Формула для расчета общей дисперсии. Дисперсия и стандартное отклонение в MS EXCEL

Решение.

В качестве меры рассеивания значений случайной величины используется дисперсия

Дисперсия (слово дисперсия означает "рассеяние") есть мера рассеивания значений случайной величины относительно ее математического ожидания. Дисперсией называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

Если случайная величина - дискретная с бесконечным, но счетным множеством значений, то

если ряд в правой части равенства сходится.

Свойства дисперсии.

  • 1. Дисперсия постоянной величины равна нулю
  • 2. Дисперсия суммы случайных величин равна сумме дисперсий
  • 3. Постоянный множитель можно выносить за знак дисперсии в квадрате

Дисперсия разности случайных величин равна сумме дисперсий

Это свойство является следствием второго и третьего свойств. Дисперсии могут только складываться.

Дисперсию удобно вычислять по формуле, которую легко получить, используя свойства дисперсии

Дисперсия всегда величина положительная .

Дисперсия имеет размерность квадрата размерности самой случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют также величину

Средним квадратическим отклонением (стандартным отклонением или стандартом) случайной величиныназывается арифметическое значение корня квадратного из её дисперсии

Бросают две монеты достоинством 2 и 5 рублей. Если монета выпадает гербом, то начисляют ноль очков, а если цифрой, то число очков, равное достоинству монеты. Найти математическое ожидание и дисперсию числа очков.

Решение. Найдем вначале распределение случайной величины Х - числа очков. Все комбинации - (2;5),(2;0),(0;5),(0;0) - равновероятны и закон распределения:

Математическое ожидание:

Дисперсию найдем по формуле

для чего вычислим

Пример 2.

Найти неизвестную вероятность р , математическое ожидание и дисперсию дискретной случайной величины, заданной таблицей распределения вероятностей

Находим математическое ожидание и дисперсию:

M (X ) = 00,0081 + 10,0756 + 20,2646 + 3 0,4116 + +40,2401=2,8

Для вычисления дисперсии воспользуемся формулой (19.4)

D (X ) = 020 ,0081 + 120,0756 + 220,2646 + 320,4116 + 420,2401 - 2,82 = 8,68 -

Пример 3. Два равносильных спортсмена проводят турнир, который длится или до первой победы одного из них, или до тех пор, пока не будет сыграно пять партий. Вероятность победы в одной партии для каждого из спортсменов равна 0,3, а вероятность ничейного исхода партии 0,4. Найти закон распределения, математическое ожидание и дисперсию числа сыгранных партий.

Решение. Случайная величина Х - количество сыгранных партий, принимает значения от 1 до 5, т. е.

Определим вероятности окончания матча. Матч закончится на первой партии, если кто-то их спортсменов выиграл. Вероятность выигрыша равна

Р (1) = 0,3+0,3 =0,6.

Если же была ничья (вероятность ничьей равна 1 - 0,6 = 0,4), то матч продолжается. Матч закончится на второй партии, если в первой была ничья, а во второй кто-то выиграл. Вероятность

Р (2) = 0,4 0,6=0,24.

Аналогично, матч закончится на третьей партии, если было подряд две ничьи и опять кто-то выиграл

Р (3) = 0,4 0,4 0,6 = 0,096. Р (4)= 0,4 0,4 0,4 0,6=0,0384.

Пятая партия в любом варианте последняя.

Р (5)= 1 - (Р (1)+Р (2)+Р (3)+Р (4)) = 0,0256.

Сведем все в таблицу. Закон распределения случайной величины "число выигранных партий" имеет вид

Математическое ожидание

Дисперсию вычисляем по формуле (19.4)

Стандартные дискретные распределения.

Биномиальное распределение. Пусть реализуется схема опытов Бернулли: проводится n одинаковых независимых опытов, в каждом из которых событие A может появиться с постоянной вероятностью p и не появится с вероятностью

(см. лекцию 18).

