Биохимические составляющие жизни. Биохимический анализ крови: нормы у взрослых и детей, показатели, как расшифровать результаты Биохимические составляющие

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Реферат на тему:

«Биохимические составляющие жизни»

Введение

Современная химия представляет собой широкий комплекс наук, постепенно сложившийся в ходе ее длительного исторического развития. Практическое знакомство человека с химическими процессами восходит к глубокой древности. В течение многих столетий теоретическое объяснение химических процессов основывалось на натурфилософском учении об элементах-качествах. В модифицированном виде оно послужило основой для алхимии, возникшей примерно в III-IV вв. н.э. и стремившейся решить задачу превращения неблагородных металлов в благородные. Не добившись успеха в решении этой задачи, алхимики, тем не менее, выработали ряд приемов исследования веществ, открыли некоторые химические соединения, чем в определенной степени способствовали возникновению научной химии.

Химический взгляд на природу, истоки и современное состояние

Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре. Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В.И. Вернадский. Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М.

Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества.

Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между добей во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды.

Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений.

Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых Кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов.

Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия - наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия - наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.

Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов» энергетике процессов клетки и вообще живых организмов.

Сейчас для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения.

Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма.

Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация я самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Практическим следствием теории саморазвития открытых каталитических систем является так называемая «нестационарная технология», то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленнoro процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции.

В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Для освоения каталитического опыта живой природы и реализации полученных знаний в промышленном производстве химики наметили рад перспективных путей.

Первый - развитие исследований в области металлокомплексного катализа с ориентацией на соответствующие объекты живой природы. Этот катализ обогащается приемами, которыми пользуются живые организмы в ферментативных реакциях, а также способами классического гетерогенного катализа.

Второй путь заключается в моделировании биокатализаторов. В настоящее время за счет искусственного отбора структур удалось построить модели многих ферментов характеризующихся высокой активностью и селективностью, иногда" почти такой же, как и у оригиналов, или с большей простотой строения.

Правда, пока все же полученные модели не в состоянии заменить природные биокатализаторы живых систем. На данном этапе развития химических знании проблема эта решается чрезвычайно сложно. Фермент выделяется из живой системы, определяется его структура, он вводится в реакцию для осуществления каталитических функций. Но работает непродолжительное время и быстро разрушается, поскольку является выделенным из целого, из клетки. Цельная клетка со всем ее ферментным аппаратом - более важный объект, чем одна, выделенная из нее деталь.

Третий путь к освоению механизмов лаборатории живей природы связывается с достижениями химии иммобилизованных систем. Сущность иммобилизации состоит в закреплении выделенных из живого организма ферментов на твердой поверхности путем адсорбции, которая и превращает их в гетерогенный катализатор и обеспечивает его стабильность и непрерывное действие.

Четвертый путь в развитии исследований, ориентированных на применение принципов биокатализа в химии и химической технологии, характеризуется постановкой самой широкой задачи - изучением и освоением всего каталитического опыта живой природы, в том числе и формирования фермента, клетки и даже организма. Это ступень, на которой основы эволюционной химии как действенной науки с ее рабочими функциями. Ученые утверждают, что это движение химической науки к принципиально новой химической технологии с перспективой создания аналогов живых систем. Решение названной задачи займет важнейшее место в создании химии будущего.

Химические элементы в организме человека

химический биокатализ каталитический элемент

Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Пищевые продукты и питьевая вода способствуют поступлению в организм практически всех химических элементов. Они повседневно вводятся в организм и выводятся из него. Анализы показали, что количество отдельных химических элементов и их соотношение в здоровом организме различных людей примерно одинаковы.

Мнение о том, что в организме человека можно обнаружить практически все элементы периодической системы Д.И. Менделеева, становится привычным. Однако предположения ученых идут дальше - в живом организме не только присутствуют все химические элементы, но каждый из них выполняет какую-то биологическую функцию. Вполне возможно, что эта гипотеза не подтвердится. Однако по мере того как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов. Несомненно, время и труд ученых прольют свет и на этот вопрос.

Биоактивность отдельных химических элементов. Экспериментально установлено, что в организме человека металлы составляют около 3% (по массе). Это очень много. Если принять массу человека за 70 кг., то на долю металлов приходится 2,1 кг. По отдельным металлам масса распределяется следующим образом: кальций (1700 г.), калий (250 г.), натрий (70 г.), магнии (42 г.), железо (5 г.), цинк (3 г.). Остальное приходится на микроэлементы. Если концентрация элемента в организме превышает 10 2 %, то его считают макроэлементом. Микроэлементы находятся в организме в концентрациях 10 3 -10 5 % . Если концентрация элемента ниже 10 5 %, то его считают ультрамикроэлементом. Неорганические вещества в живом организме находятся в различных формах. Большинство ионов металлов образуют соединения с биологическими объектами. Уже сегодня установлено, что многие ферменты (биологические катализаторы) содержат ионы металлов. Например, марганец входит в состав 12 различных ферментов, железо - в 70, медь - в 30, а цинк - более чем в 100. Естественно, что недостаток этих элементов должен сказаться на содержании соответствующих ферментов, а значит, и на нормальном функционировании организма. Таким образом, соли металлов совершенно необходимы для нормального функционирования живых организмов. Это подтвердили и опыты по бессолевой диете, которая применялась для кормления подопытных животных. Для этой цели многократным промыванием водой из пищи удаляли соли. Оказалось, что питание такой пищей приводило к гибели животных

Шесть элементов, атомы которых входят в состав белков и нуклеиновых кислот: углерод, водород, азот, кислород, фосфор, сера. Далее следует выделить двенадцать элементов, роль и значение которых для жизнедеятельности организмов известны: хлор, иод, натрий, калий, магний, кальций, марганец, железо, кобальт, медь, цинк, молибден. В литературе имеются указания на проявление биологической активности ванадием, хромом, никелем и кадмием

Имеется большое число элементов, являющихся ядами для живого организма, например ртуть, таллий, свиней и др. Они оказывают неблагоприятное биологическое влияние, но без них организм может функционировать. Существует мнение, что причина действия этих ядов связана с блокированием определенных групп в молекулах протеинов или же с вытеснением из некоторых ферментов меди и цинка. Бывают элементы, которые в относительно больших количествах являются ядом, а в низких концентрациях оказывают полезное влияние на организм. Например, мышьяк является сильным ядом, нарушающим сердечнососудистую систему и поражающим печень и почки, но в небольших дозах он прописывается врачами для улучшения аппетита человека. Ученые считают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов. Широко известно сильное отравляющее вещество иприт S(СН 2 СН 2 С1) 2 . Однако в разбавленном в 20 000 тыс. раз вазелином под названием «Псориазина» его применяют против чешуйчатого лишая. Современная фармакотерапия пока еще не может обойтись без значительного числа лекарственных средств, в состав которых входят токсичные металлы. Как здесь не вспомнить поговорку, что в малых количествах лечит, а в больших - калечит.

Интересно, что хлорид натрия (поваренная соль) в десятикратном избытке в организме по сравнению с нормальным содержанием является ядом. Кислород, необходимый человеку для дыхания, в высокой концентрации и особенно под давлением оказывает ядовитое действие. Из этих примеров видно, что концентрация элемента в организме иногда играет весьма существенное, а порой и катастрофическое значение.

Железо входит в состав гемоглобина крови, а точнее в красные пигменты крови, обратимо связывающие молекулярный кислород. У взрослого человека в крови содержится около 2,6 г. железа. В процессе жизнедеятельности в организме происходит постоянный распад и синтез гемоглобина. Для восстановления железа, потерянного с распадом гемоглобина, человеку необходимо суточное поступление в организм около 25 мг. Недостаток железа в организме приводит к заболеванию - анемии. Однако избыток железа в организме тоже вреден. С ним связан сидероз глаз и легких - заболевание, вызываемое отложением соединений железа в тканях этих органов. Недостаток в организме меди вызывает деструкцию кровеносных сосудов. Кроме того, считают, что его дефицит служит причиной раковых заболеваний. В некоторых случаях поражение раком легких у людей пожилого возраста врачи связывают с возрастным снижением меди в организме. Однако избыток меди приводит к нарушению психики и параличу некоторых органов (болезнь Вильсона). Для человека вред причиняют лишь большие количества соединений меди. В малых дозах они используются в медицине как вяжущее и бактериостазное (задерживающее рост и размножение бактерий) средство. Так, например, сульфат меди (II) CuSO 4 используют при лечении конъюнктивитов в виде глазных капель (0,25%-ный раствор), а также для прижиганий при трахоме в виде глазных карандашей (сплав сульфата меди (II), нитрата калия, квасцов и камфоры). При ожогах кожи фосфором производят ее обильное смачивание 5%-ным раствором сульфата меди (II).

Давно замечено бактерицидное (вызывающее гибель различных бактерий) свойство серебра и его солей. Например, в медицине раствор коллоидного серебра, (колларгол) применяют для промывания гнойных ран, мочевого пузыря при хронических циститах и уретритах, а также в виде глазных капель при гнойных конъюнктивитах и бленнорее. Нитрат серебра AgNO 3 в виде карандашей применяют для прижигания бородавок, грануляций и т.п. В разбавленных растворах (0,1-0,25%-ные) его используют как вяжущее и противомикробное средство для примочек, а также в качестве глазных капель. Ученые считают, что прижигающее действие нитрата серебра связано с его взаимодействием с белками тканей, что приводит к образованию белковых солей серебра - альбуминатов.

