Новый рассвет электрических ракет, эдгар чуэйри. Электрический реактивный двигатель (ЭРД) Электростатический ракетный двигатель

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ) .

Введение

Идея использовать для ускорения электрическую энергию в реактивных двигателях возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский . В -1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения рабочего тела (РТ) , а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела . Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

  • сильноточные (электромагнитные, магнитодинамические) двигатели;
  • импульсные двигатели.

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) - ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД) , также встречается (всё реже) наименование - линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС).

К сильноточным (магнитоплазменным, магнитодинамическим) относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель - ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы , а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак , для электростатических - ксенон , для сильноточных - литий , для импульсных - фторопласт .

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон . Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия , затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД .

Краткие технические характеристики

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g ). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

Перспективы

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами , они способны работать длительное время и осуществлять медленные полеты на большие расстояния

ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)-космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич. энергии. Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям и управляющую функционированием ЭРД. ЭРД - двигатели малой тяги, действующие в течение длит. времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл--магн. либо эл--статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердо-топливных ракетных двигателях; это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл--хим. двигатели (ЭХД) и ионные двигатели (ИД).

Электрохимические двигатели . В ЭХД электроэнергия используется для нагрева и хим. разложения рабочего вещества. ЭХД подразделяются на электронагревные (ЭНД), термокаталитические (ТКД) и гибридные (ГД) двигатели. В ЭНД рабочее вещество (водород, аммиак) нагревается электронагревателем и затем истекает со сверхзвуковой скоростью через сопло (рис. 1). В ТКД электроэнергией нагревается катализатор (до темп-ры ~500 o C), химически разлагающий рабочее вещество (аммиак, гидразин); далее продукты разложения истекают через сопло. В ГД происходит сначала разложение рабочего вещества, потом подогрев продуктов разложения и их истечение. Конструкция ЭХД и используемые конструкц. материалы рассчитаны на включение на борту КЛА в течение 7-10 лет при числе запусков до 10 5 , длительности непрерывной работы ~ 10-100 ч и отклонении тяговых характеристик от номинала не более 5-10%. Уровень потребляемой ЭХД электрич. мощности - десятки Вт, диапазон тяг - 0,01 -10 H. ЭХД имеют очень низкую для ЭРД энергетич. цену тяги ~3 кВт/Н, большую скорость истечения струи (3 км/с) за счёт малого молекулярного веса рабочего вещества и продуктов его разложения. Гидразиновый ГД с тягой 0,44 H успешно работал на спутнике связи "Интел-сат-5"; аммиачный ЭНД с тягой 0,15 H входит в состав штатной ЭРДУ спутников серии "Метеор", к-рая корректирует орбиту и ориентацию спутника.

Рис. 1. Схема электронагревного двигателя: 1 -пористый электронагреватель; 2-тепловой экран; 3 - кожух; 4 - сопло .

Ионные двигатели . В ИД положит. ионы рабочего вещества ускоряются в эл--статич. поле. ИД (рис. 2) состоит из эмиттера ионов 4, ускоряющего электрода 5 с отверстиями (щелями), сквозь к-рые проходят ускоренные ионы, и внеш. электрода 6 (экрана), в роли к-рого обычно используют корпус ИД. Ускоряющий электрод находится под отрицат. потенциалом (~10 3 -10 4 B) относительно эмиттера. Электрич. ток и пространств. электрич. реактивной струи должны быть нулевыми, поэтому выходящий ионный пучок нейтрализуется электронами, к-рые эмитирует нейтрализатор 7. Внеш. электрод находится под потенциалом, отрицательным относительно эмиттера и положительным относительно ускоряющего электрода; положит. смещение потенциала выбирается таким, чтобы сравнительно малоэнергичные электроны из нейтрализатора запирались электрич. полем и не попадали в ускоряющий промежуток между эмиттером и ускоряющим электродом. Энергия ускоренных ионов определяется разностью потенциалов между эмиттером и внеш. электродом. Наличие положит. пространств. заряда в ускоряющем промежутке ограничивает ионный ток из эмиттера. Осн. параметры ИД: скорость истечения, тяговый кпд, энергетич. цена тяги (Вт/Н), энергетич. цена иона (эВ/ион) - кол-во энергии, затрачиваемое на образование иона. Степень рабочего вещества в ИД должна быть как можно выше(>0,90,95).

Рис. 2. Схема ионного двигателя с объёмной ионизацией конструкции Г. Кауфмана: 1 - катод газоразрядной каме ры; 2- анод; 3 -магнитная катушка; 4-эмитирующий электрод; 5 - ускоряющий электрод; 6 - внешний электрод; 7 - нейтрализатор .

