Презентация на тему ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена. Новая мысль

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Опыт Иоффе и Милликена. Выполнила учитель физики МКОУ « СОШ с. легостаево» Пронькина В.С Делимость электрического заряда.

2 слайд

Описание слайда:

Опыт иоффе и милликена К началу XX в. существование электронов было установлено в целом ряде независимых экспериментов. Но, несмотря на огромный экспериментальный материал, накопленный различными научными школами, электрон оставался, строго говоря, гипотетической частицей. Причина в том, что не было ни одного опыта, в котором участвовали бы одиночные электроны.

3 слайд

Описание слайда:

Опыт иоффе и милликена Для ответа на этот вопрос в 1910-1911 годах американский учёный Роберт Эндрюс Милликен и советский физик Абрам Фёдорович Иоффе независимо друг от друга проделали точные эксперименты, в которых было возможно вести наблюдние за одиночными электронами.

4 слайд

Описание слайда:

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Опыт иоффе и милликена В их опытах в закрытом сосуде 1, воздух из которого откачан насосом до высокого вакуума, находились две горизонтально расположенные металлические пластины 2. Между ними через трубку 3 помещали облако заряженных металлических пылинок или капелек масла. За ними наблюдали в микроскоп 4 со специальной шкалой, позволявший наблюдать за их оседанием (падением) вниз. Предположим, что пылинки или капельки до помещения между пластинами были заряжены отрицательно. Поэтому их оседание (падение) можно остановить, если нижнюю пластину зарядить отрицательно, а верхнюю – положительно. Так и поступали, добиваясь равновесия пылинки (капельки), за которой наблюдали в микроскоп Затем заряд пылинок (капелек) уменьшали, действуя на них ультрафиолетовым или рентгеновским излучением. Пылинки (капельки) начинали падать, так как уменьшалась поддерживающая электрическая сила.

7 слайд

Описание слайда:

опыт иоффе и милликена Сообщая металлическим пластинам дополнительный заряд и этим усиливая электрическое поле, пылинку снова останавливали. Так поступали несколько раз, каждый раз по специальной формуле вычисляя заряд пылинок. Опыты Милликена и Иоффе показали, что заряды капель и пылинок всегда изменяются скачкообразно. Минимальная «порция» электрического заряда – элементарный электрический заряд, равный e = 1,6·10-19 Кл. Однако заряд пылинки уходит не сам по себе, а вместе с частицей вещества. Следовательно, в природе существует такая частица вещества, которая имеет самый маленький заряд, далее уже неделимый - заряд электрона. Благодаря экспериментам Иоффе-Милликена существование электрона превратилось из гипотезы в научно подтверждённый факт.

В начале XX в. советский физик Абрам Федорович Иоффе и американский ученый Роберт Милликен (независимо друг от друга) проделали опыты, доказавшие существование частиц, имеющих наименьший электрический заряд, и позволившие измерить этот заряд.

В чем заключался опыт, вам известно из учебника. Мы хотим рассказать немного о жизни и деятельности этих физиков и процитировать отрывки из их книг, где они рассказывают о своем эксперименте.

Абрам Федорович Иоффе родился в 1880 г. на Украине в г. Ромны. Окончил Петербургский технологический институт в 1902 г. и уехал в Германию продолжать образование. Он учился в Мюнхенском университете, который окончил в 1905 г. Его учителем был знаменитый В. Рентген. В 1906 г. Иоффе вернулся в Россию с дипломом доктора философских наук Мюнхенского университета и начал научно-педагогическую деятельность в Петербургском политехническом институте. В 1915 г. ему присвоили степень доктора Петербургского университета за исследование упругих и электрических свойств кварца.

После Октябрьской революции по его предложению и под его руководством во вновь созданном Государственном институте рентгенологии и рентгенографии организуется физико-технический отдел. Обстановка, в которой пришлось вести работу, была сложной: шла гражданская война; молодое Советское государство находилось в кольце врагов, которых поддерживали капиталисты всего мира; голод; разруха; старые научные кадры не все приняли революцию, часть уехала за границу; научные связи с другими странами почти полностью прерваны. И в это время А. Ф. Иоффе при содействии А. В. Луначарского создал в Петрограде научное учреждение, которое стало родоначальником большого числа научно-исследовательских институтов нашей страны.