В настоящее время, бесспорно, установлено, что всем живым организмам присуще явление ионной асимметрии - неравномерное распределение ионов внутри и вне клетки. Например, внутри клеток мышечных волокон, сердца, печени, почек имеется повышенное содержание ионов калия по сравнению с внеклеточным. Концентрация ионов натрия, наоборот, выше вне клетки, чем внутри нее. Наличие градиента концентраций калия и натрия - экспериментально установленный факт. Исследователей волнует загадка о природе калий-натриевого насоса и его функционирования. На разрешение этого вопроса направлены усилия многих коллективов ученых, как в нашей стране, так и за рубежом. Интересно, что по мере старения организма градиент концентраций ионов калия и натрия на границе клетки падает. При наступлении смерти концентрация калия и натрия внутри и вне клетки сразу же выравнивается.

Биологическая функция ионов лития и рубидия в здоровом организме пока не ясна. Однако имеются сведения, что введением их в организм удается лечить одну из форм маникально-депрессивного психоза.

Биологам и медикам хорошо известно, что важнуюроль в организме человека играют гликозиды. Некоторые природные гликозиды (извлекаемые из растений) активно действуют на сердечную мышцу, усиливая сократительные функции и замедление ритма сердца. При попадании в организм большого количества сердечного гликозида может произойти полная остановка сердца. Ионы некоторых металлов влияют на действие гликозидов. Например, при введении в кровь ионов магния действие гликозидов на сердечную мышцу ослабляется Ионы кальция, наоборот, усиливают действие сердечных гликозидов

Некоторые соединения ртути также чрезвычайно ядовиты. Известно, что ионы ртути (II) способны прочно соединяться с белками. Ядовитое действие хлорида ртути (II) HgCl 2 (сулемы) проявляется, прежде всего, в некрозе (омертвлении) почек и слизистой оболочки кишечника. В результате ртутного отравления почки теряют способность выделять из крови продукты жизнедеятельности организма.

Интересно, что хлорид ртути (I) Hg 2 Cl 2 (древнее название каломель) безвреден для организма человека. Вероятно, это объясняется чрезвычайно низкой растворимостью соли, в результате чего ионы ртути не попадают в заметных количествах в организм.

Цианистый калий (Цианид калия) KCN - соль синильной кислоты HCN . Оба соединения являются быстродействующими и сильными ядами

При остром отравлении синильной кислотой и ее солями теряется сознание, наступает паралич дыхания и сердца. На начальной стадии отравления человек испытывает головокружение, ощущение давления во лбу, острую головную боль, учащенное дыхание, сердцебиение. Первая помощь при отравлении синильной кислотой и ее солями - свежий воздух, кислородное дыхание, тепло. Противоядиями являются нитрит натрия NaNO 2 и органические нитросоединения: амилнитрит C 5 H 11 ONO и пропилнитрит C 3 H 7 ONO . Считают, что действие нитрита натрия сводится к превращению гемоглобина в мета-гемоглобин. Последний прочно связывает цианидные ионы в цианметагемоглобин. Этим путем дыхательные ферменты освобождаются от цианидных ионов, что и приводит к восстановлению дыхательной функции клеток и тканей.

В качестве противоядий на синильную кислоту широко используют серосодержащие соединения: коллоидную серу, тиосульфат натрия Na 2 S 2 O 3 , тетратионат натрия Na 2 S 4 O 6 , а также серосодержащие органические соединения, в частности, аминокислоты - глутатион, цистеин, цистин. Синильная кислота и ее соли при взаимодействии с серой превращаются в тиоцианаты в соответствии с уравнением

HCN + S > HNCS

Тиоцианаты же совершенно безвредны для человеческого организма.

С давних пор при опасности отравления цианидами рекомендовалось держать за щекой кусочек сахара. В 1915 г. немецкие химики Рупп и Гольце показали, что глюкоза взаимодействует с синильной кислотой и некоторыми цианидами с образованием нетоксичного соединения циангидрина глюкозы:

ОН ОН ОН ОН ОН Н ОН OH OН ОН ОН Н

| | | | | | | | | | | |

СН 2 -СН-СН-СН-СН-С = О + HCN > СН 2 -СН-СН-СН-СН-С-ОН

глюкоза циангидрин глюкозы

Свинец и его соединения являются довольно сильными ядами. В организме человека свинец накапливается в костях, печени и почках.

Весьма токсичны соединения химического элемента таллия, который относят к числу редких.

Следует указать, что все цветные и особенно тяжелые (расположенные в конце периодической системы) металлы в количествах выше допустимых ядовиты.

Углекислый газ в больших количествах содержится в организме человека и потому не может быть ядовитым. За 1 ч взрослый человек выдыхает примерно 20 л (около 40 г.) этого газа. При физической работе количество выдыхаемого углекислого газа увеличивается до 35 л. Он образуется в результате сгорания в организме углеводов и жиров. Однако при большом содержании СО 2 в воздухе наступает удушье из-за недостатка кислорода. Максимальная продолжительность пребывания человека в помещении с концентрацией СО 2 до 20% (по объему) не должна превышать 2 ч. В Италии имеется получившая широкую известность пещера («Собачья пещера»), в которой человек стоя может находиться длительное время, а забежавшая туда собака задыхается и гибнет. Дело в том, что примерно до пояса человека пещера заполнена тяжелым (по сравнению с азотом и кислородом) углекислым газом. Поскольку голова человека находится в воздушном слое, то он не ощущает никаких неудобств. Собака же при ее росте оказывается в атмосфере углекислого газа и потому задыхается.

Врачи и биологи установили, что при окислении в организме углеводов до воды и углекислого газа на одну затраченную молекулу кислорода выделяется одна молекула СО 2 . Таким образом, отношение выделенного СО 2 к поглощенному О 2 (величина дыхательного коэффициента) равна единице. В случае окисления жиров дыхательный коэффициент равен примерно 0,7. Следовательно, определяя величину дыхательного коэффициента, можно судить, какие вещества преимущественно сгорают в организме. Экспериментально установлено, что при кратковременных, но интенсивных мышечных нагрузках энергия получается за счет окисления углеводов, а при длительных - преимущественно за счет сгорания жиров. Полагают, что переключение организма на окисление жиров связано с истощением резерва углеводов, что обычно наблюдается через 5-20 мин после начала интенсивной мышечной работы.

Антидоты

Антидоты - вещества, устраняющие последствия воздействия ядов на биологические структуры и инакгавирующие яды посредством химической

Жёлтая кровяная соль K 4 образует малорастворимые соединения с ионами многих тяжелых металлов. Это свойство используют на практике для лечения отравлений солями тяжелых металлов.

Хорошим антидотом при отравлениях соединениями мышьяка, ртути, свинца, кадмия, никеля, хрома, кобальта и других металлов является унитиол:

СН 2 -СН -CH 2 SO 3 Na Н 2 О

Универсальным антидотом является молоко.

Заключение

Современная биохимия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук.

Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи.

Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух- и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий.

Происходящее ныне неуклонное возрастание в рамках естествознания роли биохимии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ.

Список используемой литературы

1. Большой энциклопедический словарь. Химия. М., 2001.

2. Грушевицкая T.T., Садохин А.П. Концепции современного естествознания. М., 1998.

3. Кузнецов В.И., Идлис ГМ., Гутина В.Н. Естествознание. М., 1996.

4. Химия // Химический энциклопедический словарь. М., 1983.

5. http://n-t.ru/ri/kk/hm16.htm

6. http://www.alhimik.ru/kunst/man"s_elem.html

Размещено на Allbest.ru

Подобные документы

    Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура. Взаимосвязь химии и физики. Взаимосвязь химии и биологии. Химия изучает качественное многообразие материальных носителей химических явлений.

    реферат , добавлен 15.03.2004

    Презентация по химии. Живые системы – найденные в них химические элементы. Тесный контакт живых систем, так же человека, с окружающей средой. Состав организма человека. Нарушения минерального обмена в человеческом организме. Патологические состояния.

    презентация , добавлен 24.12.2008

    реферат , добавлен 11.10.2011

    Основные химические элементы, распространенные в организме человека, характерные признаки и симптомы недостатка некоторых из них. Общее описание свойств йода, его открытие и значение в организме. Порядок определения его недостатка и механизм восполнения.

    презентация , добавлен 27.12.2010

    Физиологическая роль бериллия в организме человека, его синергисты и антагонисты. Роль магния в организме человека для обеспечения протекания различных жизненных процессов. Нейтрализация избыточной кислотности организма. Значение стронция для человека.

    реферат , добавлен 09.05.2014

    Физико-химические свойства таллия, агрегатное состояние, давление насыщенных паров, теплота парообразования при нормальных условиях и чувствительность к нагреванию. Пути проникновения и превращения в организме. Источники поступления в окружающую среду.

    контрольная работа , добавлен 24.10.2014

    Химические свойства металлов, их присутствие в организме человека. Роль в организме макроэлементов (калия, натрия, кальция, магния) и микроэлементов. Содержание макро- и микроэлементов в продуктах питания. Последствия дисбаланса определенных элементов.

    презентация , добавлен 13.03.2013

    Понятие, общая характеристика и предназначение процесса каталитического риформинга. Химические основы процесса риформинга: превращение алканов, циклоалканов, аренов. Катализаторы и макрокинетика процесса. Промышленные установки каталитического процесса.

    курсовая работа , добавлен 13.10.2011

    Определение эквивалентной массы металла и соли методом вытеснения водорода. Ход и данные опыта, характеристика приборов. Использование магния в качестве металла, его основные химические свойства. Расчет абсолютной и относительной погрешностей опыта.

    лабораторная работа , добавлен 05.05.2013

    Низкомолекулярные органические соединения различной химической природы, необходимые для осуществления процессов, протекающих в живом организме. Водорастворимые и жирорастворимые витамины. Суточная потребность человека в витаминах и их основные функции.

