Как взаимодействует серная кислота с металлами. Серная кислота. Использование серной кислоты

Химические свойства серной кислоты такие:

1. Взаимодействие с металлами :

Разбавленная кислота растворяет только те металлы, которые стоят левее водорода в ряду напряжений, например H 2 +1 SO 4 + Zn 0 = H 2 O + Zn +2 SO 4 ;

Окислительные свойства серной кислоты велики. При взаимодействии с различными металлами (кроме Pt, Au) она может восстанавливаться до H 2 S -2 , S +4 O 2 или S 0 , например:

2H 2 +6 SO 4 + 2Ag 0 = S +4 O 2 + Ag 2 +1 SO 4 + 2H 2 O;

5H 2 +6 SO 4 +8Na 0 = H 2 S -2 + 4Na 2 +1 SO 4 + 4H 2 O;

2. Концентрированная кислота H 2 S +6 O 4 также реагирует (при нагревании) с некоторыми неметаллами, превращаясь при этом в соединения серы с более низкой степенью окисления , например:

2H 2 S +6 O 4 + С 0 = 2S +4 O 2 + C +4 O 2 + 2H 2 O;

2H 2 S +6 O 4 + S 0 = 3S +4 O 2 + 2H 2 O;

5H 2 S +6 O 4 + 2P 0 = 2H 3 P +5 O 4 + 5S +4 O 2 + 2H 2 O;

3. С основными оксидами:

H 2 SO 4 + CuO = CuSO 4 + H 2 O;

4. С гидроксидами:

Cu(OH) 2 + H 2 SO 4 = CuSO 4 + 2H 2 O;

2NaOH + H 2 SO 4 = Na 2 SO 4 + 2H 2 O;

5. Взаимодействие с солями при обменных реакциях:

H 2 SO 4 + BaCl 2 = 2HCl + BaSO 4 ;

Образование BaSO 4 (белого осадка, нерастворимого в кислотах) используется для определения этой кислоты и растворимых сульфатов.

Мысль о том, что атом элемента обладает способностью к «насыщению», была высказана в 1853 г. Э. Франклендом при рассмотрении конституции металлорганических соединений. Развивая эту идею, в 1854 г. Кекуле впервые высказал идею о «двухосновности», или «двухатомности» (позднее он стал использовать термин «валентность») серы и кислорода, а в 1857 г. разделил все элементы на одно-, двух- и трехосновные; углерод Кекуле (одновременно с немецким химиком Г. Кольбе) определил как четырёхатомный элемент. В 1858 г. Кекуле (одновременно с шотландским химиком А. Купером) указал на способность атомов углерода при насыщении своих «единиц сродства» образовывать цепи. Это механическое учение о соединении атомов в цепи с образованием молекул легло в основу теории химического строения.

В 1865 г. Кекуле высказал предположение, что молекула бензола имеет форму правильного шестиугольника, образованного шестью углеродными атомами, с которыми связаны шесть атомов водорода. Объединив представление об образовании цепей с учением о существовании кратных связей, он пришел к идее чередования в бензольном кольце простых и двойных связей (сходные структурные формулы предложил незадолго до этого И. Лошмидт). Несмотря на то, что эта теория сразу столкнулась с возражениями, она довольно быстро привилась в науке и практике.

Концепция Кекуле открыла путь к установлению структуры многих циклических (ароматических) соединений. Для объяснения неспособности бензола присоединять галогенводороды Кекуле в 1872 г. выдвинул осцилляционную гипотезу, согласно которой в бензоле простые и двойные связи постоянно меняются местами. В 1867 г. Кекуле опубликовал работу о пространственном расположении атомов в молекуле, где указывал, что связи углеродного атома могут не находиться в одной плоскости.

Кекуле несколько лет был президентом Немецкого химического общества. Он являлся одним из организаторов Международного конгресса химиков в Карлсруэ (1860). Весьма плодотворной была педагогическая деятельность Кекуле. Он автор получившего широкую известность «Учебника органической химии» (1859-1861). Целый ряд учеников Кекуле стали выдающимися химиками; среди них можно особо отметить Л. Мейера, Я. Вант-Гоффа, А. Байера и Э. Фишера.

БУТЛЕРОВ, Александр Михайлович

Русский химик Александр Михайлович Бутлеров родился в Чистополе Казанской губернии в семье помещика, офицера в отставке. Рано лишившись матери, Бутлеров воспитывался в одном из частных пансионов в Казани, затем учился в Казанской гимназии. В шестнадцатилетнем возрасте он поступил на физико-математическое отделение Казанского университета, который в то время был центром естественнонаучных исследований в России.