В 1921 г. физико-технический отдел Государственного института рентгенологии и рентгенографии выделился в самостоятельный Физико-технический институт, руководителем которого стал А. Ф. Иоффе. А впоследствии из этого института выделились и стали самостоятельными научными учреждениями Украинский физико-технический институт, Уральский физико-технический институт, Институт химической физики и многие другие.

Видные ученые нашей страны И. В. Курчатов, П. Л. Капица, Н. Н. Семенов, Л. Д. Ландау, Б. П. Константинов, И. К. Кикоин и многие другие начинали свою научную работу под руководством А. Ф. Иоффе, считают себя его учениками и всегда с большой теплотой и любовью вспоминают о нем.

«Абрам Федорович Иоффе с первых дней революции встал на сторону Советской власти, он стал одним из выдающихся руководителей фронта физического образования и науки. Огромный талант ученого, педагога, организатора, а также доброжелательное отношение к людям, личное обаяние, преданность общественным интересам -- все это определило неоценимый вклад А. Ф. Иоффе в развитие советской физики. Многие мои товарищи -- физики, как и я сам,-- считают и называют академика Иоффе отцом советской науки, и это мнение, я верю, будет общепризнанным в истории советской науки»,-- писал академик Б. П. Константинов.

Научная деятельность Иоффе была широка и многообразна. Он был прекрасным экспериментатором, занимался вопросами физики полупроводников, много внимания уделял внедрению результатов научных исследований, принимал участие в разработке военной техники, в частности им был предложен принцип радиолокации для обнаружения неприятельских самолетов, интересовали его и возможности использования достижений науки в сельском хозяйстве.

Большая научная и организаторская деятельность А. Ф. Иоффе получила широкое признание в стране. Он был избран действительным членом Академии наук СССР, ему было присвоено звание Героя Социалистического Труда, звание заслуженного деятеля науки СССР, он был удостоен Государственной премии первой степени, награжден двумя орденами Ленина. Многие зарубежные академии и университеты избрали его своим почетным членом.

Роберт Милликен родился в 1868 г. в штате Иллинойс в семье священника. Детство его прошло в маленьком городке Маквокета. В 1893 г. он поступил в Колумбийский университет, затем учился в Германии.

В 28 лет его пригласили преподавать в Чикагский университет. Вначале он занимался почти исключительно педагогической работой и только в сорок лет начал научные исследования, принесшие ему мировую славу.

«Одним из первых в ряду блестящих экспериментаторов, основавших и обосновавших новую физику, следует назвать Роберта Милликена... Характерной чертой исследований Милликена является их совершенно исключительная точность. Милликен во многих случаях повторял опыты, придуманные и даже выполненные другими лицами, но делал их с такой тщательностью и осмотрительностью, что его результаты становились бесспорной и неизбежной базой теоретического построения. Основная заслуга Милликена -- измерение величины заряда электрона е и постоянной теории квантов А»,-- писал об этом ученом академик С. И. Вавилов.

За свои экспериментальные исследования Р. Милликен в 1924 г. был удостоен Нобелевской премии.

Умер Милликен в 1953 г.

Как же удалось измерить заряд отдельного электрона?

Вот что пишут о своих опытах А. Ф. Иоффе и Р. Милликен.

А. Ф. Иоффе: «... В камере А создавались мелкие пылинки цинка, которые через узкое отверстие падали в пространство между двумя заряженными пластинками. Заряженная пылинка падает вниз, испытывая, как и всякое тело, силу тяжести. Но если она заряжена, на нее действуют и электрические силы в зависимости от знака заряда по направлению снизу вверх или сверху вниз. Подобрав электрический заряд пластинок, можно было остановить каждую падающую частичку так, чтобы она неподвижно повисла в воздухе. Мне удавалось целый день держать частичку в таком состоянии. Когда же на нее падал пучок ультрафиолетового света, он уменьшал заряд. Это сразу можно было заметить по тому, что с изменением заряда электрическая сила уменьшалась, тогда как сила тяжести не изменялась: равновесие нарушалось, частичка начинала падать.

Приходилось подбирать другой заряд пластинок, чтобы снова остановить цинковую пылинку. И каждый раз мы имели возможность измерить ее заряд...