Оглавление темы "Членистоногие. Хордовые.":









Изучение химии живых организмов, т. е. биохимии , тесно связано с общим бурным развитием биологии в XX в. Значение биохимии заключается в том, что она дает фундаментальное понимание физиологии, иными словами, понимание того, как работают биологические системы.

Это в свою очередь находит применение в сельском хозяйстве (создание пестицидов, гербицидов и т. п.); в медицине (включая всю фармацевтическую промышленность); в различных бродильных производствах, которые поставляют нам широкий ассортимент продуктов, в том числе и хлебо-булочных изделий; наконец во всем, что связано с пищей и питанием, т. е. в диететике, в технологии производства пищевых продуктов и в науке об их хранении. С биохимией связано и появление ряда новых перспективных направлений в биологии, таких как генная инженерия, биотехнология или молекулярный подход к изучению генетических болезней.

Биохимия играет также важную объединяющую роль в биологии. При рассмотрении живых организмов на биохимическом уровне чаще бросаются в глаза не столько различия между ними, сколько их сходство.

Элементы, встречающиеся в живых организмах

Элементы, содержащиеся в живых организмах

В земной коре встречается около 100 химических элементов , но только 16 из них необходимы для жизни. Наиболее распространены в живых организмах (в порядке убывающего числа атомов) четыре элемента: водород, углерод, кислород и азот.

На их долю приходится более 90% как массы, так и числа атомов, входящих в состав всех живых организмов. Однако в земной первые четыре места по распространенности занимают кислород, кремний, алюминий и натрий. Биологическое значение водорода, кислорода, азота и углерода связано в основном с их валентностью, равной соответственно 1, 2, 3 и 4, а также с их способностью образовывать более прочные ковалентные связи, нежели у других элементов той же валентности.

    Введение.

    Элементный состав организмов.

    Молекулы и ионы, входящие в состав организма человека, их содержание и функции.

    Уровни структурной организации химических соединений живых организмов.

    Общие закономерности обмена веществ и энергии в организме человека.

    Особенности протекания обменных процессов при различных состояниях организма.

    Введение. Чем занимается биохимия?

Биохимия изучает химические процессы, происходящие в живых системах. Иначе говоря, биохимия изучает химию жизни. Наука эта относительно молодая. Она родилась в 20 веке. Условно курс биохимии можно разделить на три части.

Общая биохимия занимается общими закономерностями химического состава и обмена веществ разных живых существ от мельчайших микроорганизмов и кончая человеком. Оказалось, что эти закономерности во многом повторяются.

Частная биохимия занимается особенностями химических процессов, протекающих у отдельных групп живых существ. Например, биохимические процессы у растений, животных, грибов и микроорганизмов имеют свои особенности, причем, в ряде случаев очень существенные.

Функциональная биохимия занимается особенностями биохимических процессов протекающих в отдельных организмах, связанных с особенностями их образа жизни. Направление функциональной биохимии, исследующее влияние физических упражнений на организм спортсмена называетсябиохимией спорта или спортивной биохимией .

Развитие физической культуры и спорта требует от спортсменов и тренеров хороших знаний в области биохимии. Это связано с тем, что без понимания того, как работает организм на химическом, молекулярном уровне трудно надеяться на успех в современном спорте. Многие методики тренировки и восстановления базируются в наше время именно на глубоком понимании того, как работает организм на субклеточном и молекулярном уровне. Без глубокого понимания биохимических процессов невозможно бороться и допингом – злом, которое может погубить спорт.

  1. Элементный состав организмов

Организм человека включает химические элементы, которые встречаются также и в неживой природе. Однако по количественному составу химических элементов живые организмы существенно отличаются от неживой природы. Так, например, количественное содержание железа и кремния в неживой природе существенно выше, чем в живых организмах. Характерной отличительной чертой живых организмов является высокое содержание углерода, что связано с преобладанием в них органических соединений.

Человеческий организм состоит из структурных элементов: С-углерод, О-кислород, Н-водород, N-азот, Ca-кальций, Mg-магний, Na-натрий, K-калий, S-сера, P-фосфор, Cl-хлор. Например, Н 2 О, молекула воды, состоит из двух атомов водорода и одного атома кислорода. 70-80% организма человека состоит из воды. Однако жидкости в теле человека, в его клетках, его крови включают кроме воды 0,9% поваренной соли NaCl, молекула которой состоит из натрия и хлора. Все биохимические процессы происходят именно в 0,9% водном растворе поваренной соли, который называют физиологическим раствором. Поэтому даже лекарства для уколов и капельниц растворяют в физиологическом растворе.

В организме человека содержится около 3 кг минеральных веществ, что составляет 4% массы тела. Минеральный состав организма очень разнообразен и в нем можно обнаружить почти всю таблицу Менделеева.

Минеральные вещества распределены в организме крайне неравномерно. В крови, мышцах, внутренних органах содержание минеральных веществ низкое – около 1%. А вот в костях на долю минеральных веществ приходится около половины массы. Эмаль зубов на 98% состоит из минеральных веществ.

Формы существования минеральных веществ в организме также разнообразны.

Во-первых в костях они встречаются в форме нерастворимых солей.

Во-вторых, минеральные элементы могут входить в состав органических соединений.

В-третьих, минеральные элементы могут находиться в организме в виде ионов.

Суточная потребность в минеральных веществах невелика и поступают они в организм с пищей. Их количества обычно в пище достаточно. Однако в редких случаях их может не хватать. Например, в некоторых местностях не хватает йода, в других избыток магния и кальция.

Выводятся из организма минеральные вещества тремя путями в составе мочи, кишечником – в составе кала и с потом – кожей.

Биологическая роль этих веществ этих веществ очень разнообразна.

В организме человека и животных обнаружен около 90 элементов таблицы Д.И. Менделеева. Биогенные химические элементы – химические элементы, присутствующие в живых организмах. По количественному содержанию их принято подразделять на несколько групп:

    Макроэлементы.

    Микроэлементы.

    Ультрамикроэлементы.

Если массовая доля элемента в организме превышает 10 -2 %, то его следует считатьмакроэлементом . Долямикроэлементов в организме составляет 10 -3 -10 -5 %. Если содержание элемента ниже 10 -5 %, его считаютультрамикроэлементом . Конечно, такая градация условна. По ней магний попадает в промежуточную область между макро- и микроэлементами.

Минеральные вещества в организме человека находятся в разном состоянии. В соответствии с этим проявляется и их дей­ствие.

Одна из форм - это когда они являются составной частью органических веществ. Так, например, сера вхо­дит в состав аминокислот цистеина и метионина, железо являет­ся составной частью гемоглобина, йод - гормона щитовидной железы - тироксина, фосфор присутствует в разнообразных ор­ганических соединениях - ATФ, АДФ, других нуклеотидах, нук­леиновых кислотах, фосфатидах (лецитины и кефалины), раз­личных эфирах с гексозами, триозами и т. д.

Вторая форма - это прочные нерастворимые от­ложения солей углекислого, фосфорнокислого кальция и маг­ния, фтористых и других солей в твердых тканях - в костях, зу­бах, рогах, копытах, пере и т. д. Они составляют их минераль­ный остов.

И третья форма - минеральные вещества, растворённые в тканевых жидкостях. Эта группа мине­ральных веществ обеспечивает ряд условий, необходимых для сохранения процессов жизнедеятельности организма. К числу этих условий относятся осмотическое давление, реакция среды, коллоидное состояние белков, состояние нервной системы и т. д. Эти условия в свою очередь зависят от количества минеральных элементов, их соотношения и качественных особенностей по­следних.

Все многообразие веществ животного и растительного мира построено из сравнительно небольшого количества исходных составных частей. Это химические элементы и химические вещества. Из 107 известных химических элементов в живых организмах обнаружено 60, однако в концентрациях, позволяющих не считать этот элемент случайной примесью, только 22. Все химические элементы, встречающиеся в живых организмах, в соответствии с их концентрацией в клетках делят на три группы:

Макроэлементы: C, H, O, N, P, S, Cl, Na, K, Ca.

На их долю приходится более 0,01%. Количество макроэлементов показано в таблице; Микроэлементы: Fe, Mg, Zn, Cu, Co, J, Br, V, F, Mo, Al, Si и др.

На их долю приходится от 0,01 до 0,000001%;

Ультрамикроэлементы: Hg, Au, Ag, Ra и др. На их долю приходится менее 0,000001%.

Элементы

Макроэлементы составляют около 99,9% массы клетки и могут быть подразделены на две группы.Главные биогенные химические элементы (кислород, углерод, водород, азот) составляют 98% от массы всех живых клеток. Они составляют основу органических соединений, а также образуют воду, которая присутствует во всех живых системах в значительных количествах.Во вторую группу макроэлементов входят фосфор, калий, сера, хлор, кальций, магний, натрий, железо, в сумме составляющие 1,9%. Они крайне важны для обеспечения жизнедеятельности организмов, без них невозможно существование любых живых существ.

Натрий и калий находятся в организме в виде ионов. Ионы натрия содержатся вне клеток, а ионы калия сосредоточены внутри клетки. Эти ионы играют важную роль в создании осмотического давления и клеточного потенциала, необходимы для нормальной работы миокарда.

Калий . Около 90% калия находится внутри клеток. Он вместе с другими солями обеспечивает осмотическое давление; участвует в передаче нервных импульсов;регуляции водно-солевого обмена; способствует выведению воды, а, следовательно, и шлаков из организма; поддерживает кислотно-щелочное равновесие внутренней среды организма; участвует в регуляции деятельности сердца и других органов; необходим для функционирования ряда ферментов.