В первые годы студенчества Бутлеров увлекался ботаникой и зоологией, но затем под влиянием лекций К. К. Клауса и Н. Н. Зинина заинтересовался химией и решил посвятить себя этой науке. В 1849 г. Бутлеров окончил университет и по представлению Клауса был оставлен на кафедре в качестве преподавателя. В 1851 г. он защитил магистерскую диссертацию «Об окислении органических соединений», а в 1854 г. - докторскую диссертацию «Об эфирных маслах». В 1854 г. Бутлеров стал экстраординарным, а в 1857 г. - ординарным профессором химии Казанского университета.

Во время заграничной поездки в 1857-1858 гг. Бутлеров познакомился со многими ведущими химиками Европы, участвовал в заседаниях только что организованного Парижского химического общества. В лаборатории Ш. А. Вюрца Бутлеров начал цикл экспериментальных исследований, послуживший основой теории химического строения. Её главные положения он сформулировал в докладе «О химическом строении вещества», прочитанном на Съезде немецких естествоиспытателей и врачей в Шпейере (сентябрь 1861 г.).

Основы этой теории сформулированы таким образом: 1) «Полагая, что каждому химическому атому свойственно лишь определённое и ограниченное количество химической силы (сродства), с которой он принимает участие в образовании тела, я назвал бы химическим строением эту химическую связь, или способ взаимного соединения атомов в сложном теле»; 2) «... химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».

С этими постулатами прямо или косвенно связаны и все остальные положения классической теории химического строения. Бутлеров намечает путь для определения химического строения и формулирует правила, которыми можно при этом руководствоваться. Предпочтение он отдаёт синтетическим реакциям, проводимым в условиях, когда радикалы, в них участвующие, сохраняют своё химическое строение.

Оставляя открытым вопрос о предпочтительном виде формул химического строения, Бутлеров высказывался об их смысле: «... когда сделаются известными общие законы зависимости химических свойств тел от их химического строения, то подобная формула будет выражением всех этих свойств». При этом Бутлеров был убеждён, что структурные формулы не могут быть просто условным изображением молекул, а должны отражать их реальное строение. Он подчёркивал, что каждая молекула имеет вполне определённую структуру и не может совмещать несколько таких структур.

Большое значение для становления теории химического строения имело её экспериментальное подтверждение в работах как самого Бутлерова, так и его школы. Бутлеров предвидел, а затем и доказал существование позиционной и скелетной изомерии. Получив третичный бутиловый спирт, он сумел расшифровать его строение и доказал (совместно с учениками) наличие у него изомеров. В 1864 г. Бутлеров предсказал существование двух бутанов и трёх пентанов, а позднее и изобутилена.

Им было высказано также предположение о существовании четырех валериановых кислот; строение первых трёх было определено в 1871 г. Э. Эрленмейером, а четвёртая получена самим Бутлеровым в 1872 г. Чтобы провести идеи теории химического строения через всю органическую химию, Бутлеров издал в 1864-1866 гг. в Казани книгу «Введение к полному изучению органической химии», 2-е изд. которой вышло уже в 1867-1868 гг. на немецком языке.

В 1868 г. по представлению Д. И. Менделеева Бутлеров был избран ординарным профессором Петербургского университета, где и работал до конца жизни. В 1870 г. он стал экстраординарным, а в 1874 г. - ординарным академиком Петербургской академии наук. С 1878 по 1882 г. был Президентом и председателем Отделения химии Русского физико-химического общества.

Преподавательская деятельность Бутлерова длилась 35 лет и проходила в трех высших учебных заведениях: Казанском, Петербургском университетах и на Высших женских курсах (он принимал участие в их организации в 1878 г.). Под руководством Бутлерова работало множество его учеников, среди которых можно назвать В. В. Марковникова,Ф. М. Флавицкого, А. М. Зайцева (в Казани), А. Е. Фаворского, И. Л. Кондакова (в Петербурге). Бутлеров стал основателем знаменитой казанской («бутлеровской») школы химиков-органиков. Бутлеров прочитал также множество популярных лекций, главным образом на химико-технические темы.

Кроме химии, Бутлеров много внимания уделял практическим вопросам сельского хозяйства, садоводству, пчеловодству, а позднее также и разведению чая на Кавказе. С конца 1860-х гг. Бутлеров активно интересовался спиритизмом и медиумизмом, которым посвятил несколько статей; это увлечение Бутлерова и его попытки дать спиритизму научное обоснование стали причиной его полемики с Менделеевым. Умер Бутлеров в дер. Бутлеровка Казанской губернии, не дожив до окончательного признания своей теории. Два наиболее значительных русских химика - Д. И. Менделеев и Н. А. Меншуткин - лишь спустя десять лет после смерти Бутлерова признали справедливость теории химического строения.