Можно было снять 1, 2, 3, 4, 5, 6, 1... до 50 зарядов, но это было всегда целое число электронов. Оказалось, что какое бы вещество мы ни взяли, будь то цинк, масло, ртуть, будет ли это действие света, или нагревание, или другое воздействие,-- всякий раз, как тело теряет заряд, оно всегда теряет по целому электрону. Значит, можно было заключить, что в природе существуют только целые электроны».

Р. Милликен: «...При помощи обыкновенного распылителя в камеру С впускалась струя масла. Воздух, посредством которого вдувалась струя, освобождался сперва от пыли путем пропускания через трубку со стеклянной ватой. Капельки масла, составлявшие струю, были весьма малы; радиус большинства их был порядка 0,001 мм. Эти капельки медленно падали в камере С, иногда некоторые из них проходили сквозь маленькое отверстие р в центре круглой латунной пластинки М диаметром в 22 см, состав-лявшей одну из пластин воздушного конденсатора. Другая пластина -- N --была укреплена на 16 мм ниже при помощи трех эбонитовых стоек а. Пластины эти могли заряжаться (одна положительно, а другая отрицательно) при помощи переключателя 5, соединявшего их с полюсами 10 000-вольтовой аккумуляторной батареи В. Капельки масла, появлявшиеся вблизи р, освещались сильным пучком света, проходившего сквозь два окошечка, расположенных в эбонитовом кольце одно против другого. Если смотреть через третье окошечко О, направленное к читателю, капля представляется яркой звездочкой на темном фоне. Капли, проходившие через отверстие р, оказывались обыкновенно сильно заряженными вследствие трения при вдувании струи...

Капли, имеющие заряды одного знака с верхней пластинкой, а также имеющие слишком слабые заряды противоположного знака, быстро падают. Те же капли, которые имеют слишком много зарядов противоположного знака, быстро притягиваются верхней пластинкой, преодолевая силу тяжести. В результате через 7 или 8 мин поле зрения вполне проясняется, и в нем остается только сравнительно небольшое число капель, а именно те, которые имеют заряд, как раз достаточный, чтобы поддерживаться электрическим полем. Эти капли представляются отчетливо видимыми яркими точками. Я несколько раз получал только одну такую звездочку во всем поле, и она держалась там около минуты...

Во всех случаях, без всякого исключения, оказывалось, что как первоначальный заряд, возникший на капле вследствие трения, так и многочисленные заряды, захваченные каплей у ионов, равны точным кратным наименьшего заряда, захваченного из воздуха. Некоторые из этих капель не имели первоначально никакого заряда, а затем захватывали один, два, три, четыре, пять, шесть или семь элементарных зарядов или электронов. Другие капли первоначально имели семь или восемь, иногда двадцать, иногда пятьдесят, иногда сто, иногда сто пятьдесят элементарных единиц и захватывали в каждом случае один или несколько десятков элементарных зарядов в продолжение наблюдений. Таким образом, наблюдались капли со всевозможным числом электронов между одним и ста пятьюдесятью... Когда число их не превышает пятидесяти, то ошибка тут так же невозможна, как и при счете собственных пальцев. Однако при подсчете электронов в заряде, в котором их содержится свыше ста или двухсот, нельзя быть уверенным в отсутствии ошибки... Но совершенно невозможно себе представить, чтобы большие заряды, как, например, те, с которыми мы имеем дело в технических применениях электричества, были построены, по существу, иначе, чем те малые заряды, которые мы можем сосчитать...

Где бы ни встречался электрический заряд -- на изоляторах или на проводниках, в электролитах или металлах,-- везде он обладает резко выраженным зернистым строением. Он состоит из целого числа единиц электричества (электронов), которые все одинаковы. В электростатических явлениях эти электроны рассеяны по поверхности заряженного тела, а в электрическом токе они движутся вдоль проводника».

Подробности Категория: Электричество и магнетизм Опубликовано 08.06.2015 05:51 Просмотров: 5425

Одна из фундаментальных постоянных в физике – элементарный электрический заряд. Это скалярная величина, характеризующая способность физических тел принимать участие в электромагнитном взаимодействии.