Калий хорошо всасывается из кишечника, а его избыток быстро удаляется из организма с мочой. Суточная потребность в калии взрослого человека составляет 2000-4000 мг. Она увеличивается при обильном потоотделении, при употреблении мочегонных средств, заболеваниях сердца и печени. Калий не является дефицитным нутриентом в питании, и при разнообразном питании недостаточность калия не возникает. Дефицит калия в организме появляется при нарушении функции нервно-мышечной и сердечно-сосудистой систем, сонливости, снижении артериального давления, нарушении ритма сердечной деятельности. В таких случаях назначается калиевая диета.

Большая часть калия поступает в организм с растительными продуктами. Богатыми источниками его являются урюк, чернослив, изюм, шпинат, морская капуста, фасоль, горох, картофель, другие овощи и плоды (100 - 600 мг/100 г продукта). Меньше калия содержится в сметане, рисе, хлебе из муки высшего сорта (100 - 200 мг/100 г).

Натрий содержится во всех тканях и биологических жидкостях организма. Он участвует в поддержании осмотического давления в тканевых жидкостях и крови;в передаче нервных импульсов; регуляции кислотно-щелочного равновесия, водно-солевого обмена; повышает активность пищеварительных ферментов.

Кальций и магний находятся в основном в косной ткани в виде нерастворимых солей. Эти соли придают костям твердость. Кроме того в ионном виде они играют важную роль в сокращении мышц.

Кальций. Это основной структурный компонент костей и зубов; входит в состав ядер клеток, клеточных и тканевых жидкостей, необходим для свертывания крови. Кальций образует соединения с белками, фосфолипидами, органическими кислотами; участвует в регуляции проницаемости клеточных мембран, в процессах передачи нервных импульсов, в молекулярном механизме мышечных сокращений, контролирует активность ряда ферментов. Таким образом, кальций выполняет не только пластические функции, но и влияет на многие биохимические и физиологические процессы в организме.

Кальций относится к трудноусвояемым элементам. Поступающие в организм человека с пищей соединения кальция практически не растворимы в воде. Щелочная среда толстого кишечника способствует образованию трудноусвояемых соединений кальция, и лишь воздействие желчных кислот обеспечивает его всасывание.

Ассимиляция кальция тканями зависит не только от содержания его в продуктах, но и от соотношения его с другими компонентами пищи и, в первую очередь, с жирами, магнием, фосфором, белками. При избытке жиров возникает конкуренция за желчные кислоты и значительная часть кальция выводится из организма через толстый кишечник. На всасывание кальция отрицательно сказывается избыток магния; рекомендуемое соотношение этих элементов составляет 1: 0,5. Наиболее крепкие кости получаются при соотношении Ca:P - 1:1,7.Приблизительно такое соотношение в клубнике и грецких орехах.Если количество фосфора превышает уровень кальция в пище более чем в 2 раза, то образуются растворимые соли, которые извлекаются кровью из костной ткани. Кальций поступает в стенки кровеносных сосудов, что обуславливает их ломкость, а также в ткани почек, что может способствовать возникновению почечно-каменной болезни. Для взрослых рекомендовано соотношение кальция и фосфора в пище 1:1,5. Трудность соблюдения такого соотношения обусловлена тем, что большинство широко потребляемых продуктов значительно богаче фосфором, чем кальцием. Отрицательное влияние на усвоение кальция оказывает фитин и щавелевая кислота, содержащиеся в ряде растительных продуктов. Эти соединения образуют с кальцием нерастворимые соли.

Суточная потребность в кальции взрослого человека составляет 800 мг, а у детей и подростков - 1000 мг и более.

При недостаточном потреблении кальция или при нарушении всасывания его в организме (при недостатке витамина D) развивается состояние кальциевого дефицита. Наблюдается повышенное выведение его из костей и зубов. У взрослых развивается остеопороз - деминерализация костной ткани, у детей нарушается становление скелета, развивается рахит.

Лучшими источниками кальция являются молоко и молочные продукты, различные сыры и творог (100-1000 мг/100 г продукта), зеленый лук, петрушка, фасоль. Значительно меньше кальция содержится в яйцах, мясе, рыбе, овощах, фруктах, ягодах (20-40 мг/100 г продукта).

Магний. ,

При недостатке магния нарушается усвоение пищи, задерживается рост, в стенках сосудов откладывается кальций, развивается ряд других патологических явлений. У человека недостаток ионов магния, обусловленный характером питания, крайне маловероятен. Однако большие потери этого элемента могут происходить при диарее

Фосфор играет в организме важную роль. Он является составной частью солей, входящих в кости. Фосфорная кислота играет исключительно важную роль в энергетическом обмене. Фосфор. Фосфор входит в состав всех тканей организма, особенно мышц и мозга. Этот элемент принимает участие во всех процессах жизнедеятельности организма: синтезе и расщеплении веществ в клетках; регуляции обмена веществ; входит в состав нуклеиновых кислот и ряда ферментов; необходим для образования АТФ.

В тканях организма и пищевых продуктах фосфор содержится в виде фосфорной кислоты и ее органических соединений (фосфатов). Основная его масса находится в костной ткани в виде фосфорнокислого кальция, остальной фосфор входит в состав мягких тканей и жидкостей. В мышцах происходит наиболее интенсивный обмен соединений фосфора. Фосфорная кислота участвует в построении молекул многих ферментов, нуклеиновых кислот и т. д.

При длительном дефиците фосфора в питании организм использует собственный фосфор из костной ткани. Это приводит к деминерализации костей и нарушению их структуры - разрежению. При обеднении организма фосфором снижается умственная и физическая работоспособность, отмечается потеря аппетита, апатия.

Суточная потребность в фосфоре для взрослых составляет 1200 мг. Она возрастает при больших физических или умственных нагрузках, при некоторых заболеваниях.

Большое количество фосфора содержится в продуктах животного происхождения, особенно в печени, икре, а также в зерновых и бобовых. Его содержание в этих продуктах составляет от 100 до 500 мг в 100 г продукта. Богатым источником фосфора являются крупы (овсяная, перловая), в них содержится 300-350 мг фосфора/100 г. Однако из растительных продуктов соединения фосфора усваиваются хуже, чем при потреблении пищи животного происхождения.

Сера. Значение этого элемента в питании определяется, в первую очередь, тем, что он входит в состав белков в виде серосодержащих аминокислот(метионина и цистина), а также является составной частью некоторых гормонов и витаминов.

Как компонент серосодержащих аминокислот сера участвует в процессах белкового обмена, причем потребность в ней резко возрастает в период беременности и роста организма, сопровождающихся активным включением белков в образующиеся ткани, а также при воспалительных процессах. Серосодержащие аминокислоты, особенно в сочетании с витаминами С и Е, оказывают выраженное антиоксидантное действие. Наряду с цинком и кремнием сера определяет функциональное состояние волос и кожи.

Хлор. Этот элемент участвует в образовании желудочного сока, формировании плазмы, активирует ряд ферментов. Этот нутриент легко всасывается из кишечника в кровь. Интересна способность хлора отлагаться в коже, задерживаться в организме при избыточном поступлении, выделяться с потом в значительных количествах. Выделение хлора из организма происходит главным образом с мочой (90%) и потом.

Нарушения в обмене хлора ведут к развитию отеков, недостаточной секреции желудочного сока и др. Резкое уменьшение содержания хлора в организме может привести к тяжелому состоянию, вплоть до смертельного исхода. Повышение его концентрации в крови наступает при обезвоживании организма, а также при нарушении выделительной функции почек.

Суточная потребность в хлоре составляет примерно 5000 мг. Хлор поступает в организм человека в основном в виде хлористого натрия при добавлении его в пищу.

Магний. Этот элемент необходим для активности ряда ключевых ферментов, обеспечивающих метаболизм организма. Магний участвует в поддержании нормальной функции нервной системы и мышцы сердца; оказывает сосудорасширяющее действие; стимулирует желчеотделение; повышает двигательную активность кишечника, что способствует выведению шлаков из организма (в том числе холестерина).

Усвоению магния мешают наличие фитина и избыток жиров и кальция в пище. Ежедневная потребность в магнии точно не определена; считают, однако, что доза 200-300 мг/сут предотвращает проявление недостаточности (предполагается, что всасывается около 30% магния).

При недостатке магния нарушается усвоение пищи, задерживается рост, в стенках сосудов откладывается кальций.

Железо входит в составгема, составной части гемоглобина. Этот элемент необходим для биосинтеза соединений, обеспечивающих дыхание, кроветворение; он участвует в иммунобиологических и окислительно-восстановительных реакциях; входит в состав цитоплазмы, клеточных ядер и ряда ферментов.

Ассимиляции железа препятствует щавелевая кислота и фитин. Для усвоения этого нутриента необходим витамин В 12 .Усвоению железа способствует также аскорбиновая кислота, поскольку железо всасывается в виде двухвалентного иона.

Недостаток железа в организме может привести к развитию анемии, нарушаются газообмен, клеточное дыхание, то есть фундаментальные процессы обеспечивающие жизнь. Развитию железодефицитных состояний способствуют: недостаточное поступление в организм железа в усвояемой форме, понижение секреторной активности желудка, дефицит витаминов (особенно В 12 , фолиевой и аскорбиновой кислот) и ряд заболеваний, вызывающих кровопотери. Потребность взрослого человека в железе (14 мг/сут) с избытком удовлетворяется обычным рационом.Однако при использовании в пище хлеба из муки тонкого помола, содержащего мало железа, у городских жителей весьма часто наблюдается дефицит железа. При этом следует учесть, что зерновые продукты, богатые фосфатами и фитином, образуют с железом труднорастворимые соединения и снижают его ассимиляцию организмом.