Число появлений события A в этих n опытах есть дискретная случайная величина X , возможные значения которой:

0; 1; 2; ... ; m ; ... ; n.

Вероятность появления m событий A в конкретной серии из n опытов с и закон распределения такой случайной величины задается формулой Бернулли (см. лекцию 18)

Числовые характеристики случайной величины X распределенной по биномиальному закону:

Если n велико (), то, при, формула (19.6) переходит в формулу

а табулированная функция Гаусса (таблица значений функции Гаусса приведена в конце 18 лекции).

На практике часто важна не сама вероятность появления m событий A в конкретной серии из n опытов, а вероятность того, что событие А появится не менее

раз и не более раз, т. е. вероятность того, что Х принимает значения

Для этого надо просуммировать вероятности

Если n велико (), то, при, формула (19.9) переходит в приближенную формулу

табулированная функция. Таблицы приведены в конце лекции 18.

При использовании таблиц надо учесть, что

Пример 1 . Автомобиль, подъезжая к перекрестку, может продолжить движение по любой из трех дорог: A, B или C с одинаковой вероятностью. К перекрестку подъезжают пять автомобилей. Найти среднее число автомашин, которое поедет по дороге A и вероятность того, что по дороге B поедет три автомобиля.

Решение. Число автомашин проезжающих по каждой из дорог является случайной величиной. Если предположить, что все подъезжающие к перекрестку автомобили совершают поездку независимо друг от друга, то эта случайная величина распределена по биномиальному закону с

n = 5 и p = .

Следовательно, среднее число автомашин, которое проследует по дороге A, есть по формуле (19.7)

а искомая вероятность при

Пример 2. Вероятность отказа прибора при каждом испытании 0,1. Производится 60 испытаний прибора. Какова вероятность того, что отказ прибора произойдёт: а) 15 раз; б) не более 15 раз?

а. Так как число испытаний 60, то используем формулу (19.8)

По таблице 1 приложения к лекции 18 находим

б . Используем формулу (19.10).

По таблице 2 приложения к лекции 18

  • - 0,495
  • 0,49995

Распределение Пуассона) закон редких явлений). Если n велико, а р мало (), при этом произведение пр сохраняет постоянное значение, которое обозначим л,

то формула (19.6) переходит в формулу Пуассона

Закон распределения Пуассона имеет вид:

Очевидно, что определение закона Пуассона корректно, т.к. основное свойство ряда распределения

выполнено, т.к. сумма ряда

В скобках записано разложение в ряд функции при

Теорема. Математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру этого закона, т.е.

Доказательство.

Пример. Для продвижения своей продукции на рынок фирма раскладывает по почтовым ящикам рекламные листки. Прежний опыт работы показывает, что примерно в одном случае из 2 000 следует заказ. Найти вероятность того, что при размещении 10 000 рекламных листков поступит хотя бы один заказ, среднее число поступивших заказов и дисперсию числа поступивших заказов.

Решение . Здесь

Вероятность того, что поступит хотя бы один заказ, найдем через вероятность противоположного события, т.е.

Случайный поток событий. Потоком событий называется последовательность событий, происходящие в случайные моменты времени. Типичными примерами потоков являются сбои в компьютерных сетях, вызовы на телефонных станциях, поток заявок на ремонт оборудования и т. д.

Поток событий называется стационарным , если вероятность попадания того или иного числа событий на временной интервал длины зависит только от длины интервала и не зависит не зависит от расположения временного интервала на оси времени.

Условию стационарности удовлетворяет поток заявок, вероятностные характеристики которого не зависят от времени. В частности, для стационарного потока характерна постоянная плотность (среднее число заявок в единицу времени). На практике часто встречаются потоки заявок, которые (по крайней мере, на ограниченном отрезке времени) могут рассматриваться как стационарные. Например, поток вызовов на городской телефонной станции на участке времени от 12 до 13 часов может считаться стационарным. Тот же поток в течение целых суток уже не может считаться стационарным (ночью плотность вызовов значительно меньше, чем днем).