Элементарным электрическим зарядом принято считать наименьший положительный или отрицательный заряд, который невозможно разделить. Его величина равна величине заряда электрона.

То, что любой встречающийся в природе электрический заряд всегда равен целому числу элементарных зарядов, в 1752 г. предположил известный политический деятель Бенджамин Франклин, политик и дипломат, занимавшийся ещё и научной и изобретательской деятельностью, первый американец, который стал членом Российской академии наук.

Бенджамин Франклин

Если предположение Франклина верно, и электрический заряд любого заряженного тела или системы тел состоит из целого числа элементарных зарядов, то этот заряд может изменяться скачкообразно на величину, содержащую целое число зарядов электрона.

Впервые это удалось подтвердить и довольно точно определить заряд электрона опытным путём американскому учёному, профессору Чикагского университета, Роберту Милликену.

Опыт Милликена

Схема опыта Милликена

Свой первый знаменитый опыт с каплями масла Милликен провёл в 1909 г. вместе со своим помощником Харви Флетчером. Говорят, что вначале опыт планировали делать с помощью капель воды, но они испарились за несколько секунд, чего оказалось явно мало, чтобы получить результат. Тогда Милликен отправил Флэтчера в аптеку, где тот приобрёл пульверизатор и пузырёк масла для часов. Этого оказалось достаточно, чтобы опыт удался. Впоследствии Милликен получил за него Нобелевскую премию, а Флэтчер докторскую степень.

Роберт Милликен

Харви Флетчер

В чём же заключался эксперимент Милликена?

Наэлектризованная капелька масла под воздействием силы тяжести падает вниз между двумя металлическими пластинами. Но если между ними создать электрическое поле, то оно удержит капельку от падения. Измерив силу электрического поля, можно определить заряд капли.

Две металлические пластины конденсатора экспериментаторы расположили внутри сосуда. Туда же с помощью пульверизатора вводились мельчайшие капельки масла, которые заряжались отрицательно во время разбрызгивания в результате их трения о воздух.

В отсутствии электрического поля капелька падает

Под действием силы тяжести F w = mg капельки начинали падать вниз. Но так они находилась не в вакууме, а в среде, то свободно падать им мешала сила сопротивления воздуха F res = 6πη rv 0 , где η – вязкость воздуха. Когда F w и F res уравновешивались, падение становилось равномерным со скоростью v 0 . Измерив эту скорость, учёный определил радиус капли.

Капелька "парит" под действием электрического поля

Если в момент падения капельки на пластины подавалось напряжение таким образом, что верхняя пластина получала положительный заряд, а нижняя отрицательный, падение прекращалось. Ему препятствовало возникшее электрическое поле. Капельки словно зависали. Это происходило, когда сила F r уравновешивалась силой, действующей со стороны электрического поля F r = eE ,

где F r – результирующая силы тяжести и силы Архимеда.

F r = 4/3· πr 3 ( ρ – ρ 0) g

ρ - плотность капли масла;

ρ 0 – плотность воздуха.

r – радиус капли.

Зная F r и E , можно определить величину e .

Так как добиться того, чтобы капелька долго оставалась в неподвижном состоянии, было очень сложно, то Милликен и Флетчер создавали такое поле, в котором капелька после остановки начинала двигаться вверх с очень малой скоростью v . В этом случае

Опыты повторялись многократно. Заряды капелькам сообщали, облучая их рентгеновской или ультрафиолетовой установкой. Но всякий раз общий заряд капли всегда был равен нескольким элементарным зарядам.

В 1911 г. Милликен установил, что величина заряда электрона равна 1,5924(17) х 10 -19 Кл. Учёный ошибся всего на 1%. Современное его значение составляет 1,602176487(10) х 10 -19 Кл.

Опыт Иоффе

Абрам Фёдорович Иоффе

Нужно сказать, что практически одновременно с Милликеном, но независимо от него, подобные опыты проводил русский физик Абрам Федорович Иоффе. И его экспериментальная установка была похожа на установку Милликена. Но из сосуда откачивался воздух, и в нём создавался вакуум. А вместо капелек масла Иоффе использовал мелкие заряженные частички цинка. За их движением наблюдали в микроскоп.