Железо - широко распространенный элемент. Он содержится в субпродуктах, мясе, яйцах, фасоли, овощах, ягодах. Однако в легкоусвояемой форме железо содержится только в мясных продуктах, печени (до 2000 мг/100 г продукта), яичном желтке.

Микроэлементы (марганец, медь, цинк, кобальт, никель, йод, фтор) составляют менее 0,1% от массы живых организмов. Однако эти элементы необходимы для жизни организмов. Микроэлементы содержатся в сверхмалых концентрациях. Их потребность в сутки составляет микрограммы, то есть миллионные доли грамма. Из них есть незаменимые и условно незаменимые.

Незаменимые: Ag-серебро, Co-кобальт, Cu-медь, Cr-хром, F-фтор, Fe - железо, I -йод, Li - литий, Mn - марганец, Mo - молибден, Ni - никель, Se - селен, Si - кремний, V - ванадий, Zn - цинк.

Условно незаменимые: B - бор, Br - бром.

Возможно незаменимые: Al - алюминий, As - мышьяк, Сd - кадмий, Pb - свинец, Rb - рубидий.

Марганец оказывает благоприятное воздействие на нервную систему, способствует выработке нейромедиаторов - веществ, ответственных за передачу импульсов между волокнами нервной ткани, также способствует нормальному развитию костей, укрепляет иммунную систему, способствует нормальному протеканию пищеварительного процесса инсулинового и жирового обменов. К тому же, процесс обмена витаминов А, С и группы В может нормально происходить только в том случае, когда в организме присутствует достаточное количество марганца. Благодаря марганцу обеспечивается нормальный процесс образования и роста клеток, рост и восстановление хрящей, быстрейшее заживление тканей, хорошая работа головного мозга и правильный обмен веществ, обладает отличными антиоксидантными свойствами. Этот элемент регулирует баланс сахара в крови, а также способствует нормальному процессу образования молока у кормящих женщин. Оптимальное содержание марганца можно обеспечить благодаря употреблению сырых овощей, фруктов и зелени.

Роль меди в организме огромна. Прежде всего, она принимает активное участие в построении многих необходимых нам белков и ферментов, а также в процессах роста и развития клеток и тканей. Медь необходима для нормального процесса кроветворения и работы иммунной системы.Медь - входит в состав окислительных ферментов, участвующих в синтезе цитохромов.

Цинк - входит в состав ферментов, участвующих в спиртовом брожении, в составинсулина

Кобальт влияет на физиологическое и патофизиологическое состояние организма человека. Есть сведения о влиянии его на метаболизм углеводов и липидов, на функцию щитовидной железы, состояние миокарда. В состав витамина В12 входит кобальт.

Для организма человека и животных никель – необходимый питательный элемент, но учёные немного знают о его биологической роли. В животных и растительных организмах он участвует в ферментативных реакциях, а у птиц накапливается в перьях. У нас он содержится в печени и почках, поджелудочной железе, гипофизе и лёгких. Никель влияет на процессы кроветворения, сохраняет структуру нуклеиновых кислот и клеточных мембран; участвует в обмене витаминов С и В12, кальция и других веществ.

Йод очень важен для нормального роста и развития детей и подростков: он участвует в образовании костно-хрящевой ткани, синтезе белка, стимулирует умственные способности, улучшает работоспособность и уменьшает утомляемость. В организме йод участвует в процессе синтеза тироксина и трийодтиронина – гормонов, необходимых для нормальной работы щитовидной железы.

Фтор нужен для формирования эмали зубов, йод входит в состав гормонов щитовидной железы, кобальт является составной частью витамина В12.

К ультрамикроэлементам относятся большое количество химических элементов (литий, кремний, олово, селен, титан, ртуть, золото, серебро и многие другие), которые суммарно составляют менее 0,01% массы клетки. Для ряда из ультрамикроэлементов установлено их биологическое значение, для других нет. Возможно накопление некоторых из них в клетках и тканях человека и других организмов является случайным и связано с антропогенным загрязнением окружающей среды. С другой стороны, возможно, что биологическое значение ряда ультрамикроэлементов еще не выявлено.

Литий способствует снижению нервной возбудимости, улучшает общее состояние при заболеваниях нервной системы, оказывает антиаллергическое и антианафилактическое действие, имеет некоторое влияние на нейроэндокринные процессы, принимает участие в углеводном и липидном обменах, повышает иммунитет, нейтрализует действие радиации и солей тяжелых металлов на организм, а также действие этилового спирта.

Кремний участвует в усвоении организмом более 70 минеральных солей и витаминов, способствует усвоению кальция и росту костей, предупреждает остеопороз, стимулирует иммунную систему. Кремний необходим для здоровья волос, улучшает состояние ногтей и кожи, укрепляет соединительные ткани и сосуды, снижает риск сердечно-сосудистых заболеваний, укрепляет суставы - хрящи и сухожилия.

Известно, что олово улучшает процессы роста, является одним из составляющих желудочного фермента гастрина, воздействует на активность флавиновых ферментов (биокатализаторы некоторых окислительно-восстановительных реакций в организме), играет существенную роль в правильном развитии костных тканей.

Селен - участвует в регуляторных процессах организма. Селен, входя в состав фермента глютатионпероксидазы препятствует оседанию тромбов на стенках сосудов, благодаря чему является антиоксидантом и препятствует развитию атеросклероза. Не так давно выяснено, что недостаток селена приводит к развитию онкологических заболеваний.

Титан является постоянной составной частью организма и выполняет определенные жизненно важные функции: повышает эритропоэз, катализирует синтез гемоглобина, иммуногенез, стимулируют фагоцитоз и активируют реакции клеточного и гуморального иммунитета.

Ртуть обладает определенным биотическим эффектом и оказывает стимулирующее действие на процессы жизнедеятельности (в количествах, соответствующих физиологическим, т. е. нормальным для человека, концентрациям). Есть сведения о присутствии ртути в ядерной фракции живых клеток и о значении этого металла в реализации информации, заложенной в ДНК, и ее передаче при помощи транспортных РНК. Говоря проще, полное удаление ртути из организма, видимо, нежелательно, и те самые 13 мг, «заложенные» в нас природой, должны всегда содержаться в человеке (что, кстати, вполне согласуется с упомянутым выше законом Кларка-Вернадского о всеобщем рассеянии элементов).

Золото и серебро оказывают бактерицидное воздействие Многие микроэлементы и ультрамикроэлементы в больших количествах токсичны для человека.

Недостаток или избыток в питании каких-либо минеральных веществ вызывает нарушение обмена белков, жиров, углеводов, витаминов, что приводит к развитию ряда заболеваний. Наиболее распространенным следствием несоответствия в рационе количества кальция и фосфора является кариес зубов, разрежение костной ткани. При недостатке фтора в питьевой воде разрушается зубная эмаль, дефицит йода в пище и воде приводит к заболеваниям щитовидной железы. Таким образом, минеральные вещества очень важны для устранения и профилактики ряда заболеваний.

В представленных таблицах приведены характерные (типичные) симптомы при дефиците различных химических элементов в организме человека:

В соответствии с рекомендацией диетологической комиссии Национальной академии США ежедневное поступление химических элементов с пищей должно находиться на определенном уровне (табл. 5.2). Столько же химических элементов должно ежесуточно выводиться из организма, поскольку их содержание в нем находится в относительном постоянстве.

Роль минеральных веществ в организме человека чрезвычайно разнообразна, несмотря на то, что они не являются обязательным компонентом питания. Минеральные вещества содержатся в протоплазме и биологических жидкостях, играют основную роль в обеспечении постоянства осмотического давления, что является необходимым условием для нормальной жизнедеятельности клеток и тканей. Они входят в состав сложных органических соединений (например, гемоглобина, гормонов, ферментов), являются пластическим материалом для построения костной и зубной ткани. В виде ионов минеральные вещества участвуют в передаче нервных импульсов, обеспечивают свертывание крови и другие физиологические процессы организма.

Ионы макро -и микроэлементов активно транспортируютсяферментами через клеточную мембрану. Только в составе ферментов ионы макро- и микроэлементы могут выполнять свою функцию. Поэтому пищевые продукты и лекарственные травы предпочтительнее химиотерапевтическим препаратам для лечения гипомикроэлементоза. К тому же, если учесть, что из продуктов и растений человеческий организм берет микроэлемента ровно столько, сколько ему нужно, это помогает избежать гипермикроэлементоза. А превышение макро- и микроэлементов в организме бывает гораздо опаснее, чем их недостаток. При применении химических препаратов кальция типичным является отложение кальция в молочных железах, желчном пузыре, печени, почках, в общем, везде, где угодно, но не в костях

Ферменты - это маленькие частицы, которые активно обеспечивают работу всех функциональных систем. Они производят пищеварение, например, амилаза (диастаза) слюны переваривает крахмалы картофеля и злаков, липаза поджелудочной железы переваривает жиры, химотрипсин переваривает белки и т.д. Кроме того, ферменты «перетягивают» нужные вещества через клеточные мембраны, например, в почках осуществляется активный транспорт ионов кальция, натрия, хлора и других, а, следовательно, они регулируют кальциевый состав костей и артериальное давление. Фермент лизоцим «убивает» вредные микробы. Фермент цитохром Р-450 участвует во многих биохимических реакциях, например, разлагает химические лекарства и выводит их из клеток, окисляет холестерин до стероидных гормонов (т.е. производит гормоны) и т.д. Этих маленьких работяг, - ферментов, - в организме тысячи видов, и нет никаких биохимических и физиологических преобразований, в которых они бы не участвовали. Как и функциональный элемент микроциркуляции органа, так ифермент - это первичный элемент, первооснова любых процессов, и это должно всегда учитываться в лечении болезни. Очень важно знать, что в химическом лекарстве нет ферментов, а в травах и продуктах они есть. Например, корни хрена содержат фермент лизоцим. Кроме того, ферменты есть в меде, например, инвертаза, диастаза, каталаза, фосфатаза, пероксидаза, липаза и т.д. Мед нежелательно растапливать и нагревать выше 38 0 , потому что тогда ферменты распадаются.