В зависимости от типа эмиттера ИД подразделяются на двигатели с поверхностной ионизацией (ИДПИ), коллоидные двигатели (КД) и двигатели с объёмной ионизацией (ИДОИ). В ИДПИ ионизация происходит при пропускании паров рабочего вещества сквозь пористый эмиттер; рабочего вещества должна быть меньше работы выхода материала эмиттера. Обычно выбирается пара цезий (рабочее вещество) - вольфрам (эмиттер). Эмиттер подогревается до темп-ры 1500 o K во избежание конденсации рабочего вещества. В КД (существуют только лаб. прототипы) рабочее вещество (20%-ный раствор йодистого калия в глицерине) распыляется через капилляры в виде положительно заряженных микрокапель в ускоряющий промежуток; электрич. заряд микрокапель возникает в процессе экстракции струек из капилляров в сильном электрич. поле и последующем их распаде на капли. Источником ионов в ИДОИ является газоразрядная камера (ГРК), в к-рой атомы рабочего вещества (паров металлов, инертных газов) ионизуются электронным ударом в газовом разряде низкого давления [разряд между электродами 1 и 2 (рис. 2) либо безэлектродный СВЧ-разряд]; ионы из ГРК вытягиваются в ускоряющий промежуток сквозь отверстия эмитирующего электрода-стенки ГРК, образующего вместе с ускоряющим электродом ионно-оптич. систему (ИОС) для ускорения и фокусировки ионов. Стенки ГРК, кроме эмитирующего электрода, магнитоизолированы от плазмы. ИДОИ - наиб. разработанные с инженерн. и физ. точек зрения ИД, их тяговый кпд ~70%, подтверждённый в наземных испытаниях ресурс работы доведён до 2 · 10 4 ч. Ресурс работы ИД ограничивается эрозией ускоряющего электрода вследствие его катодного распыления вторичными ионами, возникающими в результате перезарядки быстрых ускоренных ионов на медленных нейтральных атомах рабочего вещества. Энергетич. цены тяги и иона в ИД (за исключением КД) весьма значительны (2·10 4 Вт/H, 250 эВ/ион). По этой причине ИД пока не используются в космосе в качестве рабочих ЭРД (ЭХД, ПД), хотя они неоднократно испытывались на борту КЛА. Наиб. значительно испытание по программе SERT-2 (1970, США); в состав ЭРДУ входили две ИДОИ конструкции Г. Кауфмана (рабочее тело - ртуть, потребляемая мощность 860 Вт, кпд 68%, тяга 0,03 H), проработавшие без отказа непрерывно 3800 ч и 2011 ч соответственно и возобновившие функционирование после длит. перерыва.

ПД по схеме плазменных ускорителей с замкнутым дрейфом электронов и протяжённой зоной ускорения систематически используется на КЛА, в особенности на геостационарных спутниках связи.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., M., 1970; Морозов А. И., Шубин А. П., Космические электрореактивные двигатели, M., 1975; Гришин С. Д., Лесков Л. В., Козлов H. П., Электрические ракетные двигатели, M., 1975.

"В мире науки" № 5 2009 стр. 34-42


ОСНОВНЫЕ ПОЛОЖЕНИЯ
*
В обычных ракетных двигателях тяга возникает в результате сжигания химического топлива. В злектрореактивных она создается посредством ускорения электрическим или магнитным полем облака заряженных частиц или плазмы.
*
Несмотря на то что электрические ракетные двигатели характеризуются гораздо меньшей тягой, они позволяют при той же массе топлива в итоге разогнать космический аппарат до гораздо большей скорости.
*
Способность достигать высоких скоростей и высокий КПД использования рабочего вещества («топлива») делают электрореактивные двигатели перспективными для дальних космических полетов.

Одинокий во мраке космоса, зонд Dawn («Рассвет») NASA несется за орбиту Марса к поясу астероидов. Он должен собрать новые сведения о начальных этапах образования Солнечной системы: исследовать астероиды Весту и Цереру, представляющие собой крупнейшие остатки эмбрионов планет, в результате столкновения и взаимодействия которых друг с другом около 4,5-4,7 млрд лет назад сформировались сегодняшние планеты.
Однако этот полет примечателен не только своей целью. Dawn, стартовавший в октябре 2007 г., оснащен плазменным двигателем, способным сделать реальностью полеты на большие расстояния. На сегодняшний день существует несколько типов таких двигателей. Тяга в них создается посредством ионизации и ускорения электрическим полем заряженных частиц, а не путем сжигания жидкого или твердого химического топлива, как в обычных.
Создатели зонда Dawn из Лаборатории реактивной тяги NASA выбрали плазменный двигатель, поскольку для достижения пояса астероидов ему потребуется в десять раз меньше рабочего вещества, чем двигателю на химическом топливе. Традиционный ракетный двигатель позволил бы зонду Dawn достичь либо Весты, либо Цереры, но не обеих.
Электроракетные двигатели быстро завоевывают популярность. Недавний полет космического зонда Deep Space 1 NASA к комете стал возможным благодаря применению электрической тяги. Плазменные двигатели создавали также тягу, требовавшуюся для попытки посадки японского зонда Hayabusa на астероид и для полета космического аппарата SMART-1 Европейского космического агентства к Луне. В свете продемонстрированных преимуществ разработчики в США, Европе и Японии при планировании дальних полетов выбирают именно такие двигатели для будущих миссий по исследованию Солнечной системы и поиску за ее пределами планет, подобных Земле. Плазменные двигатели также позволят превратить космический вакуум в лабораторию для фундаментальных физических исследований.