Установка Иоффе

1- трубка

2- камера

3 - металлические пластины

4 - микроскоп

5 - ультрафиолетовый излучатель

Под действие электростатического поля пылинка цинка совершала падение. Как только сила тяжести пылинки становилась равна силе, действующей на неё со стороны электрического поля, падение прекращалось. Пока заряд пылинки не менялся, она продолжала висеть неподвижно. Но если на неё воздействовали ультрафиолетовым светом, то её заряд уменьшался, и равновесие нарушалось. Она снова начинала падать. Тогда увеличивали величину заряда на пластинах. Соответственно увеличивалось электрическое поле, и падение снова останавливалось. Так делали несколько раз. В результате выяснили, что каждый раз заряд пылинки изменялся на величину, кратную величине заряда элементарной частицы.

Величину заряда этой частицы Иоффе не рассчитал. Но, проведя подобный опыт в 1925 г. вместе с физиком Н.И. Добронравовым, несколько видоизменив опытную установку и использовав вместо цинка пылинки висмута, он подтвердил теорию

Презентация на тему: ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена



















1 из 18

Презентация на тему: ФизикиА. Ф. Иоффе и Р. Э. Милликен. Их жизненный путь. Опыт Иоффе - Милликена

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

№ слайда 3

Описание слайда:

Опыт Иоффе - Милликена К концу ХIХ века в ряде самых разнообразных опытов было установлено, что существует некий носитель отрицательного заряда, который назвали электроном. Однако это была фактически гипотетическая единица, поскольку, несмотря на обилие практического материала, не было проведено ни одного эксперимента с участием одиночного электрона. Не было известно, существуют ли разновидности электронов для разных веществ или он одинаков всегда, какой заряд несет на себе электрон, может ли заряд существовать отдельно от частицы. В общем, в научной среде по поводу электрона ходили горячие споры, а достаточной практической базы, которая бы однозначно прекратила все дебаты, не было.

№ слайда 4

Описание слайда:

На рисунке изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П, расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп. На рисунке изображена схема установки, использованной в опыте А. Ф. Иоффе. В закрытом сосуде, воздух из которого откачан до высокого вакуума, находились две металлические пластины П, расположенные горизонтально. Из камеры А через отверстие О в пространство между пластинами попала ли мелкие заряженные пылинки цинка. Эти пылинки наблюдали в микроскоп.

№ слайда 5

Описание слайда:

Итак, заряженные пылинки и капельки в вакууме будут падать с верхней пластины на нижнюю, однако этот процесс можно остановить, если зарядить верхнюю пластину положительно, а нижнюю отрицательно. Итак, заряженные пылинки и капельки в вакууме будут падать с верхней пластины на нижнюю, однако этот процесс можно остановить, если зарядить верхнюю пластину положительно, а нижнюю отрицательно. Возникшее электрическое поле будет действовать кулоновскими силами на заряженные частички, препятствуя их падению. Регулируя величину заряда, добивались того, что пылинки парили посередине между пластинами. Далее уменьшали заряд пылинок или капель, облучая их рентгеном или ультрафиолетом. Теряя заряд, пылинки начинали падать вновь, их вновь останавливали, регулируя заряд пластин. Такой процесс повторяли несколько раз, вычисляя заряд капель и пылинок по специальным формулам. В результате этих исследований удалось установить, что заряд пылинок или капель всегда изменялся скачками, на строго определенную величину, либо же на размер, кратный это величине.

№ слайда 6

Описание слайда:

Абрам Федорович Иоффе Абрам Федорович Иоффе – российский физик, сделавший множество фундаментальных открытий и проведший огромное количество исследований, в том числе и в области электроники. Он провел исследования свойств полупроводниковых материалов, открыл выпрямляющее свойство перехода металл-диэлектрик, впоследствии объяснимое при помощи теории туннельного эффекта, предположил возможность преобразования света в электрический ток.