Реакция тримеризации бензола

ОВР в статье специально выделены цветом. Обратите на них особое внимание. Эти уравнения могут попасться в ЕГЭ.

Разбавленная серная ведет себя, как и остальные кислоты, окислительные свои возможности прячет:

И еще, что надо помнить про разбавленную серную кислоту : она не реагирует со свинцом . Кусок свинца, брошенный в разбавленную H2SO4 покрывается слоем нерастворимого (см. таблицу растворимости) сульфата свинца и реакция моментально прекращается.

Окислительные свойства серной кислоты

– тяжелая маслянистая жидкость, не летучая, не имеет вкуса и запаха

За счет серы в степени окисления +6(высшей) серная кислота приобретает сильные окислительные свойства.

Правило для задания 24 (по-старому А24) при приготовлении растворов серной кислоты никогда нельзя в нее лить воду . Концентрированую серную кислоту нужно тонкой струйкой вливать в воду, постоянно помешивая.

Взаимодействие концентрированной серной кислоты с металлами

Эти реакции строго стандартизированны и идут по схеме:

H2SO4(конц.) + металл → сульфат металла + H2O + продукт восстановленной серы.

Есть два нюанса:

1) Алюминий, железо и хром с H2SO4 (конц) в нормальных условиях не реагируют, из-за пассивации. Нужно нагреть.

2) С платиной и золотом H2SO4 (конц) не реагирует вообще.

Сера в концентрированной серной кислоте – окислитель

  • значит, сама будет восстанавливаться;
  • то, до какой степени окисления будет восстанавливаться сера, зависит от металла.

Рассмотрим диаграмму степеней окисления серы :

  • До -2 серу могут восстановить только очень активные металлы — в ряду напряжений до алюминия включительно .

Реакции будут идти вот так:

8Li + 5H 2 SO 4( конц .) → 4Li 2 SO 4 + 4H 2 O + H 2 S

4Mg + 5H 2 SO 4( конц .) → 4MgSO 4 + 4H 2 O + H 2 S

8Al + 15H 2 SO 4( конц .) (t)→ 4Al 2 (SO 4 ) 3 + 12H 2 O + 3H 2 S

  • при взаимодействии H2SO4 (конц) с металлами в ряду напряжений после алюминия, но до железа , то есть с металлами со средней активностью сера восстанавливается до 0 :

3Mn + 4H 2 SO 4( конц .) → 3MnSO 4 + 4H 2 O + S↓

2Cr + 4H 2 SO 4( конц .) (t)→ Cr 2 (SO 4 ) 3 + 4H 2 O + S↓

3Zn + 4H 2 SO 4( конц .) → 3ZnSO 4 + 4H 2 O + S↓

  • все остальные металлы, начиная с железа в ряду напряжений (включая те, что после водорода, кроме золота и платины, конечно), могут восстановить серу только до +4. Так как это малоактивные металлы:

2 Fe + 6 H 2 SO 4(конц.) ( t )→ Fe 2 ( SO 4 ) 3 + 6 H 2 O + 3 SO 2

(обратите внимание, что железо окисляется до +3, до максимально возможной, высшей степени окисления, так как оно имеет дело с сильным окислителем)

Cu + 2H 2 SO 4( конц .) → CuSO 4 + 2H 2 O + SO 2

2Ag + 2H 2 SO 4( конц .) → Ag 2 SO 4 + 2H 2 O + SO 2

Конечно, все относительно. Глубина восстановления будет зависеть от многих факторов: концентрации кислоты (90%, 80%, 60%), температуры и т.д. Поэтому совсем уж точно предсказать продукты нельзя. Приведенная выше таблица тоже имеет свой процент приблизительности, но пользоваться ей можно. Еще необходимо помнить, что в ЕГЭ, когда продукт восстановленной серы не указан, и металл не отличается особой активностью, то, скорее всего, составители имеют в виду SO 2 . Нужно смотреть по ситуации и искать зацепки в условиях.

SO 2 – это вообще частый продукт ОВР с участием конц. серной кислоты.