Близится эра долгих полетов

Возможность использования электричества при создании двигателей для космических аппаратов рассматривалась еще в первом десятилетии XX в. В середине 1950-х гг. Эрнст Штулингер (Trnst Stuhlinger), член легендарной команды немецких ракетчиков Вернера фон Брауна (Wernher von Braun), которая возглавила космическую программу США. перешел от теории к практике. Несколькими годами позднее инженеры Гленновского исследовательского центра NASA (который тогда назывался Льюисовским) создали первый работоспособный плазменный двигатель. В 1964 г. таким двигателем, который использовался для коррекции орбиты перед вхождением в плотные слои атмосферы, был оснащен аппарат, совершивший суборбитальный полет в рамках программы Space Electric Rocket Test.
Концепция плазменных электрореактивных двигателей независимо разрабатывалась и в СССР. С середины 1970-х гг. советские инженеры использовали такие двигатели для обеспечения ориентации и стабилизации геостационарной орбиты телекоммуникационных спутников, поскольку они расходуют малое количество рабочего вещества.

Ракетные реалии

Достоинства плазменных двигателей особенно впечатляют в сравнении с недостатками обычных ракетных двигателей. Когда люди представляют себе стремящийся сквозь черную пустоту к далекой планете космический корабль, перед их мысленным взором возникает длинный факел пламени из сопла двигателей. На деле все выглядит совершенно иначе: почти все топливо расходуется в первые минуты полета, так что дальше корабль движется к своей цели по инерции. Ракетные двигатели на химическом топливе поднимают космические аппараты с поверхности Земли и позволяют корректировать траекторию в ходе полета. Но для исследования дальнего космоса они непригодны, поскольку для них требуется такое большое количество топлива, поднять которое с Земли на орбиту практичным и экономически приемлемым способом не представляется возможным.
В длительных полетах, чтобы достичь высокой скорости и точности выхода на заданную траекторию без дополнительных затрат топлива, зондам приходилось отклоняться от своего пути в направлении планет или их спутников, способных придать ускорение в нужном направлении за счет сил тяготения (эффект гравитационной рогатки, или маневр с использованием сил тяготения). Такой «окольный» маршрут ограничивает возможности запуска довольно короткими временными окнами, гарантирующими точное прохождение мимо небесного тела, которое должно играть роль гравитационного ускорителя.
Для проведения длительных исследований космический аппарат должен иметь возможность скорректировать траекторию движения, выйти на орбиту вокруг объекта и тем обеспечить условия выполнения поставленной задачи. Если совершить маневр не удастся, то время, доступное для наблюдений, будет очень коротким. Так, космический зонд New Horizons NASA запущенный в 2006 г., приблизившись к Плутону спустя девять лет, сможет наблюдать его в очень короткий промежуток времени, не превышающий одних земных суток.

Уравнение движения ракеты

Почему же до сих пор не был предложен способ отправить в космос достаточное количество топлива? Что препятствует решению данной проблемы?
Попробуем разобраться. Для объяснения используем основное уравнение движения ракеты - формулу Циолковского, которую специалисты применяют при расчете массы топлива, необходимой для данной задачи. Вывел ее в 1903 г. русский ученый К.Э. Циолковский, один из отцов ракетной техники и космонавтики.

ХИМИЧЕСКИЕ
И
ЭЛЕКТРИЧЕСКИЕ РАКЕТЫ


Химические и электрические системы создания тяги подходят для разных типов задач. Химические (слева) быстро создают большую тягу и поэтому позволяют быстро разгоняться до больших скоростей, но расходуют очень большие количества топлива. Такие характеристики подходят для полетов на небольшие расстояния.

Электрические ракетные двигатели (справа), в которых рабочим телом (топливом) служит плазма, т.е. ионизированный газ, развивают гораздо меньшую тягу, но расходуют несравненно меньше топлива, что позволяет им работать намного дольше. А в космической среде при отсутствии сопротивления движению малая сила, действующая длительное время, позволяет достичь таких же и даже более высоких скоростей. Эти характеристики делают плазменные ракеты подходящими для дальних полетов к нескольким пунктам назначения