№ слайда 7

Описание слайда:

Родился Абрам Федорович 14 октября 1980 года в городе Ромны Полтавской губернии (сейчас Полтавская область, Украина) в семье купца. Поскольку отец Абрама был достаточно богатым человеком, он не поскупился дать хорошее образование своему сыну. В 1897 году Иоффе получает среднее образование в реальном училище родного города. В 1902 году он оканчивает Санкт-Петербургский технологический институт и поступает в Мюнхенский университет в Германии. В Мюнхене он работает под руководством самого Вильгельма Конрада Рентгена. Вильгельм Конрад, видя прилежность и не абы какой талант ученика пытается уговорить Абрама остаться в Мюнхене и продолжать научную деятельность, но Иоффе оказался патриотом своей страны. После окончания университета в 1906 году, получив ученую степень доктора философии, он возвращается в Россию. Родился Абрам Федорович 14 октября 1980 года в городе Ромны Полтавской губернии (сейчас Полтавская область, Украина) в семье купца. Поскольку отец Абрама был достаточно богатым человеком, он не поскупился дать хорошее образование своему сыну. В 1897 году Иоффе получает среднее образование в реальном училище родного города. В 1902 году он оканчивает Санкт-Петербургский технологический институт и поступает в Мюнхенский университет в Германии. В Мюнхене он работает под руководством самого Вильгельма Конрада Рентгена. Вильгельм Конрад, видя прилежность и не абы какой талант ученика пытается уговорить Абрама остаться в Мюнхене и продолжать научную деятельность, но Иоффе оказался патриотом своей страны. После окончания университета в 1906 году, получив ученую степень доктора философии, он возвращается в Россию.

№ слайда 8

Описание слайда:

В России Иоффе устраивается на роботу в Политехнический институт. В 1911 он экспериментально определяет величину заряда электрона по тому же методу, что и Роберт Милликен (в электрическом и гравитационном полях уравновешивались частицы металла). Из-за того, что Иоффе опубликовал свою работу лишь спустя два года – слава открытия измерения заряда электрона досталась американскому физику. Кроме определения заряда, Иоффе доказал реальность существования электронов независимо от материи, исследовал магнитное действие потока электронов, доказал статический характер вылета электронов при внешнем фотоэффекте. В России Иоффе устраивается на роботу в Политехнический институт. В 1911 он экспериментально определяет величину заряда электрона по тому же методу, что и Роберт Милликен (в электрическом и гравитационном полях уравновешивались частицы металла). Из-за того, что Иоффе опубликовал свою работу лишь спустя два года – слава открытия измерения заряда электрона досталась американскому физику. Кроме определения заряда, Иоффе доказал реальность существования электронов независимо от материи, исследовал магнитное действие потока электронов, доказал статический характер вылета электронов при внешнем фотоэффекте.

№ слайда 9

Описание слайда:

В 1913 году Абрам Федорович защищает магистерскую, а через два года докторскую диссертацию по физике, которая представляла собой изучение упругих и электрических свойств кварца. В период с 1916 по 1923 годы он активно изучает механизм электрической проводимости различных кристаллов. В 1923 именно по инициативе Иоффе начинаются фундаментальные исследования и изучения свойств, совершенно новых на то время материалов – полупроводников. Первая работа в этой области проводилась при непосредственном участии российского физика и касалась анализа электрических явлений между полупроводником и металлом. Им было обнаружено выпрямляющее свойство перехода металл-полупроводник, которое лишь спустя 40 лет было обосновано при помощи теории туннельного эффекта. В 1913 году Абрам Федорович защищает магистерскую, а через два года докторскую диссертацию по физике, которая представляла собой изучение упругих и электрических свойств кварца. В период с 1916 по 1923 годы он активно изучает механизм электрической проводимости различных кристаллов. В 1923 именно по инициативе Иоффе начинаются фундаментальные исследования и изучения свойств, совершенно новых на то время материалов – полупроводников. Первая работа в этой области проводилась при непосредственном участии российского физика и касалась анализа электрических явлений между полупроводником и металлом. Им было обнаружено выпрямляющее свойство перехода металл-полупроводник, которое лишь спустя 40 лет было обосновано при помощи теории туннельного эффекта.