H2SO4 (конц) окисляет некоторые неметаллы (которые проявляют восстановительные свойства), как правило, до максимальной — высшей степени окисления (образуется оксид этого неметалла). Сера при этом тоже восстанавливается до SO 2:

C + 2H 2 SO 4( конц .) → CO 2 + 2H 2 O + 2SO 2

2P + 5H 2 SO 4( конц .) → P 2 O 5 + 5H 2 O + 5SO 2

Свежеобразованный оксид фосфора (V ) реагирует с водой, получается ортофосфорная кислота. Поэтому реакцию записывают сразу:

2P + 5H 2 SO 4( конц ) → 2H 3 PO 4 + 2H 2 O + 5SO 2

То же самое с бором, он превращается в ортоборную кислоту:

2B + 3H 2 SO 4( конц ) → 2H 3 BO 3 + 3SO 2

Очень интересны взаимодействие серы со степенью окисления +6 (в серной кислоте) с «другой» серой (находящейся в другом соединении). В рамках ЕГЭ рассматривается взаимодействиеH2SO4 (конц) с серой (простым веществом) и сероводородом .

Начнем с взаимодействия серы (простого вещества) с концентрированной серной кислотой . В простом веществе степень окисления 0, в кислоте +6. В этой ОВР сера +6 будет окислять серу 0. Посмотрим на диаграмму степеней окисления серы:

Сера 0 будет окисляться, а сера +6 будет восстанавливаться, то есть понижать степень окисления. Будет выделяться сернистый газ:

2 H 2 SO 4(конц.) + S → 3 SO 2 + 2 H 2 O

Но в случае с сероводородом:

Образуется и сера (простое вещество), и сернистый газ:

H 2 SO 4( конц .) + H 2 S → S↓ + SO 2 + 2H 2 O

Этот принцип часто может помочь в определении продукта ОВР, где окислитель и восстановитель – один и тот же элемент, в разных степенях окисления. Окислитель и восстановитель «идут навстречу друг другу» по диаграмме степеней окисления.

H2SO4 (конц) , так или иначе, взаимодействует с галогенидами . Только вот тут надо понимать, что фтор и хлор – «сами с усами» и с фторидами и хлоридами ОВР не протекает , проходит обычный ионно-обменный процесс, в ходе которого образуется газообразный галогеноводород:

CaCl 2 + H 2 SO 4( конц .) → CaSO 4 + 2HCl

CaF 2 + H 2 SO 4( конц .) → CaSO 4 + 2HF

А вот галогены в составе бромидов и иодидов (как и в составе соответствующих галогеноводородов) окисляются ей до свободных галогенов. Только вот сера восстанавливается по-разному: иодид является более cильным восстановителем, чем бромид. Поэтому иодид восстанавливает серу до сероводорода, а бромид до сернистого газа:

2H 2 SO 4( конц .) + 2NaBr → Na 2 SO 4 + 2H 2 O + SO 2 + Br 2

H 2 SO 4( конц .) + 2HBr → 2H 2 O + SO 2 + Br 2

5H 2 SO 4( конц .) + 8NaI → 4Na 2 SO 4 + 4H 2 O + H 2 S + 4I 2

H 2 SO 4( конц .) + 8HI → 4H 2 O + H 2 S + 4I 2

Хлороводород и фтороводород (как и их соли) устойчивы к окисляющему действию H2SO4 (конц).

И наконец, последнее: для концентрированной серной кислоты это уникально, больше никто так не может. Она обладает водоотнимающим свойством .

Это позволяет использовать концентрированную серную кислоту самым разным образом:

Во-первых, осушение веществ. Концентрированная серная кислота забирает воду от вещества и оно «становится сухим».

Во-вторых, катализатор в реакциях, в которых отщепляется вода (например, дегидратация и этерификация):

H 3 C–COOH + HO–CH 3 (H 2 SO 4 (конц.) )→ H 3 C–C(O)–O–CH 3 + H 2 O

H 3 C–CH 2 –OH (H 2 SO 4 (конц.) )→ H 2 C =CH 2 + H 2 O

Концентрированной кислоты, техника безопасности при работе.

СЕРНАЯ КИСЛОТА. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА.

Физические свойства: Безводная серная кислота - бесцветная маслянистая жидкость, кристаллизующаяся при 10,5 0 С. С водой смешивается в любых соотношениях. При растворении в воде выделяется большое количество

теплоты. При этом образуются гидраты серной кислоты.

Т.к. растворение Н 2 SO 4 в воде сопровождается выделением большого количества теплоты, необходимо эту операцию проводить с большой осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора следует серную кислоту вливать в воду.

Концентрированная серная кислота энергично поглощает влагу и поэтому применяется для осушки газов.

ХИМИЧЕСКИЕ СВОЙСТВА СЕРНОЙ КИСЛОТЫ.

Она является двухосновной кислотой.

Структурная формула:


Концентрированная серная кислота - энергичныйокислитель :

1. При нагревании окисляет большинство металлов, в том числе и медь, серебро, ртуть. В зависимости от активности металла в качестве продуктов восстановления могут быть: S 0 , SO 2 , H 2 S , но чаще до SO 2 .