Поток событий называется потоком с отсутствием последействия , если для любых неперекрывающихся участков времени число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие.

Условие отсутствия последействия - наиболее существенное для простейшего потока - означает, что заявки поступают в систему независимо друг от друга. Например, поток пассажиров, входящие на станцию метро, можно считать потоком без последействия потому, что причины, обусловившие приход отдельного пассажира именно в тот, а не другой момент, как правило, не связаны с аналогичными причинами для других пассажиров. Однако условие отсутствия последействия может быть легко нарушено за счет появления такой зависимости. Например, поток пассажиров, покидающих станцию метро, уже не может считаться потоком без последействия, так как моменты выхода пассажиров, прибывших одним и тем же поездом, зависимы между собой.

Поток событий называется ординарным , если вероятность попадания на малый интервал времени t двух или более событий пренебрежимо мала по сравнению с вероятностью попадания одного события (в этой связи закон Пуассона называют законом редких событий).

Условие ординарности означает, что заявки приходят поодиночке, а не парами, тройками и т. д. дисперсия отклонение распределение бернулли

Например, поток клиентов, входящих в парикмахерскую, может считаться практически ординарным. Если в неординарном потоке заявки поступают только парами, только тройками и т. д., то неординарный поток легко свести к ординарному; для этого достаточно вместо потока отдельных заявок рассмотреть поток пар, троек и т. д. Сложнее будет, если каждая заявка случайным образом может оказаться двойной, тройной и т. д. Тогда уже приходится иметь дело с потоком не однородных, а разнородных событий.

Если поток событий обладает всеми тремя свойствами (т. е. стационарен, ординарен и не имеет последействия), то он называется простейшим (или стационарным пуассоновским) потоком. Название "пуассоновский" связано с тем, что при соблюдении перечисленных условий число событий, попадающих на любой фиксированный интервал времени, будет распределено по закону Пуассона

Здесь - среднее число событий A , появляющихся за единицу времени.

Этот закон однопараметрический, т.е. для его задания требуется знать только один параметр. Можно показать, что математическое ожидание и дисперсия в законе Пуассона численно равны:

Пример . Пусть в середине рабочего дня среднее число запросов равняется 2 в секунду. Какова вероятность того, что 1) за секунду не поступит ни одной заявки, 2) за две секунды поступит 10 заявок?

Решение. Поскольку правомерность применения закона Пуассона не вызывает сомнения и его параметр задан (= 2), то решение задачи сводится к применении формулы Пуассона (19.11)

1) t = 1, m = 0:

2) t = 2, m = 10:

Закон больших чисел. Математическим основанием того факта, что значения случайной величины группируются около некоторых постоянных величин, является закон больших чисел.

Исторически первой формулировкой закона больших чисел стала теорема Бернулли:

"При неограниченном увеличении числа одинаковых и независимых опытов n частота появления события A сходится по вероятности к его вероятности", т.е.

где частота появления события A в n опытах,

Содержательно выражение (19.10) означает, что при большом числе опытов частота появления события A может заменять неизвестную вероятность этого события и чем больше число проведенных опытов, тем ближе р* к р. Интересен исторический факт. К. Пирсон бросал монету 12000 раз и герб у него выпал 6019 раз (частота 0.5016). При бросании этой же монеты 24000 раз он получил 12012 выпадений герба, т.е. частоту 0.5005.

Наиболее важной формой закона больших чисел является теорема Чебышева: при неограниченном возрастании числа независимых, имеющих конечную дисперсию и проводимых в одинаковых условиях опытов среднее арифметическое наблюденных значений случайной величины сходится по вероятности к ее математическому ожиданию . В аналитической форме эта теорема может быть записана так:

Теорема Чебышева кроме фундаментального теоретического значения имеет и важное практическое применение, например, в теории измерений. Проведя n измерений некоторой величины х , получают различные несовпадающие значения х 1, х 2, ..., хn . За приближенное значение измеряемой величины х принимают среднее арифметическое наблюденных значений

При этом, чем больше будет проведено опытов, тем точнее будет полученный результат. Дело в том, что дисперсия величины убывает с возрастанием числа проведенных опытов, т.к.