№ слайда 10

Описание слайда:

Исследуя фотоэффект в полупроводниках, Иоффе высказал достаточно смелую на то время идею, что подобным способом можно будет преобразовывать энергию света в электрический ток. Это стало предпосылкой в дальнейшем к созданию фотоэлектрических генераторов, и в частности кремниевых преобразователей, в последствие используемых в составе солнечных батарей. Совместно со своими учениками Абрам Федорович создает систему классификации полупроводников, а также методику определения их основных электрических и физических свойств. В частности изучение их термоэлектрических свойств, в последствие стало основой для создания полупроводниковых термоэлектрических холодильников, широко применяемых во всем мире в областях радиоэлектроники, приборостроении и космической биологии. Исследуя фотоэффект в полупроводниках, Иоффе высказал достаточно смелую на то время идею, что подобным способом можно будет преобразовывать энергию света в электрический ток. Это стало предпосылкой в дальнейшем к созданию фотоэлектрических генераторов, и в частности кремниевых преобразователей, в последствие используемых в составе солнечных батарей. Совместно со своими учениками Абрам Федорович создает систему классификации полупроводников, а также методику определения их основных электрических и физических свойств. В частности изучение их термоэлектрических свойств, в последствие стало основой для создания полупроводниковых термоэлектрических холодильников, широко применяемых во всем мире в областях радиоэлектроники, приборостроении и космической биологии.

№ слайда 11

Описание слайда:

Абрам Федорович Иоффе внес огромный вклад в становление и развитие физики и электроники. Он был членом многих Академий наук (Берлинской и Гётиннгенской, Американской, Итальянской), а также почетных членом множества университетов во всем мире. За свои достижения и исследования был удостоен множества наград. Умер Абрам Федорович 14 октября 1960 года. Абрам Федорович Иоффе внес огромный вклад в становление и развитие физики и электроники. Он был членом многих Академий наук (Берлинской и Гётиннгенской, Американской, Итальянской), а также почетных членом множества университетов во всем мире. За свои достижения и исследования был удостоен множества наград. Умер Абрам Федорович 14 октября 1960 года.

№ слайда 12

Описание слайда:

Милликен Роберт Эндрус Американский физик Роберт Милликен родился в Моррисоне (штат Иллинойс) 22 марта 1868 г. в семье священника. После окончания средней школы Роберт вступает в колледж Оберлин в Огайо. Там его интересы были сосредоточены на математике и древнегреческом языке. Ради заработка он на протяжении двух лет излагал физику в колледже. 1891 г. Милликен получил степень бакалавра, а 1893 г. - магистерскую степень по физики.

№ слайда 13

Описание слайда:

В Колумбийском университете Милликен учился под руководством известного физика М.І.Пьюпина. Одно лето он провел в Чикагском университете, где работал под руководством известного физика-экспериментатора Альберта Абрахама Майкельсона. В Колумбийском университете Милликен учился под руководством известного физика М.І.Пьюпина. Одно лето он провел в Чикагском университете, где работал под руководством известного физика-экспериментатора Альберта Абрахама Майкельсона.

Описание слайда:

1896 г. Милликен вернулся в Чикагский университету, где стал ассистентом Майкельсона. 1896 г. Милликен вернулся в Чикагский университету, где стал ассистентом Майкельсона. За дальнейшие двенадцать лет Милликен написал несколько учебников по физике, которые были приняты как учебники для колледжей и средних школ (с дополнениями оставались ими свыше 50 лет). 1910 г. Милликена было назначено профессором физики.

№ слайда 16

Описание слайда:

Роберт Милликен разработал метод капель, который дал возможность измерять заряд отдельных электронов и протонов (1910 - 1914) большое количество опытов по точному вычислению заряда электрона. Тем самым он экспериментально доказал дискретность электрического заряда и впервые достаточно точно определил его значение (4,774 * 10^-10 электростатических единиц). Проверил уравнение Эйнштейна для фотоэффекта в области видимых и ультрафиолетовых лучей, определил постоянную Планка (1914). Роберт Милликен разработал метод капель, который дал возможность измерять заряд отдельных электронов и протонов (1910 - 1914) большое количество опытов по точному вычислению заряда электрона. Тем самым он экспериментально доказал дискретность электрического заряда и впервые достаточно точно определил его значение (4,774 * 10^-10 электростатических единиц). Проверил уравнение Эйнштейна для фотоэффекта в области видимых и ультрафиолетовых лучей, определил постоянную Планка (1914).