По сути, данная формула математически описывает тот интуитивно осознаваемый факт, что чем выше скорость истечения продуктов сгорания из ракеты, тем меньше топлива нужно для осуществления данного маневра. Представьте себе подающего в бейсболе (ракетный двигатель), стоящего с корзиной мячей (топлива) на скейтборде (космическом аппарате). Чем выше скорость, с которой он бросает мячи назад (скорость истечения продуктов сгорания), тем с большей скоростью будет катиться скейтборд после того, как он бросит последний мяч, или, что эквивалентно, тем меньше мячей (топлива) потребуется ему для увеличения скорости скейтборда на заданную величину. Ученые обозначают это приращение скорости символом dV (читать дельта-вэ).
Более конкретно: формула связывает массу топлива, необходимую ракете для выполнения конкретной задачи в дальнем космосе, с двумя ключевыми величинами: скоростью истечения продуктов сгорания из сопла ракеты и значением dV , достижимым в результате сжигания данного количества топлива. Значение dV соответствует энергии, которую должен затратить космический аппарат для изменения своего движения по инерции и выполнения требуемого маневра. Для данной ракетной технологии (обеспечивающей данную скорость истечения) уравнение движения ракеты позволяет рассчитать массу топлива, необходимую для достижения требуемого значения dV , т.е. для выполнения необходимого маневра. Таким образом. dV можно рассматривать как «цену» задачи, поскольку затраты на вывод топлива на траекторию полета обычно составляют основную часть затрат на выполнение всей задачи.
В обычных ракетах на химическом топливе скорость истечения продуктов сгорания невелика (3-4 км/с). Уже одно это обстоятельство ставит под сомнение целесообразность их применения для дальних полетов. Кроме того, форма уравнения движения ракеты показывает, что с увеличением dV доля топлива в начальной массе космического аппарата («массовая доля топлива») растет экспоненциально. Следовательно, в аппарате для дальних полетов, требующих большого значения dV , на топливо придется почти вся стартовая масса.
Рассмотрим несколько примеров. В случае полета к Марсу с низкой околоземной орбиты требуемое значение dV составляет около 4,5 км/с. Из уравнения движения ракеты следует, что массовая доля топлива, необходимая для осуществления такого межпланетного перелета, составляет больше 2/3 . Для полетов в более далекие области Солнечной системы, например к внешним планетам, требуется dV от 35 до 70 км/с. На долю топлива в обычной ракете придется отвести 99,98 % стартовой массы. При этом для оборудования или иной полезной нагрузки места не останется. По мере того как пунктами назначения космических аппаратов становятся все более далекие области Солнечной системы, двигатели на химическом топливе будут становиться все более бесперспективными. Возможно, инженеры найдут способ существенно увеличить скорость истечения продуктов сгорания. Но это весьма непростая задача. Потребуется очень высокая температура горения, что ограничивается как количеством энергии, выделяемой в результате химической реакции, так и жаропрочностью материала стенок ракетного двигателя.

Плазменное решение

Плазменные двигатели позволяют получить гораздо более высокие скорости истечения. Тяга создается за счет ускорения плазмы - частично или полностью ионизированного газа - до скоростей, существенно превышающих предельные для обычных газодинамических двигателей. Плазма создается посредством сообщения газу энергии, например при облучении его лазером, микро- или радиочастотными волнами, либо с помощью сильных электрических полей. Избыточная энергия отрывает электроны от атомов или молекул, которые в результате этого приобретают положительный заряд, а оторванные электроны получают возможность свободно двигаться в газе, благодаря чему ионизированный газ становится гораздо лучшим проводником тока, чем металлическая медь. Поскольку плазма содержит заряженные частицы, движение которых в большой степени определяется электрическим и магнитным полями, воздействие на нее электрическим или электромагнитным полями способно ускорять ее компоненты и выбрасывать их в качестве рабочего вещества для создания тяги. Необходимые поля можно создавать с помощью электродов и магнитов, используя внешние антенны или проволочные катушки, либо путем пропускания тока через плазму.
Энергию для создания и ускорения плазмы обычно получают от солнечных батарей. Но для космических аппаратов, направляющихся за орбиту Марса, потребуются атомные источники энергии, т.к. при удалении от Солнца интенсивность потока солнечной энергии уменьшается. Сегодня в автоматических космических зондах используются термоэлектрические устройства, нагреваемые за счет энергии распада радиоактивных изотопов, но для более продолжительных полетов потребуются ядерные или даже термоядерные реакторы. Включаться они будут только после вывода космического аппарата на стабильную орбиту, находящуюся на безопасном расстоянии от Земли, до начала работы ядерное топливо должно поддерживаться в инертном состоянии.
До уровня практического применения разработаны три типа электроракетных двигателей. Шире всего применяется ионный двигатель, которым и был оснащен зонд Down.

Ионный двигатель

Идею ионного двигателя, одну из наиболее успешных концепций электрического метода создания тяги, выдвинул сто лет назад американский пионер ракетной техники Роберт Год-дард (Robert H. Goddard), будучи еще аспирантом Вустерского политехнического института. Ионные двигатели позволяют получать скорости истечения от 20 до 50 км/с (врезка на следующей стр.).
В наиболее распространенном варианте такой двигатель получает энергию от панелей фотоэлементов с запорным слоем. Он представляет собой короткий цилиндр размерами немного больше ведра, установленный в кормовой части космического аппарата. Из «топливного» бака в него подается газообразный ксенон, который поступает в ионизационную камеру, где электромагнитное поле отрывает от атомов ксенона электроны, создавая плазму. Ее положительные ионы вытягиваются и разгоняются до очень высоких скоростей электрическим полем между двумя сетчатыми электродами. Каждый положительный ион плазмы испытывает сильное притяжение к отрицательному электроду, расположенному в задней части двигателя, и поэтому ускоряется в направлении назад.
Истечение положительных ионов создает на космическом аппарате отрицательный заряд, который по мере накопления будет притягивать вылетевшие ионы обратно к аппарату, сводя тягу к нулю. Чтобы это предотвратить, используют внешний источник электронов (отрицательный электрод или электронную пушку), вводящий электроны в поток истекающих ионов. Таким образом обеспечивается нейтрализация истекающего потока, в результате чего космический аппарат остается электрически нейтральным.