D (x 1) = D (x 2)=…= D (xn ) D (x ) , то

Соотношение (19.13) показывает, что и при высокой неточности приборов измерения (большая величина) за счет увеличения количества измерений можно получать результат со сколь угодно высокой точностью.

Используя формулу (19.10) можно найти вероятность того, что статистическая частота отклоняется от вероятности не более, чем на

Пример. Вероятность события в каждом испытании равна 0,4. Сколько нужно провести испытаний, чтобы с вероятностью, не меньшей, чем 0,8 ожидать, что относительная частота события будет отклоняться от вероятности по модулю менее, чем на 0,01?

Решение. По формуле (19.14)

следовательно, по таблице два приложения

следовательно, n 3932.

Дисперсия в статистике определяется как среднее квадратическое отклонение индивидуальных значений признака в квадрате от средней арифметической. Распространенный способ расчета квадратов отклонений вариантов от средней с их последующим усреднением.

В экономически-статистическом анализе вариацию признака принято оценивать чаще всего с помощью среднего квадратического отклонения, оно представляет собой корень квадратный из дисперсии.

(3)

Характеризует абсолютную колеблемость значений варьирующего признака выражается в тех же единицах измерения, что и варианты. В статистике часто возникает необходимость сравнения вариации различных признаков. Для таких сравнений используется относительный показатель вариации, коэффициент вариации.

Свойства дисперсии:

1)если из всех вариант вычесть какое-либо число, то дисперсия от этого не изменится;

2) если все значения вариант разделить на какое-либо число b, то дисперсия уменьшится в b^2 раз, т.е.

3) если исчислить средний квадрат отклонений от какого-либо числа с неравного средней арифметической, то он будет больше дисперсии . При этом на вполне определенную величину на квадрат разности между средней величиной поc.

Дисперсию можно определить как разницу между средним квадратом и средней в квадрате.

17. Групповая и межгрупповая вариации. Правило сложения дисперсии

Если статистическая совокупность разбита на группы или части по изучаемому признаку, то для такой совокупности могут быть исчислены следующие виды дисперсии: групповые (частные), средне групповые (частных), и межгрупповая.

Общая дисперсия – отражает вариацию признака за счет всех условий и причин, действующих в данной статистической совокупности.

Групповая дисперсия - равна среднему квадрату отклонений отдельных значений признака внутри группы от средней арифметической этой группы, называемой групповой средней. При этом групповая средняя не совпадает с общей средней для всей совокупности.

Групповая дисперсия отражает вариацию признака только за счет условий и причин, действующих внутри группы.

Средняя групповых дисперсий - определяется как среднее взвешенное арифметическое из дисперсий групповых, причем весами являются объемы групп.

Межгрупповая дисперсия - равна среднему квадрату отклонений групповых средних от общей средней.

Межгрупповая дисперсия характеризует вариацию результативного признака за счет группировочного признака.

Между рассмотренными видами дисперсий существует определенное соотношение: общая дисперсия равна сумме средней групповой и межгрупповой дисперсии.

Это соотношение называется правилом сложения дисперсии.

18. Динамический ряд и его составные элементы. Виды динамических рядов.

Ряд в статистике - это цифровые данные, показывающие, изменение явления во времени или в пространстве и дающие возможность производить статистическое сравнение явлений как в процессе их развития во времени, так и по различным формам и видам процессов. Благодаря этому можно обнаружить взаимную зависимость явлений.

Процесс развития движения социальных явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики (хронологические, временные), которые представляют собой ряды изменяющихся во времени значений статистического показателя (например, число осуждённых за 10 лет), расположенных в хронологическом порядке. Их составными элементами являются цифровые значения данного показателя и периоды или моменты времени, к которым они относятся.