№ слайда 17

Описание слайда:

1921 г. Милликен был назначен директором новой Бриджесивской физической лаборатории и главой исполнительного комитета Калифорнийского технологического института. 1921 г. Милликен был назначен директором новой Бриджесивской физической лаборатории и главой исполнительного комитета Калифорнийского технологического института. Здесь он выполнил большой цикл исследований космических лучей, в частности опыты (1921 - 1922) с воздушными снопами с самопишущими электроскопами на высотах 15500 м. 1923 г. Милликен был удостоен Нобелевской премии в области физики «за работы по определению элементарного электрического заряда и фотоэлектрического эффекта».

№ слайда 18

Описание слайда:

В течение 1925-1927 гг. Милликен продемонстрировал, что ионизирующее действие космического излучения уменьшается с глубиной, и подтвердил внеземное происхождение этих « космических лучей». Исследуя траектории космических частичек, выявил в них альфа-частицы, быстрые электроны, протоны, нейтроны, позитроны и гамма-кванты. Независимо от Вернова открыл широтный эффект космических лучей в стратосфере. В течение 1925-1927 гг. Милликен продемонстрировал, что ионизирующее действие космического излучения уменьшается с глубиной, и подтвердил внеземное происхождение этих « космических лучей». Исследуя траектории космических частичек, выявил в них альфа-частицы, быстрые электроны, протоны, нейтроны, позитроны и гамма-кванты. Независимо от Вернова открыл широтный эффект космических лучей в стратосфере.

> Опыт Милликена

В чем заключается опыт Милликена – эксперимент с масляной каплей. Читайте детальное описание опыта и выводы, уравнения, заряд электрона, предельная скорость.

В 1911 году при помощи заряженных капелек масла Роберт Милликен смог сформировать заряд электрона.

Задача обучения

  • Разобраться в отличии реального заряда электрона и созданного Милликеном.

Основные пункты

  • В эксперименте участвовали ионизирующие капли масла. Попав в воздух, они балансируют силой тяжести с силой электрического поля.
  • Милликен не смог напрямую подсчитать количество электронов в каждой масляной капле, но выявил общий знаменатель – 1.5924 (17) х 10 -19 С (заряд электрона).
  • Полученное значение отличается от принятого на 1% – 1.602176487 (40) х 10 -19 С.

Термины

  • Электрическое поле – участок вокруг заряженной частички или между двумя напряжениями.
  • Напряжение – количество электростатического потенциала между двумя точками в пространстве.
  • Предельная скорость – скорость, с которой объект в свободном падении останавливает ускорение вниз, потому что сила тяжести равна и противоположна сопротивлению.

Эксперимент с масляной каплей

Это одно из наиболее значимых исследований в истории физической науки. За его осуществление принялись Роберт Милликен и Харви Флетчер в 1911 году. Они хотели определить заряд одного электрона.

Для этого Милликен использовал распылитель для создания тумана крошечных масляных капель в камере, где было отверстие. Некоторые капли проваливались в дыру и камеру, где ученые вычисляли финальную скорость и массу

Далее Милликен обнажил капли до рентгеновских лучей, ионизирующих молекулы в воздухе и заставляющих электроны прикрепляться к масляным каплям. Это привело к заряду. Верх и низ камеры подключались к батарее, а разность потенциалов представляла электрическое поле.

Милликену удалось уравновесить силу тяжести и силу электрического поля, из-за чего масляные капли оказались подвершенными в воздухе.

В устройстве есть параллельная пара горизонтальных металлических пластин. В пространстве между ними формируется равномерное электрическое поле. Кольцо обладает тремя отверстиями для подвески и одним для наблюдения в микроскоп. В камеру распыляется специальное масло, где капли электрически заряжаются. Капли поступают в пространство между пластинами и могут управляться через изменение напряжения на пластинах

Он располагал массой масляных капель и ускорением силы тяжести (9.81 м/с 2), а также энергией рентгеновских лучей, благодаря чему и вычислил заряд.

Заряд каждой капли оставался загадкой, поэтому Милликен скорректировал силу рентгеновских лучей, ионизирующих воздух, а также вычислил остальные значения. В каждом случае заряд достигал 1.5924 (17) х 10 -19 С. Результаты были очень точными и отличались всего на 1% от того, что используется сейчас – 1.602176487 (40) х 10 -19 С.

Этот эксперимент был крайне важным для определения заряда электрона и доказательства существования частичек, меньше атома.