Сегодня коммерческие космические аппараты (в основном - спутники связи на геостационарных орбитах) оснащены десятками ионных двигателей, которые используются для коррекции их положения на орбите и ориентации.
Первым в мире космическим аппаратом, в котором для преодоления земного тяготения при старте с околоземной орбиты была использовав на электрическая система создания тяги, стал в конце XX в. зонд Deep Space 1 Чтобы пролететь сквозь пылевой хвост кометы Боррелли, ему потребовалось увеличить скорость на 4,3 км/с, на что было израсходовано менее 74 кг ксенона (примерно такую массу имеет полная пивная бочка). Это самое большое на сегодня приращение скорости, полученное каким-либо космическим аппаратом с помощью тяги, а не гравитационной рогатки. Dawn вскоре должен превысить рекорд примерно на 10 км/с. Инженеры Лаборатории реактивного движения недавно продемонстрировали ионные двигатели, способные непрерывно работать больше трех лет.

НАЧАЛО ЭРЫ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ

1903 г.: К.Э. Циолковский вывел уравнение движения ракеты, широко используемое для расчета расхода топлива в космических полетах. В 1911 г. он предположил, что электрическое поле может ускорять заряженные частицы для создания реактивной тяги
1906 г.: Роберт Годдард рассмотрел использование электростатического ускорения заряженных частиц для создания реактивной тяги. В 1917 г. он создал и запатентовал двигатель - предшественник современных ионных двигателей
1954 г.: Эрнст Штулингер показал, как оптимизировать характеристики ионного двигателя
1962 г.: Опубликовано первое описание холловского двигателя - более мощного типа плазменных двигателей, - созданного на основе работ советских, европейских и американских исследователей
1962 г.: Адриано Дукати (Adriano Ducati) открыл принцип действия магнитоплаз-модинамического (МПД) двигателя - самого мощного типа плазменных двигателей
1964 г.: Космический аппарат SERT 1 NASA провел первое успешное испытание ионного двигателя в космосе
1972 г.: Советский спутник «Метеор» совершил первый космический полет с использованием холловского двигателя
1999 г.: Космический зонд Deep Space 1 Лаборатории неактивной тяги NASA продемонстрировал первое успешное использование ионного двигателя в качестве главной двигательной установки для преодоления земного тяготения при старте с околоземной орбиты

Характеристики электроракетных двигателей определяются не только скоростью истечения заряженных частиц, но и плотностью тяги - значением силы тяги, приходящимся на единицу площади отверстия, через которое эти частицы истекают. Возможности ионных и аналогичных электростатических двигателей ограничиваются объемным зарядом, который налагает очень низкий предел на достижимую плотность тяги. Дело в том, что по мере прохождения положительных ионов через электростатические сетки двигателя между ними неизбежно накапливается положительный заряд, который уменьшает напряженность электрического поля, ускоряющего ионы.
Из-за этого тяга двигателя зонда Deep Space 1 эквивалентна примерно весу листа бумаги, что очень далеко от тяги двигателей в научно-фантастических фильмах. Для разгона автомобиля с помощью такой силы от нуля до 100 км/ч (при отсутствии сопротивления движению: автомобиль, стоящий на земле, такая сила даже не сдвинет с места. - Прим. пер.) потребовалось бы больше двух суток. В космическом вакууме, который не оказывает сопротивления, сообщить аппарату большую скорость способна даже очень малая сила, если она действует достаточно долго.

Холловский двигатель

Вариант плазменного двигателя, называемый холловским (врезка на стр. 39), свободен от ограничений, налагаемых объемным зарядом, и поэтому способен разгонять космический аппарат до высоких скоростей быстрее, чем ионный двигатель сравнимого размера (благодаря большей плотности тяги). На Западе данная технология получила признание в начале 1990-х гг., на три десятилетия позже начала разработок в бывшем СССР.
Принцип действия двигателя основан на использовании фундаментального эффекта, открытого в 1879 г. Эдвином Холлом (Edwin H. Hall), который был тогда аспирантом в Университете Джонса Хопкинса. Холл показал, что в проводнике, в котором созданы взаимно перпендикулярные электрическое и магнитное поля, возникает электрический ток (называемый холловским) в направлении, перпендикулярном обоим этим полям.
В холловском двигателе плазма создается электрическим разрядом между внутренним положительным электродом (анодом) и наружным отрицательным электродом (катодом). Разряд отрывает электроны от нейтральных атомов газа в промежутке между электродами. Образующаяся плазма ускоряется в направлении выходного отверстия цилиндрического двигателя силой Лоренца, которая возникает в результате взаимодействия приложенного радиального магнитного поля с электрическим током (в данном случае - холловским), который течет в азимутальном направлении, т.е. вокруг центрального электрода. Холловский ток создается движением электронов в электрическом и магнитном полях. В зависимости от располагаемой мощности скорости истечения могут составлять от 10 до 50 км/с.
Этот тип плазменного двигателя свободен от ограничений, налагаемых объемным зарядом, поскольку в нем ускоряется вся плазма (как положительные ионы, так и отрицательные электроны). Поэтому достижимая плотность тяги и, следовательно, ее сила (а значит, и потенциально достижимое значение dV ) оказываются во много раз выше, чем у ионного двигателя таких же размеров. На спутниках на околоземных орбитах уже работает больше 200 холловских двигателей. И именно такой двигатель был использован Европейским космическим агентством для экономичного разгона космического аппарата SMART 1 при полете к Луне.