Важнейшая характеристика рядов динамики - их размер (объём, величина) того или иного явления, достигнутых в определённых период или к определённому моменту. Соответственно, величина членов ряда динамики - его уровень. Различают начальный, средний и конечный уровни динамического ряда. Начальный уровень показывает величину первого, конечный - величину последнего члена ряда. Средний уровень представляет собой среднюю хронологическую вариационного рада и исчисляется в зависимости от того, является ли динамический ряд интервальным или моментным.

Ещё одна важная характеристика динамического ряда - время, прошедшее от начального до конечного наблюдения, или число таких наблюдений.

Существуют различные виды рядов динамики, их можно классифицировать по следующим признакам.

1) В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных и производных показателей (относительных и средних величин).

2) В зависимости от того, как выражают уровни ряда состояние явления на определённые моменты времени (на начало месяца, квартала, года и т.п.) или его величину за определённые интервалы времени (например, за сутки, месяц, год и т.п.), различают соответственно моментные и интервальные ряды динамики. Моментные ряды в аналитической работе правоохранительных органов используются сравнительно редко.

В теории статистики выделяют рады динамики и по ряду других классификационных признаков: в зависимости от расстояния между уровнями - с равностоящими уровнями и неравностоящими уровнями во времени; в зависимости от наличия основной тенденции изучаемого процесса - стационарные и не стационарные. При анализе динамических рядов исходят из следующего уровни ряда представляют в виде составляющих:

Y t = TP + Е (t)

где ТР – детерминированная составляющая определяющая общую тенденцию изменения во времени или тренд.

Е (t) – случайная компонента, вызывающая колеблимость уровней.

Дисперсия I Диспе́рсия (от лат. dispersio - рассеяние)

в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. В статистическом понимании Д.

есть среднее арифметическое из квадратов отклонений величин x i от их среднего арифметического

В теории вероятностей Д. случайной величины Х называется Математическое ожидание Е (Х - m х ) 2 квадрата отклонения Х от её математического ожидания m х = Е (Х ). Д. случайной величины Х обозначается через D (X ) или через σ 2 X . Квадратный корень из Д. (т. е. σ, если Д. есть σ 2) называется средним квадратичным отклонением (см. Квадратичное отклонение).

Для случайной величины Х с непрерывным распределением вероятностей, характеризуемым плотностью вероятности (См. Плотность вероятности) р (х ), Д. вычисляется по формуле

В теории вероятностей большое значение имеет теорема: Д. суммы независимых слагаемых равна сумме их Д. Не менее существенно Чебышева неравенство , позволяющее оценивать вероятность больших отклонений случайной величины Х от её математического ожидания.

II Диспе́рсия

Наличие Д. волн приводит к искажению формы сигналов при распространении их в среде. Это объясняется тем, что гармонические волны разных частот, на которые может быть разложен сигнал, распространяются с различной скоростью (подробнее см. Волны , Групповая скорость). Д. света при его распространении в прозрачной призме приводит к разложению белого света в спектр (см. Дисперсия света).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Дисперсия" в других словарях:

    дисперсия - Рассеяние чего нибудь. В математике дисперсия определяет отклонение величин от среднего значения. Дисперсия белого света приводит к его разложению на составляющие. Дисперсия звука является причиной его расплывания. Рассеяние хранимых данных по… … Справочник технического переводчика

    Современная энциклопедия

    - (variance) Мера разброса данных. Дисперсия множества из N членов находится путем сложения квадратов их отклонений от среднего значения и деления на N. Поэтому, если членами являются хi при i = 1, 2,..., N, a их средним является m, дисперсия… … Экономический словарь

    Дисперсия - (от латинского dispersio рассеяние) волн, зависимость скорости распространения волн в веществе от длины волны (частоты). Дисперсия определяется физическими свойствами той среды, в которой распространяются волны. Например, в вакууме… … Иллюстрированный энциклопедический словарь

    - (от лат. dispersio рассеяние) в математической статистике и теории вероятностей мера рассеивания (отклонения от среднего). В статистике дисперсия есть среднее арифметическое из квадратов отклонений наблюденных значений (x1, x2,...,xn) случайной… … Большой Энциклопедический словарь