В состав фермента входит несколько молекул белка, соединенных между собой и представляющих в микромире огромный размер и две маленьких части, одна из них - витамин, вторая - микроэлемент. Именно потому лечение травами предпочтительнее химии, что трава содержит и белки, и витамины, и микроэлементы, - этот гармоничный состав фермента создан Творцом. В натуральных продуктах, например, в меде, содержатся все 22 незаменимые аминокислоты, которые нужны для синтеза белков. В меде имеются макроэлементы, все незаменимые микроэлементы кроме фтора, йода и селена, а также почти все условно незаменимые микроэлементы. И наоборот, химические лекарства, вырабатываемые промышленностью, особым непостижимым образом связаны с отцом промышленности Каином. И следствием подобной связи является лишение фармакологических средств, состоящих из одной химической формулы, всего богатства мира, созданного Творцом, одной из маленьких трудолюбивых первочастиц которого являетсяфермент .

ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ ПО БИОЛОГИЧЕСКОЙ ХИМИИ

для студентов стоматологического факультета

1. Предмет и задачи биологической химии. Обмен веществ и энер­гии, иерархическая структура организации и само­вос­про­из­ве­де­ние как важнейшие признаки живой материи.

2. Место биохимии среди других биологических дисциплин. Уровни структурной организации живого. Биохимия как молекулярный уровень изучения явлений жизни. Биохимия и медицина.

3. Изучение биохимических закономерностей формирования звеньев зубочелюстного аппарата и поддержания их дееспособности – фундаментальная основа комплекса стоматологических дисциплин.

4. Белковые молекулы – основа жизни. Элементарный состав белков. Открытие аминокислот. Пептидная теория строения белков.

5. Строение и классификация аминокислот. Их физико-химические свойства. Методы разделения белков по физико-химическим свойствам.

6. Молекулярный вес белков. Размеры и формы белковых молекул. Глобулярные и фибриллярные белки. Простые и сложные белки.

7. Физико-химические свойства белков: растворимость, ионизация, гидратация, осаждение белков из растворов. Денатурация. Методы количествен­но­го измерения концентрации белков.

8. Первичная структура белков. Зависимость биологических свойств от первичной структуры. Видовая специфичность первич­ной структуры белков.

9. Конформация пептидных цепей (вторичная и третичная струк­ту­ра). Связи, обеспечивающие конформацию белка. Зависимость биологических свойств от конформации.

10. Доменная организация белковых молекул. Разделение белков по семействам и суперсемействам.

11. Четвертичная структура белков. Зависимость биологической актив­­ности белков от четвертичной структуры. Кооперативные изменения конформации протомеров (на примере гемоглобина).

12. Конформационные изменения белков как основа функционирования и саморегуляции белков.

13. Нативные белки. Факторы денатурации и ее механизм.

14. Классификация белков по химическому составу. Краткая характеристика группы простых белков.

15. Сложные белки: определение, классификация по небелковому компоненту. Краткая характеристика представителей.

16. Биологические функции белков. Способность к специфическим взаимодействиям («узнавание») как основа биологических функ­­ций всех белков. Типы природных лигандов и особенности их взаимодействия с белками.

17. Различие белкового состава органов и тканей. Изменение белкового состава при онтогенезе и болезнях.

18. Ферменты, история открытия. Особенности ферментативного катализа. Специфичность действия ферментов. Классификация и номенклатура ферментов.

19. Строение ферментов. Активный центр ферментов, теории его формирования.

20. Основные этапы ферментативного катализа (механизм действия ферментов).

21. Зависимость скорости ферментативных реакций от темпера­ту­ры, рН, концентрации ферментов и субстрата.

22. Кофакторы ферментов: ионы металлов и коферменты. Кофер­мент­­­ные функции витаминов (схема).

23. Активация ферментов (частичный протеолиз, восстановление тиоловых групп, удаление ингибиторов). Понятие об активаторах, механизм их действия.

24. Ингибиторы ферментов. Типы ингибирования. Лекарственные препараты – ингибиторы ферментов.

25. Регуляция действия ферментов: аллостерические ингибиторы и ак­тиваторы, каталитический и регуляторный центры. Регуляция ак­тивности ферментов по типу обратной связи, путем фосфорили­ро­ва­­ния и дефосфорилиро­ва­ния.

26. Различия ферментного состава органов и тканей. Орга­но­спе­ци­фи­ческие ферменты. Изменения активности ферментов в процессе развития и при болезнях.

27. Наследственные и приобретенные энзимопатии. Изоферменты.

28. Витамины. История открытия и изучения витаминов. Функ­ции витаминов. Алиментарные и вторичные авитаминозы и гипо­вита­минозы. Гипервитаминозы.

29. Витамины группы Д. Провитамины, строение, превращение в активную форму, влияние на обмен веществ и процессы минерализации.

30. Витамин А, химическое строение, роль в процессах метаболизма. Проявления гипо- и гипервитаминоза.

31. Витамин С, химическое строение, роль в процессах жизнедеятельности, суточная потребность, влияние на обмен тканей полости рта, проявления недостаточности.

32. Основные уровни регуляции метаболизма. Аутокринная, паракринная и эндокринная регуляция.

33. Гормоны, понятие, общая характеристика, химическая природа, биологическая роль.

34. Гормональная регуляция как механизм межклеточной и меж­ор­ганной координации обмена веществ. Клетки-мишени и кле­точ­ные рецепторы гормонов.

35. Механизм передачи гормонального сигнала в клетку гормонами мембранного способа рецепции. Вторичные посредники.

36. Механизм передачи гормонального сигнала эффекторным системам гормонами цитозольного способа рецепции.

37. Центральная регу­ля­ция эндокринной системы. Роль либеринов, статинов, тропных гор­монов гипофиза.

38. Инсулин, строение, образование из проинсулина. Влия­ние на обмен углеводов, липидов, аминокислот.

39. Строение, синтез и метаболизм иодтиронинов. Влияние на обмен веществ. Гипо- и гипертиреозы: механизм возникновения и последствия.

40. Гормоны, регулирующие метаболизм минерализованных тканей (паратирин, кальцитонин, соматотропин), места выработки, химическая природа, механизм регуляторного действия.

41. Эйкозаноиды: понятие, химическое строение, представители. Роль эйкозаноидов в регуляции метаболизма и физиологических функций организма.

42. Низкомолекулярные белки межклеточного общения (факторы роста и другие цитокины) и их клеточные рецепторы.

43. Катаболизм и анаболизм. Эндэргонические и экзэргонические реак­ции в живой клетке. Макроэргические соединения. Дегид­ри­ро­вание субстратов и окисление водорода (образование воды), как источник энергии для синтеза АТФ.

44. НАД-зависимые и флавиновые дегидрогеназы, убихинон-дегидрогеназа, цитохромы в, с, с 1 , а 1 и а 3 как компоненты дыхательной цепи.

45. Строение митохондрий и структурная организация дыхательной це­пи. Трансмембранный электрохимический потенциал как про­ме­жуточная форма энергии при окислительном фосфорилиро­ва­нии.

46. Дыхательная цепь как важнейшая ред-окс-система организма. Сопряжение процессов окисления и фосфорилирования в дыхательной цепи. Коэффициент Р/О.

47. Терморегуляторная функция тканевого дыхания.

48. Регуляция дыхательной цепи. Разобщение тканевого дыхания и окис­ли­тель­ного фосфорилирования. Разобщающие агенты.

49. Нарушение энергетического обмена: гипоксические состояния. Витамины РР и В 2 . Проявление авитаминозов.

50. Катаболизм основных пищевых веществ, стадии. Понятие о специфических и общих путях катаболизма.

51. Пировиноградная кислота, пути ее образования. Окислительное декарбоксилирование пировиноградной кис­ло­ты: последова­тель­ность реакций, строение пируватдегидроге­наз­но­го комплекса.

52. Ацетил-КоА, пути образования и превращения в организме. Значение этих процессов.

53. Цикл трикарбоновых кислот: последовательность реакций, харак­те­рис­тика ферментов. Связь между общими путями катаболизма и цепью переноса электронов и протонов.

54. Аллостерические механизмы регуляции цитратного цикла. Обра­зо­вание СО 2 при тканевом дыхании. Анаболические функции ЦТК. Витамин В 1 и пантотеновая кислота, их биологическая роль.

55. Пищевые белки. Общая схема источников и путей расхо­до­ва­ния аминокислот в тканях. Эндогенный и экзогенный пул аминокислот.

56. Нормы белка в питании. Азотистый баланс. Физиологический минимум белка в пище. Качественный состав пищевых белков.

57. Протеолиз белков. Общая характеристика и классификация протеиназ пищеварительного канала, субстратная специфичность. Всасывание ами­но­кислот.

58. Трансаминирование, механизм реакции, коферментная функция витамина В 6 . Специ­фичность аминотрансфераз. Биологическая роль реакций транс­ами­нирования.

59. Окислительное дезаминирование аминокислот, химизм реакции. Оксидазы D- и L-аминокислот. Глутаматдегидрогеназа.

60. Непрямое дезаминирование (транс-дезаминирование) аминокис­лот. Биоло­ги­чес­кое значение реакций дезаминирования.

61. Декарбоксилирование аминокислот, химизм. Биогенные ами­ны. Проис­хож­дение, функции. Инактивация биогенных аминов.