Размеры холловских двигателей довольно малы, и инженеры пытаются создать такие устройства, чтобы к ним можно было подводить более высокие мощности, необходимые для получения высоких скоростей истечения и значений силы тяги.
Ученые из Лаборатории физики плазмы Принстонского университета достигли определенных успехов, установив на стенках холловского двигателя секционированные электроды, которые формируют электрическое поле таким образом, чтобы сфокусировать плазму в узкий выходной пучок. Конструкция уменьшает бесполезный неосевой компонент тяги и позволяет увеличить ресурс двигателя благодаря тому, что плазменный пучок не соприкасается со стенками двигателя. Немецкие инженеры достигли примерно таких же результатов, применив магнитные поля особой конфигурации. А исследователи Стэнфордского университета показали, что покрытие стенок двигателя прочным поликристаллическим алмазом значительно повышает их стойкость к эрозии под действием плазмы. Все эти усовершенствования сделали холловские двигатели пригодными для дальних космических полетов.

Двигатель следующего поколения

Один из способов дальнейшего повышения плотности тяги состоит в увеличении общего количества плазмы, ускоряемой в двигателе. Но с подъемом плотности плазмы в холловском двигателе растет частота соударений электронов с атомами и ионами, что
мешает электронам переносить холловский ток, необходимый для ускорения. Использовать более плотную плазму позволяет магнитоплазмодинамический (МПД) двигатель, в котором вместо холловского тока используется ток, направленный в основном вдоль электрического поля (врезка слева) и в гораздо меньшей степени подверженный разрушению из-за столкновений с атомами.
В общих чертах МПД-двигатель состоит из центрального катода, расположенного внутри цилиндрического анода большего размера. Газ (обычно пары лития) подается в кольцевой промежуток между катодом и анодом, где ионизуется электрическим током, текущим в радиальном направлении от катода к аноду. Ток создает азимутальное магнитное поле (окружающее центральный катод), а взаимодействие поля и тока порождает силу Лоренца, создающую тягу.
МПД-двигатель размером с обычное ведро способен перерабатывать около мегаватта мощности от солнечного или ядерного источника и позволяет получать скорости истечения от 15 до 60 км/с. Поистине, мал да удал.

Еще одно достоинство МПД-двигателя - возможность дросселирования: скорость истечения и тягу в нем можно регулировать, изменяя силу тока или расход рабочего вещества. Это дает возможность менять тягу двигателя и скорость истечения применительно к потребности оптимизации траектории полета. Интенсивные исследования процессов, ухудшающих характеристики МПД-двигателей и влияющих на срок их службы, в частности плазменной эрозии, нестабильностей плазмы и потерь мощности в ней, позволили создать новые двигатели с высокими характеристиками. В качестве рабочих веществ в них используются пары лития или бария. Атомы этих металлов легко ионизуются, что уменьшает внутренние потери энергии в плазме и дает возможность поддерживать более низкую температуру катода. Применение жидких металлов в качестве рабочих веществ и необычная конструкция катода с каналами, изменяющими характер взаимодействия электрического тока с его поверхностью, помогли существенно уменьшить эрозию катода и создать более надежные МПД-двигатели.
Группа ученых из академических организаций и NASA недавно завершила разработку новейшего «литиевого» МПД-двигателя под названием а2 . потенциально способного доставить к Луне и Марсу космический аппарат с ядерной силовой установкой, несущий большую полезную нагрузку и людей, а также обеспечить полеты автоматических космических станций к внешним планетам Солнечной системы.

Черепаха побеждает

Ионный, холловский и магнитоплазмодинамический - три типа плазменных двигателей, уже нашедших практическое применение. За последние десятилетия исследователями предложено много перспективных вариантов. Разрабатываются двигатели, работающие в импульсном и в непрерывном режиме. В одних плазма создается с помощью электрического разряда между электродами, в других - индуктивным способом с помощью катушки или антенны. Различаются и механизмы ускорения плазмы: с использованием силы Лоренца, путем введения плазмы в создаваемые магнитным способом токовые слои, или с помощью бегущей электромагнитной волны. В одном из типов даже предполагается выбрасывать плазму через невидимые «ракетные сопла», создаваемые с помощью магнитных полей.
Во всех случаях плазменные ракетные двигатели набирают скорость медленнее обычных. Тем не менее благодаря парадоксу «чем медленнее, тем быстрее» они позволяют достичь далеких целей в более короткий срок, так как в итоге разгоняют космический аппарат до скорости значительно большей, чем двигатели на химическом топливе при той же массе топлива. Это позволяет избежать траты времени на отклонения к телам, обеспечивающим эффект гравитационной рогатки. Как в знаменитой истории о медлительной черепахе, которая в итоге обгоняет зайца, в «марафонских» полетах, которых в грядущую эру исследования дальнего космоса будет совершаться все больше, черепаха победит.


Сегодня самые передовые плазменные двигатели способны обеспечить dV до 100 км/с. Этого вполне достаточно для совершения полетов к внешним планетам за разумное время. Один из самых впечатляющих проектов в области исследования дальнего космоса предусматривает доставку на Землю образцов грунта с Титана - самого крупного спутника Сатурна, имеющего, по предположениям ученых, атмосферу, очень похожую на ту, которая окутывала Землю миллиарды лет назад.
Образец с поверхности Титана предоставит ученым редкую возможность поиска признаков химических предшественников жизни. Ракетные двигатели на химическом топливе делают такую экспедицию неосуществимой. Использование гравитационных рогаток увеличило бы время полета более чем на три года. А зонд с «маленьким, да удаленьким» плазменным двигателем сможет совершить такое путешествие значительно быстрее.