    В теории вероятностей наиболее употребительная мера отклонения от среднего (мера рассеяния). По английски: Dispersion Синонимы: Статистическая дисперсия Синонимы английские: Statistical dispersion См. также: Выборочные совокупности Финансовый… … Финансовый словарь

    - [лат. dispersus рассеянный, рассыпанный] 1) рассеяние; 2) хим., физ. раздробление вещества на очень малые частицы. Д. света разложение белого света с помощью призмы в спектр; 3) мат. отклонение от среднего. Словарь иностранных слов. Комлев Н.Г.,… … Словарь иностранных слов русского языка

    дисперсия - (варианса) показатель разброса данных, соответственный среднему квадрату отклонения этих данных от средней арифметической. Равна квадрату стандартного отклонения. Словарь практического психолога. М.: АСТ, Харвест. С. Ю. Головин. 1998 … Большая психологическая энциклопедия

    Рассеяние, разброс Словарь русских синонимов. дисперсия сущ., кол во синонимов: 6 нанодисперсия (1) … Словарь синонимов

    Дисперсия - характеристика рассеивания значений случайной величины, измеряемая квадратом их отклонений от среднего значения (обозначается d2). Различается Д. теоретического (непрерывного или дискретного) и эмпирического (также непрерывного и… … Экономико-математический словарь

    Дисперсия - * дысперсія * dispersion 1. Рассеяние; разброс; вариация (см.). 2. Теоретико вероятностное понятие, характеризующее меру отклонения случайной величины от ее математического ожидания. В биометрической практике используется выборочная дисперсия s2 … Генетика. Энциклопедический словарь

Книги

  • Аномальная дисперсия в широких полосах поглощения , Д.С. Рождественский. Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В…

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.

Дисперсия случайной величины - мера разброса данной случайной величины , то есть её отклонения от математического ожидания. В статистике для обозначения дисперсии часто употребляется обозначение (сигма в квадрате). Квадратный корень из дисперсии , равный , называется стандартным отклонением или стандартным разбросом. Стандартное отклонение измеряется в тех же единицах, что и сама случайная величина, а дисперсия измеряется в квадратах этой единицы измерения.

Хотя для оценки всей выборки очень удобно использовать лишь одно значение (такое как среднее значение или моду и медиану), этот подход легко может привести к неправильным выводам. Причина такого положения лежит не в самой величине, а в том, что одна величина никак не отражает разброс значений данных.

Например, в выборке:

среднее значение равно 5.

Однако, в самой выборке нет ни одного элемента со значением 5. Возможно, Вам потребуется знать степень близости каждого элемента выборки к ее среднему значению. Или, другими словами, вам потребуется знать дисперсию значений. Зная степень изменения данных, Вы можете лучше интерпретировать среднее значение , медиану и моду . Степень изменения значений выборки определяется путем вычисления их дисперсии и стандартного отклонения.



Дисперсия и квадратный корень из дисперсии, называемый стандартным отклонением, характеризуют среднее отклонение от среднего значения выборки. Среди этих двух величин наибольшее значение имеет стандартное отклонение . Это значение можно представить как среднее расстояние, на котором находятся элементы от среднего элемента выборки.

Дисперсию трудно интерпретировать содержательно. Однако, квадратный корень из этого значения является стандартным отклонением и хорошо поддается интерпретации.

Стандартное отклонение вычисляется путем определения сначала дисперсии и затем вычисления квадратного корня из дисперсии.

Например, для массива данных, приведенных на рисунке, будут получены следующие значения:

Рисунок 1

Здесь среднее значение квадратов разностей равно 717,43. Для получения стандартного отклонения осталось лишь взять квадратный корень из этого числа.

Результат составит приблизительно 26,78.

Следует помнить, что стандартное отклонение интерпретируется как среднее расстояние, на котором находятся элементы от среднего значения выборки.