62. Особенности метаболизма отдельных аминокислот. Глицин и серин. Механизм их взаимопревращений. Роль глицина в процессах биосинтеза биологически важных соединений.

63. Трансметилирование. Метионин и S-аденозилметионин. Их роль в реакциях биосинтезов и обезвреживания.

64. ТГФК и синтез одноуглеродных групп, их использование. Про­явление недостаточности В 9 . Антивитамины фолиевой кислоты. Сульфаниламидные препараты.

65. Особенности метаболизма фенилаланина и тирозина, главные пути, функционально значимые метаболиты. Генетические дефекты метаболизма этих аминокислот.

66. Конечные продукты обмена аминокислот: соли аммония и мочевина. Основные источники и пути обезвреживания аммиака в организме.

67. Роль глутамата в обезвреживании и транспорте аммиака, синтезе пролина. Образование и выведение солей аммония.

68. Биосинтез мочевины, последовательность реакций. Связь орнитинового цикла с ЦТК. Нарушения образования и выведения мочевины. Гипераммониемия, уремия.

69. Нуклеиновые кислоты, типы, нуклеотидный состав, локализация в клетке, биологическая роль.

70. Строение и биологические функции мононуклеотидов.

71. Первичная и вторичная структура ДНК, укладка в хромосому. Биосинтез ДНК. ДНК-полимеразы. Понятие о репликативной системе. Повреждение и репарация ДНК.

72. РНК, первичная и вторичная структура, типы РНК в клетке, функции РНК. Биосинтез РНК, ферменты.

73. Нуклеазы пищеварительного тракта и тканей. Распад пуриновых нуклеотидов. Причины гиперурикемии. Подагра.

74. Представление о биосинтезе пуриновых нуклеотидов. Проис­хож­­­дение атомов «С» и «N» в пуриновом ядре. Инозиновая кислота как предшественница адениловой и гуаниловой кислот.

75. Представление о распаде и биосинтезе пиримидиновых нуклеотидов.

76. Биосинтез белков, современные представления. Основные компоненты белоксинтезирующей системы. Этапы биосинтеза.

77. Транспортная РНК как адаптатор аминокислот. Биосинтез аминоацил- т-РНК. Субстратная специфичность АРС-аз. Изоакцеп­тор­ные т-РНК.

78. Строение рибосом. Последовательность событий на рибосоме при сборке полипептидной цепи. Посттрансляционные изменения белка.

79. Регуляция биосинтеза белков. Понятие об опероне, регуляция биосинтеза на уровне транскрипции.

80. Молекулярные механизмы генетической изменчивости. Моле­ку­лярные мутации, типы, частота.

81. Механизмы увеличения числа и разнообразия генов в геноме в хо­де эволюции как проявление дифференциальной активности генов.

82. Клеточная дифференцировка. Изменение белкового состава кле­ток при дифференцировке (на примере синтеза Нb при развитии эритроцита).

83. Полиморфизм белков как проявление генетической гетероген­нос­ти. Варианты Нb, Нр, ферментов, группоспецифи­чес­ких веществ крови.

84. Наследственные болезни: распространенность, происхождение дефектов в генотипе. Механизм возникновения и биохимические проявления наследственных болезней.

85. Основные углеводы животных, их содержание в тканях, биологическая роль. Основные углеводы пищи. Переваривание углеводов.

86. Глюкоза как важнейший метаболит обмена: общая схема источников и путей расходования глюкозы в организме.

87. Катаболизм глюкозы. Аэробный распад – основной путь катаболизма глюкозы. Этапы, энергетика. Распростране­­ние и фи­зи­о­­л­о­гическое значение процесса.

88. Анаэробный распад глюкозы (анаэробный гликолиз). Гликоли­ти­ческая оксиредукция, субстратное фосфорилирование. Биоло­гическое значение.

89. Биосинтез глюкозы (глюконеогенез) из молочной кислоты. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори).

90. Представление о пентозофосфатном пути превращения глюкозы. Стадии, энергетика. Распространение и физиологи­чес­кое значение. Пентозофосфатный цикл.

91. Строение, свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена и его мобилизация. Роль инсулина, глюкагона, адреналина в метаболизме глико­гена.

92. Наследственные нарушения обмена моносахаридов и дисахари­дов. Гликогенозы и агликогенозы.

93. Липиды: определение, классификации, важнейшие функции.

94. Важнейшие липиды тканей человека. Резервные липиды и липиды мембран. Характеристика жирных кислот тканей человека.

95. Пищевые жиры и их переваривание. Липазы и фосфолипазы и их роль. Нарушение переваривания и всасывания липидов. Ресинтез триацил- глицеринов в энтероците.

96. Транспортные формы липидов крови: хиломикроны и липопротеины, особенности химического состава, строения. Взаимопревращения разных классов липопротеинов.

97. Резервирование и мобилизация жиров в жировой ткани. Регу­ля­­ция синтеза и мобилизации жиров. Роль инсулина и глюкагона. Транспорт жирных кислот.

98. Обмен жирных кислот. b-окисление: локализация, энергетика, биологическое значение. Метаболическая судьба ацетил-КоА.

99. Биосинтез жирных кислот, компоненты, схема биосинтеза. Биосинтез ненасыщенных жирных кислот.

100. Биосинтез и использование ацетоуксусной кислоты. Физиоло­ги­ческое значение этого процесса. Кетоновые тела. Причины кетонемии и кетонурии.

101. Обмен стероидов. Холестерин, строение, роль. Представление о биосинтезе холестерина. Регуляция синтеза. Гиперхолестеринемия и ее причины.

102. Атеросклероз как следствие нарушений метаболизма холестерина и липопротеинов.

103. Основные фосфолипиды тканей человека, их физиологические функции. Биосинтез и распад фосфолипидов.

104. Основные гликолипиды тканей человека, строение, биологическая роль. Представление о биосинтезе и катаболизме гликолипидов. Сфинголипидозы.

105. Обмен безазотистого остатка аминокислот. Глюкогенные и кетогенные аминокислоты. Роль инсулина, глюкагона, адреналина и кортизола в регуля­ции обмена углеводов, жиров и аминокислот.

106. Сахарный диабет, причины возникновения. Важнейшие биохимические нарушения в обмене белков, липидов и углеводов. Изменения со стороны полости рта при сахарном диабете.

107. Химическое строение и роль основных компонентов (белков, липидов, углеводов) в функции мембран. Общие свойства мембран: жидкостность, поперечная асиммет­рия, избирательная прони­цаемость.

108. Главные функции биомембран. Эндоцитоз и экзоцитоз, их функцио­нальное значение.

109. Механизм переноса веществ через мембраны: простая диффузия, первично-активный транспорт, вторично-активный транспорт (симпорт, антипорт). Регулируемые трансмембранные каналы.

110. Биохимия крови. Особенности развития, строения и хими­чес­ко­го состава эритроцитов. Биосинтез гема. Строение молекулы гемо­­глобина.

111. Дыхательная функция крови: транспорт кислорода кровью. Карбоксигемоглобин, метгемо­гло­бин. Транспорт двуокиси углерода кровью. Анемическая гипоксия.

112. Распад гемоглобина. Образование билирубина. Обезвреживание билирубина. «Пря­мой» и «непрямой» билирубин.

113. Нарушение обмена билирубина. Желтуха (гемолитическая, обтурационная, печеночно-клеточная). Желтуха новорожденных.

114. Обмен железа. Трансферрин и ферритин. Железодефицитные анемии. Идиопатический гемохроматоз.

115. Белковый спектр плазмы крови. Альбумины и их функции. Глобулины, краткая характеристика, функции. Белки «острой фазы». Ферменты крови. Их происхождение.

116. Небелковые азотсодержащие и безазотистые вещества плазмы крови, происхождение, диагностическое значение определения.

117. Минеральные компоненты крови. Распределение между плазмой и клетками, нормальные диапазоны колебаний важнейших из них.

118. Электролитный состав жидкостей организма. Механизм поддержания объема, состава и рН жидкостей организма.

119. Буферные системы крови. Нарушения кислотно-основного состояния организма. Причины развития и формы ацидоза и алкалоза.

120. Роль почек в регуляции водно-электролитного обмена. Строение и механизм регулирующего действия вазопрессина и альдостерона.

121. Регуляция сосудистого тонуса. Краткая характеристика ренин-ангиотензиновой и калликреин-кининовой систем, их взаимосвязь.

122. Свертывание крови. Внутренний и внешний механизмы сверты­ва­ния. Каскадный механизм процессов свертывания крови. Роль витамина К в свертывании крови.

123. Противосвертывающая система. Естественные антикоагулянты крови. Гемофилии.

124. Фибринолитическая система крови. Плазминоген, его активация. Нарушения процессов свертывания крови. Синдром ДВС.

125. Соединительная ткань, типы, метаболические и функциональные особенности клеток соединительной ткани.

126. Волокнистые структуры соединительной ткани. Коллаген: многообразие типов, особен­ности аминокислотного состава, первичной и пространственной структуры, биосинтеза.

127. Самосборка коллагеновых фибрилл. «Старение» коллагеновых волокон.

128. Эластин соединительной ткани: особенности аминокислотного состава и пространственной структуры молекулы. Неколлагеновые белки соеди­ни­тельной ткани.

129. Катаболизм коллагена и эластина. Слабость антиоксидантной системы в соединительной ткани.

130. Гликозаминогликаны и протеогликаны соединительной ткани: строение и функции.

131. Биосинтез и постсинтетическая модификация гликозоаминогликанов и протеогликанов соединительной ткани. Деградация основного вещества соединительной ткани.

132. Костная ткань: соотношение органических и минеральных компонентов, особенности метаболизма костной ткани.

