменяя своей первоначальной длины (рис.6.8). Этот слой называется нейтральным или нулевым, а его след на плоскости поперечного сечения – нейтральной (нулевой) линией или осью.

При построении эпюр Q и М договоримся на эпюре Q положительные значения откладывать сверху нулевой линии. На эпюре М у строителей принято откладывать положительные ординаты снизу. Такое правило построения эпюры М называется построением эпюры со стороны растянутых волокон, т. е. положительные значения М откладываются в сторону выпуклости изогнутой балки.

Рассмотрим для простоты балку с прямоугольным поперечным сечением (рис.6.9). Следуя методу сечений, мысленно проведем разрез и отбросим какую-либо часть балки, а другую оставим. На оставшейся части покажем действующие на нее силы и в поперечном сечении – внутренние силовые факторы, которые являются результатом приведения к центру сечения сил, действующих на отброшенную часть. Учитывая, что внешние силы и распределенные нагрузки лежат в одной плоскости и действуют перпендикулярно оси балки, в сечении получим поперечную силу и изгибающий момент. Эти внутренние силовые факторы заранее неизвестны, поэтому их показывают в положительном направлении в соответствии с принятыми правилами знаков.