Стандартное отклонение показывает, насколько хорошо среднее значение описывает всю выборку.

Допустим, Вы являетесь руководителем производственного отдела по сборке ПК. В квартальном отчете говорится, что выпуск за последний квартал составил 2500 ПК. Плохо это или хорошо? Вы попросили (или уже в отчете есть эта графа) в отчете отобразить стандартное отклонение по этим данным. Цифра стандартного отклонения, например, равна 2000. Становится понятным для Вас, как руководителя отдела, что производственная линия требует лучшего управления (слишком большие отклонения по количеству собираемых ПК).

Вспомним: при большой величине стандартного отклонения данные широко разбросаны относительно среднего значения, а при маленькой – они группируются близко к среднему значению.

Четыре статистические функции ДИСП(), ДИСПР(), СТАНДОТКЛОН() и СТАНДОТКЛОНП() – предназначены для вычисления дисперсии и стандартного отклонения чисел в интервале ячеек. Перед тем как вычислять дисперсию и стандартное отклонение набора данных, нужно определить, представляют ли эти данные генеральную совокупность или выборку из генеральной совокупности. В случае выборки из генеральной совокупности следует использовать функции ДИСП() и СТАНДОТКЛОН(), а в случае генеральной совокупности – функции ДИСПР() и СТАНДОТЛОНП():

Генеральная совокупность Функция

ДИСПР()

СТАНДОТЛОНП()
Выборка

ДИСП()

СТАНДОТКЛОН()

Дисперсия (а так же стандартное отклонение), как мы отмечали, свидетельствуют о том, в какой степени входящие в набор данных величины разбросаны вокруг среднего арифметического.

Малое значение дисперсии или стандартного отклонения говорит о том, что все данные сосредоточены вокруг среднего арифметического, а большое значение этих величин – о том, что данные разбросаны в широком диапазоне значений.

Дисперсию достаточно трудно интерпретировать содержательно (что значит малое значение, большое значение?). Выполнение Задания 3 позволит визуально, на графике, показать смысл дисперсии для набора данных.

Задания

· Задание 1.

· 2.1. Дать понятия: дисперсия и стандартное отклонение; их символьное обозначение при статистической обработке данных.

· 2.2. Оформить рабочий лист в соответствии с рисунком 1 и произвести необходимые расчеты.

· 2.3. Привести основные формулы, используемые при расчетах

· 2.4. Пояснить все обозначения ( , , )

· 2.5. Пояснить практическое значение понятия дисперсия и стандартное отклонение.

Задание 2.

1.1. Дать понятия: генеральная совокупность и выборка; математическое ожидание и среднее арифметическое их символьное обозначение при статистической обработке данных.

1.2. В соответствии с рисунком 2 оформить рабочий лист и произвести расчеты.

1.3. Привести основные формулы, используемые при расчетах (для генеральной совокупности и выборке).

Рисунок 2

1.4. Объяснить, почему возможны получения таких значений средних арифметических в выборках как 46,43 и 48,78 (см. файл Приложение). Сделать выводы.

Задание 3.

Имеется две выборки с различным набором данных, но среднее для них будет одинаковым:

Рисунок 3

3.1. Оформить рабочий лист в соответствии с рисунком 3 и произвести необходимые расчеты.

3.2. Приведите основные формулы расчета.

3.3. Постройте графики в соответствии с рисунками 4, 5.

3.4. Поясните полученные зависимости.

3.5. Аналогичные вычисления проведите для данных двух выборок.

Исходная выборка 11119999

Значения второй выборки подбираете так, что бы среднее арифметическое для второй выборки было таким же, например,:

Подберите значения для второй выборки самостоятельно. Оформите вычисления и построения графиков подобно рисункам 3, 4, 5. Покажите основные формулы, которые использовали при вычислениях.

Сделайте соответствующие выводы.

Все задания оформить в виде отчета со всеми необходимыми рисунками, графиками, формулами и краткими пояснениями.

Примечание: построение графиков обязательно пояснить с рисунками и краткими пояснениями.