Перевод: И.Е. Сацевич

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

    Benefits of Nuclear Electric Propulsion for Outer Planet Exploration. G. Woodcock et al. American institute of Aeronautics and Astronautics, 2002.

    Electric Propulsion. Robert G. Jahn and Edgar Y. Choueiri in Encyclopedia of Physical Science and Technology. Third edition. Academic Press, 2002.

    A Critical History of Electric Propulsion: The First 50 Years (1906-1956). Edgar Y. Choueiri in Journal of Propulsion and Power, Vol. 20, No. 2, pages 193-203; 2004.

__________________________________________________ [ оглавление ]

Оптимизирован под Internet Explorer 1024X768
средний размер шрифта
Дизайн A Semenov

Изобретение относится к области создания электрических ракетных двигателей. Предлагается устройство электрического ракетного двигателя, которое так же, как известный тип двигателя с однородным стационарным плазменным разрядом (стационарные плазменные двигатели - СПД), содержит сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС. В отличие от СПД предлагаемый двигатель использует неоднородный газоплазменный поток рабочего тела. Для создания плазменных неоднородностей в форме плазменных колец двигатель содержит импульсный высокочастотный источник напряжения, подключенный к дополнительной катушке, установленной на входе канала ускорителя. Поддержание разряда в плазменных кольцах, индуктивно связанных с катушкой возбуждения магнитного поля, осуществляется источником переменной ЭДС, подключенного к катушке. Для размыкания тока в плазменных кольцах в момент их выхода из канала магнитодинамического ускорителя на входе в диффузор двигателя установлены радиальные диэлектрические ребра. Изобретение позволяет увеличить тягу и длительность работы двигателя. 1 ил.