Например: При взаимодействии с медью и другими малоактивными металлами при нагревании образуется SO 2 .

Cu + 2 H 2 SO 4 = CuSO 4 + SO 2 + H 2 O

Восстановитель окислитель


Cu 0 - 2ē - Cu +2 1 пр.ок-я вос-ль

SO 4 2- + 4H - +2ē - SO 2 0 +2H 2 O 1 пр. вос-я ок-ль

На холоду концентрированная серная кислота (выше 93%) не взаимодей- ствует с такими активными металлами, как алюминий, железо, хром.

Объясняется это явление пассивацией металлов. Такая особенность серной кислоты широко используется для транспортировки последней в железной таре.



2. При кипячении окисляет такие неметаллы, как серу, углерод:

S + 2 Н 2 SО 4 = 3 SO 2 +2 H 2 O

С + 2 H 2 SO 4 = СO 2 + 2 SO 2 + 2 Н 2 O

3. Водоотнимающее действие (обугливание).

СВОЙСТВА РАЗБАВЛЕННОЙ СЕРНОЙ КИСЛОТЫ.

1. Изменяет окраску индикатора.

2. Взаимодействует с основными и амфотерными оксидами:

Nа 2 O + Н 2 SO 4 = Nа 2 SO 4 + Н 2 O

ZnO + Н 2 SO 4 = ZnSO 4 + H 2 O

3. С основаниями (реакция нейтрализации):

Н 2 SO 4 + 2КОН = K 2 SO 4 + Н 2 O

3Н 2 SO 4 + 2 Al(OH) 3 = Al 2 (SO 4) 3 + 6 Н 2 O

4. С солями:

H 2 SO 4 + Ba(NO 3) 2 = BaSO 4 ↓+ 2 HNO 3

Выводы:

1.Безводная серная кислота - бесцветная маслянистая жидкость, кристаллизующаяся при 10,5 0 С. С водой смешивается в любых соотношениях.

2.Т.к. растворение Н 2 SO 4 в воде сопровождается выделением большого количества теплоты, необходимо эту операцию проводить с большой осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора следует серную кислоту вливать в воду.

3.Концентрированная серная кислота энергично поглощает влагу и поэтому применяется для осушки газов.

4.Серная кислота является двухосновной кислотой.

5.Концентрированная серная кислота - энергичныйокислитель .

· При нагревании окисляет большинство металлов, в том числе и медь, серебро, ртуть. В зависимости от активности металла в качестве продуктов восстановления могут быть: S 0 , SO 2 , H 2 S , но чаще до SO 2 .

· .На холоду концентрированная серная кислота (выше 93%) не взаимодействует с такими активными металлами, как алюминий, железо, хром.

· При кипячении окисляет такие неметаллы, как серу, углерод.

· Водоотнимающее действие (обугливание).

6.СВОЙСТВА РАЗБАВЛЕННОЙ СЕРНОЙ КИСЛОТЫ.

· Изменяет окраску индикатора.

· Взаимодействует:

· с основными и амфотерными оксидами.

· С основаниями (реакция нейтрализации).

· С солями.

Сульфаты. Качественная реакция на сульфат- ион

Реактивом на сульфат-ион является хлорид бария.

Хлорид бария BaCl 2 осаждает из разбавленных растворов сульфатов белый кристаллический ни в чем нерастворимый осадок сульфата бария:

BaCl 2 + Nа 2 SO 4 = BaSO 4 ↓ + 2 NаCl

Ba 2+ + SO 4 2- = BaSO 4 ↓

реакция фармакопейная.

Техника выполнения: к 2 каплям раствора сульфата натрия Na 2 SO 4 добавляют раствор хлорида бария BaCl 2 и наблюдают выпадение осадка.

Выводы:

1.Реактивом на сульфат-ион является хлорид бария.

2.Хлорид бария BaCl 2 осаждает из разбавленных растворов сульфатов белый кристаллический ни в чем нерастворимый осадок сульфата бария.

Любая кислота представляет собой сложное вещество, молекула которого содержит один или несколько атомов водорода и кислотный остаток.

Формула серной кислоты - H2SO4. Следовательно, в состав молекулы серной кислоты входят два атома водорода и кислотный остаток SO4.

Образуется серная кислота при взаимодействии оксида серы с водой

SO3+H2O -> H2SO4

Чистая 100%-я серная кислота (моногидрат) - тяжёлая жидкость, вязкая как масло, без цвета и запаха, с кислым «медным» вкусом. Уже при температуре +10 °С она застывает и превращается в кристаллическую массу.