133. Роль витаминов С, Д, А и К в метаболизме костной и зубной тканей. Регуляция процессов метаболизма. Остеопороз и остеомаляция.

134. Гормональная регуляция остеогенеза, ремоделирования и минерализации костной ткани.

135. Состав и метаболические особенности зрелого зуба.

136. Слюна: минеральные и органические компоненты, их биологические функции.

137. Главные группы белков слюны, их роль. Ферменты слюны. Диагностическое значение определение активности ферментов слюны.

138. Метаболические функции фтора. Пути поступления фторидов в организм и их выведение. Распределение фтора в организме.

139. Роль ионов фтора в процессах минерализации костной и зубной тканей. Токсические эффекты избытка фтора. Проявление недостаточности фтора. Применение препаратов фтора в стоматологии.

140. Роль печени в процессах жизнедеятельности. Обез­вре­жи­ваю­щая функция печени. Метаболизм обезвреживания чужеродных ве­ществ: реакции микросомального окисления и конъюгации.

141. Обезвреживание в печени шлаков, метаболитов, биологически активных веществ, продуктов гниения (примеры).

142. Токсичность кислорода: образование активных форм кислорода, их действие на липиды. Перекисное окисление липидов мембран. Антиоксидантная система.

143. Представление о химическом канцерогенезе.

144. Химический состав серого и белого вещества мозга. Миелин. Строение, липидный состав.

145. Элементарные акты нервной деятельности. Роль трансмембранного градиента ионов в передаче нервного импульса.

146. Важнейшие медиаторы нервных импульсов и их рецепторы. Нейропептиды.

147. Особенности энергетического обмена в нервной ткани.

148. Химический состав мышечной ткани. Основные белки миофибрил и саркоплазмы. Роль миоглобина.

149. Механизм мышечного сокращения и расслабления. Особенности энергетического обмена в мышечной ткани.

Биохимические константы и элементы

  • Биохимические факторы утомления при выполнении длительных упражнений
  • бязательно к изображению сопряжение перекрытий с несущими стенами (опирание или примыкание), решение пола 1-го этажа, элементы покрытия видом и в сечении.
  • В подвале сайта необходимо структурировать все размещенные элементы, выровняв их по сетке. Данная мерапозволит подвалу сайта выглядеть более структурированным.
  • В своем росте государство стремится вобрать в себя наиболее ценные элементы физического окружения, береговые линии, русла рек, равнины, районы, богатые ресурсами.

  • Организм живых существ состоит не просто из молекул и атомов, а из совокупности таких элементов, которые позволяют ему осуществлять гармонично и слаженно все процессы жизнедеятельности. Именно благодаря таким структурам, как биогенные элементы, человек, растения, животные, грибы и бактерии могут двигаться, дышать, питаться, размножаться и вообще жить. Все они имеют свои ячейки в общей химической системе Менделеева.

    Биогенные элементы - это какие?

    В целом следует заметить, что из известных 118 элементов на сегодняшний день точная роль и значение в организме живых существ определены у сравнительно немногих. Хотя экспериментальные данные позволили установить, что каждая клетка человека содержит примерно 50 химических элементов. Именно они и получили название биогенных, или биофильных.

    Конечно, большинство из них тщательно изучены, рассмотрены все варианты их влияния на здоровье и состояние человека (как при избытке, так и при недостатке). Однако сохраняется некоторая доля веществ, роль которых до конца не понятна. Это предстоит еще установить.

    Классификация биофильных элементов

    Биогенные элементы можно разделить на три группы по количественному содержанию и значению для живых систем.

    1. Макробиогенные - те, из которых построены все жизненно важные соединения: белки, нуклеиновые кислоты, углеводы, липиды и прочие. Это основные биогенные элементы, к ним относятся углерод, водород, кислород, сера, натрий, хлор, магний, кальций, фосфор, азот, калий. Их содержание в организме максимально по отношению к другим.
    2. Микробиогенные - содержащиеся в меньшем количестве, но играющие очень большую роль в поддержании нормального уровня жизнедеятельности, осуществлении множества процессов и сохранении здоровья. В эту группу входят марганец, селен, фтор, ванадий, железо, цинк, йод, рутений, никель, хром, медь, германий.
    3. Ультрамикробиогенные. Какова роль, которую играют в организме эти биогенные химические элементы, пока не выяснено. Однако считается, что они также важны и должны поддерживаться в постоянном балансе.

    Данная классификация биогенных элементов отражает значимость того или иного вещества. Однако существует и другая, которая разделяет все имеющиеся в организме соединения на металлы и неметаллы. Таблица химических элементов находит отражение в живых системах, что еще раз подчеркивает, насколько все взаимосвязано.

    Характеристика и значение макроэлементов

    Если разобраться в строении белковых молекул, то несложно понять, насколько важны биогенные элементы группы макроэлементов. Ведь в состав их входят:

    • углерод;
    • кислород;
    • водород;
    • азот;
    • иногда сера.

    То есть все перечисленные вещества, которые мы назвали, являются жизненно необходимыми. Это вполне оправданно, ведь не зря же белки называют основой жизни.

    Химия биогенных элементов играет в этом не последнюю роль. Ведь, например, именно благодаря химическим особенностям углерода он способен соединяться с одноименными атомами, формируя громадные макроцепи - основу всех органических соединений, а значит, жизни. Если бы не способность водорода формировать водородные связи между молекулами, то вряд ли смогли бы существовать белки и нуклеиновые кислоты. Без них не было бы и живых существ.

    Кислород как один из главнейших элементов не только входит в состав самого главного вещества на планете - воды, но и обладает сильной электроотрицательностью. Это позволяет ему принимать участие во многих взаимодействиях, в том числе образовывать водородные связи.

    О значении воды говорить, наверное, нет необходимости. Каждый ребенок знает о ее важности. Она - растворитель, среда для протекания биохимических реакций, основной компонент цитоплазмы клеток и так далее. Ее биогенными элементами являются все те же водород и кислород, о которых уже упоминалось раньше.

    Элемент № 20 в таблице

    Кальций входит в состав костей человека и животных, является важной составной частью зубной эмали. Он же принимает участие во многих биологических процессах внутри организма:

    • экзоцитоз;
    • сворачивание крови;
    • сокращение мышечных волокон;
    • выработка гормонов.

    Кроме того, образует наружный скелет многих беспозвоночных и морских обитателей. Потребность в этом элементе увеличивается с возрастом, а после достижения 20 лет снижается.

    Значение натрия и калия

    Эти два элемента очень важны для правильной и слаженной работы мембран клеток, а также натрий-калиевого насоса сердца. Многие препараты от болезней сердечно-сосудистой системы содержат именно эти вещества. Кроме того, эти же элементы:

    • поддерживают осмотическое давление в клетке;
    • регулируют рН среды;
    • входят в состав плазмы крови, лимфатических жидкостей;
    • удерживают воду в тканях;
    • способствуют передаче нервных импульсов и так далее.

    Процессы жизненно важные, поэтому переоценить значение этих макроэлементов сложно.

    Магний и фосфор

    Таблица химических элементов разместила эти два вещества довольно далеко друг от друга из-за разницы в свойствах, как физических, так и химических. Биологическая роль также разнится, однако есть у них и нечто общее - важное значение в жизни живых существ.

    Магний выполняет следующие функции:

    • принимает участие в расщеплении макромолекул, которое сопровождается выделением энергии;
    • участвует в передаче нервных импульсов и в регуляции сердечной деятельности;
    • является активным компонентом для нормальной работы кишечника;
    • входит в состав веществ, управляющих деятельностью гладкой мускулатуры, и так далее.

    Это не все функции, но основные.

    Фосфор же, в свою очередь, играет следующую роль:

    • входит в состав большого числа макромолекул (фосфолипиды, ферменты и прочие);
    • является компонентом важнейших энергетических запасов организма - молекул АТФ и АДФ;
    • управляет рН растворов, является буфером в организме;
    • входит в состав костей и зубов как один из основных строительных элементов.

    Таким образом, макроэлементы - важная часть здоровья человека и других существ, их основа, начало всего живого на планете.

    Основные особенности микроэлементов

    Биогенные элементы, которые относятся к этой группе, отличаются тем, что потребность организма в них меньше, чем в представителях предыдущей группы. Примерно 100 мг в день, но не более 150 мг. Всего их насчитывается около 30 разновидностей. При этом все они находятся в разной концентрации в клетке.

    Роль не всех из них установлена, однако последствия недостаточного употребления того или иного элемента явно проявляются, выражаясь в различных заболеваниях. Самыми изученными по биологическому воздействию на организм являются медь, селен и цинк, а также железо. Все они принимают участие в механизмах гуморальной регуляции, входят в состав ферментов, являясь катализаторами процессов.

    Круговорот биофильных частиц: углерод

    Каждый атом способен совершать переход из организма в окружающую среду и обратно. При этом происходит процесс, получивший название "круговорот биогенных элементов". Рассмотрим его сущность на примере атома углерода.

    Атомы проходят несколько этапов в своем круговороте.

    1. Основная масса находится в недрах земли в виде каменного угля, а также в воздухе, формируя слой углекислого газа.
    2. Из воздуха углерод переходит в растения, так как поглощается ими для фотосинтеза.
    3. Затем либо остается в растениях до их отмирания и переходит в залежи каменного угля, либо переходит в животные организмы, которые питаются растениями. Из них углерод возвращается в атмосферу в виде углекислого газа.
    4. Если же говорить о том углекислом газе, что растворен в Мировом океане, то из воды он попадает в ткани растений, со временем формируя известняковые залежи, либо испаряется в атмосферу и снова начинается прежний круговорот.

    Таким образом происходит биогенная миграция химических элементов, как макро-, так и микробиогенных.