Изобретение относится к области создания электрических ракетных двигателей.Известен способ [I], повышающий тягу электрического ракетного двигателя, который предлагает заменить стационарный однородный плазменный разряд неоднородным газоплазменным потоком. Плазменные сгустки (Т-слои) устойчивы к развитию перегревной неустойчивости, что позволяет многократно повысить плотность рабочего тела, проходящего через канал двигателя, и таким образом пропорционально увеличить тягу. Устройство, реализующее этот способ, состоит из газодинамического сопла, канала магнитогидродинамического ускорителя прямоугольного сечения с электродными стенками, магнитной системы, создающей магнитное поле в канале ускорителя, поперечное к потоку рабочего тела, системы импульсного электродного сильноточного разряда, формирующей в потоке Т-слои, источника постоянной ЭДС, подключенной к электродам канала ускорителя. Устройство должно обеспечивать ускорение потока за счет электродинамической силы, действующей в объеме Т-слоев, которые в свою очередь действуют на газовый поток как ускоряющие плазменные поршни. Численное моделирование рабочего режима в канале данного устройства показало, что может достигаться скорость истечения до 50000 м/с при уровне тяги до 1000 Н.Недостатком устройства, реализующего известный способ, является использование электродов как в цепи источника, формирующего Т-слои, так и в цепи источника, обеспечивающего режим ускорения в МГД-канале. Режим протекания тока в Т-слоях является дуговым. Неизбежная дуговая эрозия электродов существенно сокращает ресурс работы двигателя (из опыта работы плазмотронов следует ожидать, что электроды обеспечат не более 100 часов непрерывной работы). Для космических аппаратов многократного использования ресурс двигателя должен быть не меньше года непрерывной работы.Известен электрический ракетный двигатель (стационарный плазменный двигатель - СПД), который используют для ускорения плазменного потока за счет электродинамического воздействия на электропроводную среду. Это устройство состоит из сверхзвуковых сопел, канала магнитогидродинамического (МГД) ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушки возбуждения магнитного поля, подключенной к источнику постоянной ЭДС, системы электропитания стационарного разряда в плазме. Устройство работает по следующей схеме. По газодинамическому соплу подается газообразное рабочее тело, которое при входе в канал МГД-ускорителя попадает в область стационарного плазменного разряда, поддерживаемого системой электропитания, ионизуется и переходит в плазменное состояние. Ток в разряде протекает вдоль канала, при этом анод системы электропитания является газодинамическим соплом, а катод находится на выходе из канала. Устойчивый режим ускорения реализуется только при очень низкой плотности плазмы, при которой параметр Холла может достигать значений порядка 100. В этих условиях небольшой разрядный ток вдоль канала генерирует значительный азимутальный ток, замкнутый сам на себя. Взаимодействие азимутального тока с радиальным магнитным полем, созданном катушкой возбуждения между коаксиальными полюсами магнитопровода, порождает в объеме плазмы ускоряющую электродинамическую силу. Замкнутость основного тока без использования для этого электродов позволяет сделать ресурс работы двигателя практически неограниченным.Недостатком известного устройства является низкая плотность рабочего тела, что необходимо для обеспечения устойчивой работы двигателя. Соответственно тяга такого двигателя не превышает 0,1 Н.В основу изобретения положена задача создания электрического ракетного двигателя большой тяги при длительности непрерывной работы порядка года.Поставленная задача достигается тем, что электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, согласно данному изобретению снабжен импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.Изобретение поясняется чертежом, на котором представлено поперечное сечение устройства.Электрический ракетный двигатель содержит сверхзвуковые сопла 1, канал 2 магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода 3, катушку 4 возбуждения магнитного поля, подключенную к источнику 5 переменной ЭДС, импульсный высокочастотный источник напряжения 6, подключенный к дополнительной катушке 7, установленной на входе в канал 2 ускорителя. Двигатель также содержит диффузор 8 с радиальными диэлектрическими ребрами 9.Электрический ракетный двигатель работает следующим образом.Нагретый газ (например, водород), температура которого определяется условиями бортового источника тепла, а давление - требованиями по тяге двигателя, задающими расход рабочего тела, разгоняют в сверхзвуковых соплах 1. Систему импульсного высокочастотного разряда 6 периодически включают с заданной временной скважностью, и каждое включение формирует в газовом потоке плазменный сгусток на входе канала 2 МГД ускорителя. Внешним источником переменной ЭДС создается переменный ток в катушке возбуждения 4, что порождает переменное во времени радиальное магнитное поле между полюсами коаксиального магнитопровода 3. Это генерирует вихревое электрическое поле азимутального направления. Под воздействием азимутального электрического и радиального магнитного полей из плазменных сгустков формируются самоподдерживающиеся азимутальные плазменные токовые витки (Т-слои), которые в свою очередь действуют на газовый поток как ускоряющие поршни. После канала МГД-ускорителя ускоренный поток попадает в расширяющийся канал-диффузор 8, в котором установлены радиальные диэлектрические ребра 9. Ребра обтекаются газовым потоком, но на них разрываются электрические цепи Т-слоев, что позволяет прервать электродинамическую стадию ускорения потока. В диффузоре 8, являющемся продолжением канала МГД-ускорителя, осуществляется дальнейшее ускорение газового потока за счет тепловой энергии, перешедшей из Т-слоев в поток.Было выполнено численное моделирование процесса ускорения потока водорода, содержащего Т-слои, в условиях режима, реализующего описанный способ. Показано, что предлагаемое устройство может быть реализовано со следующими параметрами, соответствующими задаче создания эффективного электрического ракетного двигателя (ЭРД):- КПД процесса трансформации электроэнергии в кинетическую энергию рабочего тела 95%;- средняя скорость потока на выходе из двигателя 40 км/с;- длина канала МГД-ускорителя 0,3 м;- средний диаметр канала МГД-ускорителя 11 см;- высота канала (расстояние между полюсами) 1 см- массовый расход рабочего тела 12 г/с;- температура водорода на входе в ЭРД 1000 К;- давление водорода на входе в ЭРД 10 4 Па;- среднее значение ЭДС источника питания ЭРД 5 кВ;- среднее значение тока в обмотке возбуждения 2 кА;- потребляемая электрическая мощность 10 МВт;- тяга двигателя 500 НПредлагаемый электрический ракетный двигатель найдет применение при создании космической транспортной системы, предназначаемой для транспортировки грузов с околоземных орбит на геостационарные, лунные и далее к планетам солнечной системы.Источники информации1. B.C. Славин, В.В. Данилов, М.В. Краев. Способ ускорения потока рабочего тела в канале ракетного двигателя, патент РФ № 2162958, F 02 K 11/00, F 03 H 1/00, 2001.2. С.Д. Гришин, Л.В. Лесков. Электрические ракетные двигатели космических аппаратов. - М.: Машиностроение, 1989, с. 163.

Формула изобретения

Электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, отличающийся тем, что устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.

Похожие патенты:

Изобретение относится к плазменной технике и может использоваться в электроракетных двигателях на базе ускорителя плазмы с замкнутым дрейфом электронов, а также в технологических ускорителях, применяемых в процессах вакуумно-плазменной технологии

Электрический ракетный двигатель - ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения - небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.

Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916-1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.

В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели , можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.

В середине 60-х гг. XX в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.

В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильно-точные (элекромагнитные, магнитодинамические) и импульсные двигатели.

В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных - литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.

Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.

В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.
Недостатком является очень малая плотность тяги, также необходимо отметить: внешнее давление не должно превышать давление в ускорительном канале. Электрическая мощность современных электрических ракетных двигателей, применяемых на космических аппаратах, колеблется от 800 до 2000 Вт, хотя теоретическая мощность может достигать мегаватт. КПД электрических ракетных двигателей невысок и варьируется от 30 до 60%.

В ближайшее десятилетие этот тип двигателей в основном будет выполнять задачи по коррекции орбиты космических аппаратов, находящихся как на геостационарных, так и на низких околоземных орбитах, а также для доставки космических аппаратов с опорной околоземной орбиты на более высокие, например геостационарную.

Замена жидкостного ракетного двигателя, выполняющего функцию корректора орбиты, на электрический позволит снизить массу типового спутника на 15%, а если увеличить срок его активного пребывания на орбите, то на 40%.