Концентрированная серная кислота содержит приблизительно 95% H2 SO4. И застывает она при температуре ниже –20°С.

Взаимодействие с водой

Серная кислота хорошо растворяется в воде, смешиваясь с ней в любых соотношениях. При этом выделяется большое количество тепла.

Серная кислота способна поглощать пары воды из воздуха. Это её свойство используют в промышленности для осушения газов. Осушают газы, пропуская их через специальные ёмкости с серной кислотой. Конечно же, этот способ можно применять только для тех газов, которые не вступают в реакцию с ней.

Известно, что при попадании серной кислоты на многие органические вещества, особенно углеводы, эти вещества обугливаются. Дело в том, что углеводы, как и вода, содержат и водород, и кислород. Серная кислота отнимает у них эти элементы. Остаётся уголь.

В водном растворе H2SO4 индикаторы лакмус и метиловый оранжевый окрашиваются в красный цвет, что говорит о том, что этот раствор имеет кислый вкус.

Взаимодействие с металлами

Как и любая другая кислота, серная кислота способна замещать атомы водорода на атомы металла в своей молекуле. Взаимодействует она практически со всеми металлами.

В разбавленном виде серная кислота реагирует с металлами как обычная кислота. В результате реакции образуется соль с кислотным остатком SO4 и водород.

Zn + H2SO4 = ZnSO4 + H2

А концентрированная серная кислота является очень сильным окислителем. Она окисляет все металлы, независимо от их положения в ряду напряжений. И при реакции с металлами она сама восстанавливается до SO2. Водород не выделяется.

Сu + 2 H2SO4 (конц) = CuSO4 + SO2 + 2H2O

Zn + 2 H2SO4 (конц) = ZnSO4 + SO2 + 2H2O

А вот золото, железо, алюминий, металлы платиновой группы в серной кислоте не окисляются. Поэтому серную кислоту перевозят в стальных цистернах.

Сернокислые соли, которые получаются в результате таких реакций, называют сульфатами. Они не имеют цвета, легко кристаллизуются. Некоторые из них хорошо растворяются в воде. Малорастворимыми являются только CaSO4 и PbSO4 . Почти не растворяется в воде BaSO4.

Взаимодействие с основаниями


Реакция взаимодействия кислоты с основаниями называется реакцией нейтрализации. В результате реакции нейтрализации серной кислоты образуется соль, содержащая кислотный остаток SO4, и вода H2O.

Примеры реакций нейтрализации серной кислоты:

H2SO4 + 2 NaOH = Na2SO4 + 2 H2O

H2SO4 + CaOH = CaSO4 + 2 H2O

Серная кислота вступает в реакцию нейтрализации как с растворимыми, так и с нерастворимыми основаниями.

Так как в молекуле серной кислоты два атома водорода, и для её нейтрализации требуется два основания, то она относится к двухосновным кислотам.

Взаимодействие с основными оксидами

Из школьного курса химии нам известно, что оксидами называют сложные вещества, в состав которых входят два химических элемента, одним из которых является кислород в степени окисления -2 . Основными оксидами называют оксиды 1, 2 и некоторых 3 валентных металлов. Примеры основных оксидов: Li2O, Na2O, CuO, Ag2O, MgO, CaO, FeO, NiO.

С основными оксидами серная кислота вступает в реакцию нейтрализации. В результате такой реакции, как и в реакции с основаниями, образуются соль и вода. Соль содержит кислотный остаток SO4.

CuO + H2SO4 = CuSO4 + H2O

Взаимодействие с солями

Серная кислота взаимодействует с солями более слабых или летучих кислот, вытесняя из них эти кислоты. В результате такой реакции образуется соль с кислотным остатком SO4 и кислота

H2SO4+BaCl2=BaSO4+2HCl

Применение серной кислоты и её соединений


Бариева каша ВaSO4 способна задерживать рентгеновские лучи. Заполняя ею полые органы человеческого организма, рентгенологи исследуют их.

В медицине и строительстве широко применяют природный гипс CaSO4 * 2H2O, кристаллогидрат сульфата кальция. Глауберова соль Na2SO4 * 10H2O используется в медицине и ветеринарии, в химической промышленности - для производства соды и стекла. Медный купорос CuSO4 * 5H2O известен садоводам и агрономам, которые используют его для борьбы с вредителями и болезнями растений.

Серная кислота широко используется в различных отраслях промышленности: химической, металлообрабатывающей, нефтяной, текстильной, кожевенной и других.

Технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3: H2O < 1, то это водный раствор серной кислоты, если > 1 - раствор SO3 в серной кислоте (олеум).

  • 1 Название
  • 2 Физические и физико-химические свойства
    • 2.1 Олеум
  • 3 Химические свойства
  • 4 Применение
  • 5 Токсическое действие
  • 6 Исторические сведения
  • 7 Дополнительные сведения
  • 8 Получение серной кислоты
    • 8.1 Первый способ
    • 8.2 Второй способ
  • 9 Стандарты
  • 10 Примечания
  • 11 Литература
  • 12 Ссылки

Название

В XVIII-XIX веках серу для пороха производили из серного колчедана (пирит) на купоросных заводах. Серную кислоту в то время называли «купоросным маслом» (как правило это был кристаллогидрат, по консистенции напоминающий масло), очевидно отсюда происхождение названия её солей (а точнее именно кристаллогидратов) - купоросы.

Физические и физико-химические свойства

Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 10−2); длины связей в молекуле S=O 0,143 нм, S-OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС). Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− - 0,18, H3SO4+ - 0,14, H3O+ - 0,09, H2S2O7, - 0,04, HS2O7⁻ - 0,05. Смешивается с водой и SO3, во всех соотношениях. водных растворах серная кислота практически полностью диссоциирует на H3О+, HSO3+, и 2НSO₄−. Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.

Олеум

Основная статья: Олеум

Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3.

Олеум содержит также пиросерные кислоты, получающиеся по реакциям:

Температура кипения водных растворов серной кислоты повышается с ростом её концентрации и достигает максимума при содержании 98,3 % H2SO4.

Свойства водных растворов серной кислоты и олеума
Содержание % по массе Плотность при 20 ℃, г/см³ Температура плавления, ℃ Температура кипения, ℃
H2SO4 SO3 (свободный)
10 - 1,0661 −5,5 102,0
20 - 1,1394 −19,0 104,4
40 - 1,3028 −65,2 113,9
60 - 1,4983 −25,8 141,8
80 - 1,7272 −3,0 210,2
98 - 1,8365 0,1 332,4
100 - 1,8305 10,4 296,2
104,5 20 1,8968 −11,0 166,6
109 40 1,9611 33,3 100,6
113,5 60 2,0012 7,1 69,8
118,0 80 1,9947 16,9 55,0
122,5 100 1,9203 16,8 44,7

Температура кипения олеума с увеличением содержания SO3 понижается. При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума. С увеличением концентрации SO3 в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:

величины коэффициентов А и зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.

С повышением температуры усиливается диссоциация:

Уравнение температурной зависимости константы равновесия:

При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).

Плотность 100%-ной серной кислоты можно определить по уравнению:

С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO3 увеличивается.

При повышении концентрации и понижении температуры теплопроводность λ уменьшается:

где С - концентрация серной кислоты, в %.

Максимальную вязкость имеет олеум H2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации SO3 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4. Для олеума минимальное ρ при концентрации 10 % SO3. С повышением температуры ρ серной кислоты увеличивается. Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.

Химические свойства

Серная кислота в концентрированном виде при нагревании - довольно сильный окислитель; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, серу - до SO2, окисляет многие металлы (Cu, Hg, исключение - золото и платина). При этом концентрированная серная кислота восстанавливается до SO2, например:

Наиболее сильными восстановителями концентрированная серная кислота восстанавливается до S и H2S. Концентрированная серная кислота поглощает водяные пары, поэтому она применяется для сушки газов, жидкостей и твёрдых тел, например, в эксикаторах. Однако концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки. Отщепляя воду от органических соединений и оставляя при этом чёрный углерод (уголь), концентрированная серная кислота приводит к обугливанию древесины, сахара и других веществ.

Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением, например:

Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота образует два ряда солей: средние - сульфаты и кислые - гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

Серная кислота реагирует также с основными оксидами, образуя сульфат и воду:

На металлообрабатывающих заводах раствор серной кислоты применяют для удаления слоя оксида металла с поверхности металлических изделий, подвергающихся в процессе изготовления сильному нагреванию. Так, оксид железа удаляется с поверхности листового железа действием нагретого раствора серной кислоты:

Качественной реакцией на серную кислоту и её растворимые соли является их взаимодействие с растворимыми солями бария, при котором образуется белый осадок сульфата бария, нерастворимый в воде и кислотах, например:

Применение

Серную кислоту применяют:

  • в обработке руд, особенно при добыче редких элементов, в т.ч. урана, иридия, циркония, осмия и т.п.;
  • в производстве минеральных удобрений;
  • как электролит в свинцовых аккумуляторах;
  • для получения различных минеральных кислот и солей;
  • в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ;
  • в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
  • в пищевой промышленности - зарегистрирована в качестве пищевой добавки E513 (эмульгатор);
  • в промышленном органическом синтезе в реакциях:
    • дегидратации (получение диэтилового эфира, сложных эфиров);
    • гидратации (этанол из этилена);
    • сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
    • алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
    • Для восстановления смол в фильтрах на производстве дистилированной воды.

Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты - производство минеральных удобрений. На P₂O₅ фосфорных удобрений расходуется в 2,2-3,4 раза больше по массе серной кислоты, а на (NH₄)₂SO₄ серной кислоты 75% от массы расходуемого (NH₄)₂SO₄. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.

Токсическое действие

Серная кислота и олеум - очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко - ларингит, трахеит, бронхит и т. д. Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.

Исторические сведения

Серная кислота известна с древности, встречаясь в природе в свободном виде, например, в виде озёр вблизи вулканов. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.

В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4 7H2O и CuSO4 5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.

Схема получения серной кислоты из железного купороса - термическое разложение сульфата железа (II) с последующим охлаждением смеси

Молекула серной кислоты по Дальтону

  1. 2FeSO4+7H2O→Fe2O3+SO2+H2O+O2
  2. SO2+H2O+1/2O2 ⇆ H2SO4

В трудах алхимика Валентина (XIII в) описывается способ получения серной кислоты путем поглощения водой газа (серный ангидрид), выделяющегося при сжигании смеси порошков серы и селитры. Впоследствии этот способ лег в основу т. н. «камерного» способа, осуществляемого в небольших камерах, облицованных свинцом, который не растворяется в серной кислоте. СССР такой способ просуществовал вплоть до 1955 г.

Алхимикам XV в известен был также способ получения серной кислоты из пирита - серного колчедана, более дешевого и распространенного сырья, чем сера. Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах. Впоследствии, в связи с развитием катализа этот метод вытеснил камерный способ синтеза серной кислоты. настоящее время серную кислоту получают каталитическим окислением (на V2O5) оксида серы (IV) в оксид серы (VI), и последующим растворением оксида серы (VI) в 70 % серной кислоте с образованием олеума.

В России производство серной кислоты впервые было организовано в 1805 году под Москвой в Звенигородском уезде. 1913 году Россия по производству серной кислоты занимала 13 место в мире.

Дополнительные сведения

Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты. Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата. Например, в результате извержения вулкана Ксудач (п-ов Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже. Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3·107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994 .

Получение серной кислоты

Основная статья: Производство серной кислоты

Первый способ

Второй способ

В тех редких случаях, когда сероводород(H2S) вытесняет сульфат(SO4-) из соли (с металлами Cu,Ag,Pb,Hg) побочным продуктом является серная кислота

Сульфиды данных металлов обладают высочайшей прочностью, а также отличительным черным окрасом.

Стандарты

  • Кислота серная техническая ГОСТ 2184-77
  • Кислота серная аккумуляторная. Технические условия ГОСТ 667-73
  • Кислота серная особой чистоты. Технические условия ГОСТ 1422-78
  • Реактивы. Кислота серная. Технические условия ГОСТ 4204-77

Примечания

  1. Ушакова Н. Н., Фигурновский Н. А. Василий Михайлович Севергин: (1765-1826) / Ред. И. И. Шафрановский. М.: Наука, 1981. C. 59.
  2. 1 2 3 Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 91. Химические свойства серной кислоты // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 209-211. - 240 с. - 1 630 000 экз.
  3. Ходаков Ю.В., Эпштейн Д.А., Глориозов П.А. § 92. Качественная реакция на серную кислоту и её соли // Неорганическая химия: Учебник для 7-8 классов средней школы. - 18-е изд. - М.: Просвещение, 1987. - С. 212. - 240 с. - 1 630 000 экз.
  4. лицо худруку балета Большого театра Сергею Филину плеснули серной кислотой
  5. Эпштейн, 1979, с. 40
  6. Эпштейн, 1979, с. 41
  7. см. статью «Вулканы и климат» (рус.)
  8. Русский архипелаг - Виновато ли человечество в глобальном изменении климата? (рус.)

Литература

  • Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971
  • Эпштейн Д. А. Общая химическая технология. - М.: Химия, 1979. - 312 с.

Ссылки

  • Статья «Серная кислота» (Химическая энциклопедия)
  • Плотность и значение pH серной кислоты при t=20 °C

серная кислота, серная кислота википедия, серная кислота гидролиз, серная кислота ее воздействие 1, серная кислота класс опасности, серная кислота купить в украине, серная кислота применение, серная кислота разъедает, серная кислота с водой, серная кислота формула

Серная кислота Информацию О